Supporting Information

for

Diverse Structural Reactivity Pattern of a POCOP Ligand with Coinage Metals

Moushakhi Ghosh^a, Nasrina Parvin^b, Prakash Panwaria^a, Srinu Tothadi^c, Rangarajan Bakthavatsalam^c, Arshad Therambram^a, Shabana Khan^{a*}

^aDepartment of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India.

^bCSIR-Central Salt and Marine Chemicals Research Institute, Gijub Badheka Marg, Bhavnagar-364002, India

^c Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India

*Corresponding author. E-mail: shabana@iiserpune.ac.in

Contents

- **S1**. Experimental Details
- S2. NMR Data for 2-12
- S3. Crystallographic details of 2-12
- S4. Photophysical Data
- S5. Powder X-Ray Diffraction (PXRD) patterns of complex 2-4, 6 and 12
- **S6.** Mass Spectrometric Data for complexes **2-12**
- S7. Quantum Chemical Calculation for Complexes 2-4, 6, 7, 11, and 12

S1. Experimental Details

All experiments were carried out under an atmosphere of dry argon or in vacuo using a standard Schlenk technique and in a dinitrogen filled MBRAUN MB 150-G1 glovebox. The solvents used were purified by an MBRAUN solvent purification system MB SPS-800. All other chemicals purchased from Aldrich were used without further purification. ¹H, ¹³C, ¹⁹F and BF₃·OEt₂ for ¹¹B NMR spectra were recorded with the Bruker 400 MHz spectrometer, using CDCl₃ and DMSO- d_6 as a solvent with an external standard (SiMe₄ for ¹H, ¹³C; 85% H₃PO₄ for ³¹P and CHF₃ for ¹⁹F).

Synthesis of 1

We modified the existing procedure. 4,6-di-*tert*-butyl resorcinol (3.33 g, 15 mmol) was taken in a 100ml schlenk flask and was made soluble in 50 ml anhydrous diethyl ether. 12 ml *n*-BuLi (2.5 M in n-Hexane) was added slowly dropwise to the reaction mixture at -78°C and stirred for 4 hrs at room temperature. Diphenylchlorophosphine (PPh₂Cl) (5.55 ml, 30 mmol) was added to the reaction mixture at -78 °C. After overnight stirring at room temperature, LiCl was precipitated out from the reaction mixture and was filtered off. The solvent was evaporated, and the oily residue was made soluble in excess *n*-hexane, which afforded colourless crystals. Yield: 6.2 g (70%). The ¹H, ³¹P, and ¹³C matched well with previously reported literature.¹

Synthesis of 2

1 (0.295 g, 0.5 mmol) and CuCl (0.067 g, 0.5 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture after 1 day at room temperature. Yield: 450 mg (65 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 1.15 (s, 36H, C*Me*₃), 7.02-7.04 (m, 16H, aromatic CH), 7.12 (s, 2H, aromatic CH), 7.13-7.26 (m, 8H, aromatic CH), 7.32-7.33 (m, 16H, aromatic CH), 8.20 (s, 2H, aromatic CH) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃, 298K): δ 29.40 (C*Me*₃), 33.30 (C*Me*₃), 110.72 (resorcinyl aromatic CH, ortho), 123.65 (resorcinyl aromatic CH, meta), 126.80,127.25, 128.85, 129.18, 130.35, 130.45, 130.97, 131.01,131.05,131.09, 134.79, 149.79, 150.57 ppm. ³¹P{¹H} NMR (161.976 MHz, CDCl₃, 298 K): δ 90.74, 92.88 ppm. Mp: 266.9 °C. MALDI TOF: C₇₆H₈₀Cu₂Cl₂O₄P₄: m/z 1379.342 Found m/z: 689.0856 (for C₃₈H₄₀CuClO₂P₂) (Monomer)

Synthesis of 3

1 (0.295 g, 0.5 mmol) and CuBr (0.14 g, 1 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture after a few days at room temperature. Yield: 700 mg (80 %).¹H NMR (400 MHz, CDCl₃, 298K): δ 1.12 (s, 36H, CMe₃), 6.99-7.05 (m, 16H, aromatic CH), 7.09 (s, 2H, aromatic CH), 7.18-7.24 (m, 8H, aromatic CH), 7.28-7.34 (m, 16H, aromatic CH), 8.20 (s, 2H, aromatic CH) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃, 298K): δ 29.40 (CMe₃), 33.29 (CMe₃), 111.81 (resorcinyl aromatic CH, ortho), 123.72 (resorcinyl aromatic CH, meta), 126.74, 127.20, 128.88, 129.22, 131.16, 131.20, 131.24, 131.29, 134.67, 134.73, 134.79, 149.61, 150.42 ppm. ³¹P{¹H} NMR (161.976 MHz, CDCl₃, 298 K): δ 91.40 ppm. Mp: 205.0 °C. ESI MS: C₇₆H₈₀Cu₄Br₄O₄P₄: m/z 1755.142 Found m/z: 1755.5341

Synthesis of 4

1 (0.295 g, 0.5 mmol) and CuI (0.19 g, 1 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: 650 mg (67 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 1.15 (s, 36H, CMe₃), 7.02-7.04 (m, 16H, aromatic CH), 7.11 (s, 2H, aromatic CH), 7.21 (m, 8H, aromatic CH), 7.33 (m, 16H, aromatic CH), 8.20 (s, 2H, aromatic CH) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃, 298K): δ 29.50 (CMe₃), 33.29 (CMe₋₃), 113.39 (resorcinyl aromatic CH, ortho), 124.02 (resorcinyl aromatic CH, para), 126.65, 127.20, 128.94, 131.59, 134.51, 149.10 ppm. ³¹P{¹H} NMR (161.976 MHz, CDCl₃, 298 K): δ 92.9 ppm. Mp: 255.4 °C MALDI TOF: C₇₆H₈₀Cu₄I₄O₄P₄: m/z 1943.146 Found m/z: 1980.4334 (for M+K-2)

Synthesis of 5

1 (0.295 g, 0.5 mmol) and CuOTf.toluene (0.516 g, 1 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: 520 mg (51 %).¹H NMR (400 MHz, CDCl₃, 298K): δ 1.17 (s, 36H, CMe₃), 6.29 (s, 2H, aromatic H), 7.22-7.28 (m, 16H, phenyl H), 7.29 (s, 2H, aromatic H), 7.32-7.37 (m, 8H, phenyl H), 7.45-7.53 (m, 16H, phenyl H) ppm. ³¹P{¹H} NMR (161.976 MHz, CDCl₃, 298 K): δ 98.28 ppm. Mp: 207.6 °C MALDI TOF: C₈₀H₈₀Cu₄F1₂O₁₆P₄S₄: m/z 2031.804 Found m/z: 2031.5327

Synthesis of 6

Complex 2 (0.690 g, 0.5 mmol) was made soluble in anhydrous THF, and KPPh₂ (2 ml in 0.5M solution) was added to the same flask at room temperature. The colour of the reaction instantly changed to bright yellow from colourless. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a THF and toluene mixture at 0°C. Yield: 720 mg (66 %). MALDI TOF: $C_{124}H_{120}Cu_4O_4P_8$: m/z 2175.4287 Found m/z: 2215.4287

Synthesis of 7

1 (0.59 g, 1 mmol), CuBF₄(ACN)₄ (0.471 g, 1.5 mmol) and 2-2'-bipyridine (0.396 g, 1.5 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and diethylether mixture at room temperature. Yield: 710 mg (72 %). ¹H NMR (400 MHz, DMSO-d₆, 298K): δ 1.09 (s, 36H, C*Me*₃), 6.42 (m, 2H, aromatic CH), 7.17 (33H, aromatic CH), 7.31(4H, aromatic CH), 7.49 (8H, aromatic CH), 7.61 (5H, aromatic CH), 8.18 (6H, aromatic CH), 8.53 (m, 6H, aromatic CH) ppm, ³¹P{¹H} NMR (161.976 MHz, CDCl₃, 298 K): δ 104.8, 94.3, 91.3, ¹¹B NMR (CDCl₃, 128.387 MHz): δ 0.65 ppm, ¹⁹F{¹H} NMR (376.66 MHz, CDCl₃, 298 K): -152.9 ppm. MALDI TOF: C₁₀₆H₁₀₄Cu₃O₄P₄N₆B₃F₁₂: m/z 2100.9974 Found m/z: 2215.4287

Synthesis of 8

1 (0.295 g, 0.5 mmol) and AgBr (0.188 g, 1 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: 690 mg (70 %).¹H NMR (400 MHz, DMSO-d₆, 298K): δ 1.21 (s, 36H, C*Me*₃), 6.27 (s, 2H, aromatic CH), 7.22 (s, 2H, aromatic H), 7.35-7.42 (m, 16H, aromatic CH), 7.45-7.51 (m, 8H, aromatic CH), 7.64-7.72 (m, 16H, aromatic CH) ppm. ³¹P{¹H} NMR (161.976 MHz, DMSO-d₆, 298 K): δ 107.24 ppm. Mp: 255.4 °C MALDI TOF: C₇₆H₈₀Ag₄Br₄O₄P₄: m/z 1932.431 Found m/z: 1932.431 (for M⁺)

Synthesis of 9

1 (0.295 g, 0.5 mmol) and AgI (0.232 g, 1 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a

~ S5 ~

dichloromethane and n-pentane mixture at room temperature. Yield: 730 mg (65 %). Mp: 256.1 °C MALDI TOF: C₇₆H₈₀Ag₄I₄O₄P₄: m/z 2119.7383 Found m/z: 2159.4146 (M+K+1)

Synthesis of 10

1 (0.59 g, 1 mmol) and AgSbF₆ (0.172 g, 0.5 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a THF and n-pentane mixture after two days at room temperature. Yield: 500 mg (65 %).¹H NMR (400 MHz, DMSO-d₆, 298K): δ 1.25 (s, 36H, CMe₃), 6.57 (s, 2H, aromatic CH), 7.27 (s, 2H, aromatic CH), 7.40-7.47 (m, 16H, aromatic CH), 7.48-7.57 (m, 24H, aromatic CH) ppm. - ¹³C{¹H} NMR (100.6 MHz, DMSO-d₆, 298K): δ 30.29 (CMe₃), 30.62 (CMe₃), 34.17 (CMe₃), 34.60 (CMe₃), 124.99, 129.40, 129.53, 129.64, 129.74, 130.67, 130.83, 130.87, 131.09, 131.14, 131.33, 131.35, 132.01, 132.34, 132.89, 132.92, 153.04, 154.20 ppm. ³¹P{¹H} NMR (161.976 MHz, DMSO-d₆, 298 K): δ 18.56, 27.68, 111.27 ppm. Mp: 248.1 °C. MALDI TOF: C₇₆H₈₀AgO₄P₄SbF₆: m/z 1522.3000 Found m/z: 1329.9229 (M+K-SbF₆)

Synthesis of 11

1 (0.295 g, 0.5 mmol) and AuCl.SMe₂ (0.298 g, 1 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a THF and n-pentane mixture at room temperature. Yield: 600 mg (75 %).¹H NMR (400 MHz, DMSO-d₆, 298K): δ 1.24 (s, 18H, CMe₃), 6.06 (s, 1H, aromatic CH) 7.39 (s, 1H, aromatic CH), 7.55-7.70 (m, 20H, aromatic CH) ppm. ¹³C{¹H} NMR (100.6 MHz, DMSO-d₆, 298K): δ 30.08 (CMe₃), 34.69 (CMe₃), 126.54, 130.33, 130.45, 131.75, 131.92, 133.68, 135.72, 151.44 ppm. ³¹P{¹H} NMR (161.976 MHz, DMSO-d₆, 298 K): δ 110.91 ppm. Mp: 154.2 °C. MALDI TOF: C₃₈H₄₀AuO₂P₂Cl: m/z 1060.1681 Found m/z: 1021.9920 (M-1-Cl)

Synthesis of 12

1 (0.295 g, 0.5 mmol) and AuCl.SMe₂ (0.298 g, 1 mmol) were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, 1 equivalent of AgSbF₆ (0.344 g, 1 mmol) was added at 0 °C and stirred at room temperature. The reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: 600 mg (66 %). ¹H NMR (400 MHz, DMSO-d₆, 298K): δ 1.17 (s, 36H, CMe₃), 6.80 (s, 2H, aromatic CH), 7.30-

7.57 (m, 36H, aromatic CH), 7.67-7.76 (m, 8H, aromatic CH) ppm. ${}^{13}C{}^{1}H$ NMR (100.6 MHz, DMSO-d₆, 298K): δ 30.07 (CMe₃), 34.89 (CMe₃), 128.28, 130.27, 130.61, 130.82, 130.88, 130.95, 131.68, 131.77, 131.86, 135.11,136.44, 151.25, 165.04 ppm. ${}^{31}P{}^{1}H$ NMR (161.976 MHz, DMSO-d₆, 298 K): δ 127.20 ppm. Mp: 251.9 °C ESI-MS: C₇₆H₈₀Au₂Sb₂F₁₂O₄P₄: m/z 1811.08 Found m/z: 1813.6002.

S2. NMR Spectroscopic Data for complexes 2-12

Figure S1. ¹H NMR spectrum of 2

Figure S2. ³¹P NMR spectrum of 2

Figure S3. ¹³C NMR spectrum of 2

Figure S4. ¹H NMR spectrum of 3

Figure S5. ³¹P NMR spectrum of 3

Figure S6. ¹³C NMR spectrum of 3

Figure S7. ¹H NMR spectrum of 4

Figure S8. ³¹P NMR spectrum of 4

Figure S9. ¹H NMR spectrum of 5

Figure S10. ³¹P NMR spectrum of 5

Figure S11. ¹H NMR spectrum of 7

Figure S12. ³¹P NMR spectrum of 7

Figure S13. ¹¹B NMR spectrum of 7

Figure S14. ¹⁹F NMR spectrum of 7

Figure S15. ¹H NMR spectrum of 8

Figure S16. ³¹P NMR spectrum of 8

Figure S17. ¹H NMR spectrum of 10

Figure S18. ³¹P NMR spectrum of 10

Figure S19. ¹³C NMR spectrum of 10

Figure S20. ¹H NMR spectrum of 11

Figure S21. ³¹P NMR spectrum of 11

Figure S22. ¹³C NMR spectrum of 11

Figure S23. ¹H NMR spectrum of 12

Figure S24. ³¹P NMR spectrum of 12

Figure S25. ¹³C NMR spectrum of 12

Figure S26. ¹⁹F NMR spectrum of 12

S3. Crystallographic Details of 2-12.

Crystal data for **2-12** were collected on a Bruker Smart Apex Duo diffractometer at 100 K using MoK α radiation ($\lambda = 0.71073$ Å). The absorption correction was done using the multi-scan method (SADABS). The structures were solved by direct methods and refined by full-matrix least-squares methods against F2 (SHELXL-2014/6) and Olex² with the ShelXT³ structure solution program. Attempts to refine residual electron density peaks as disordered or partial occupancy solvent toluene carbon atoms were unsuccessful. The data were corrected for disordered electron density using the SQUEEZE procedure implemented in PLATON.⁴ We used solvent masking for complexes **2**, **3** and **4**, the solvent mask corresponds to CH₂Cl₂ and toluene. Crystallographic data files for the **2-12** have been deposited with the Cambridge Crystallographic Data Centre. CCDC No.: 2244747 (**2**), 2244748 (**3**), 2244749 (**4**), 2244750 (**5**), 2244751 (**6**), 2244752 (**7**), 2244753 (**8**), 2244755 (**9**), 2244756 (**10**), 2244757 (**11**), 2244758 (**12**)

S3. Crystal Data and Structure Refinement Data for 2-12

	2	3	4	5
Sum formula	$C_{76}H_{80}Cl_2Cu_2$	$\mathrm{C}_{76}\mathrm{H}_{80}\mathrm{Br}_{4}\mathrm{Cu}_{4}\mathrm{O}_{4}$	$C_{78}H_{84}Cl_4Cu_4I_4$	C ₈₀ H ₈₀ Cl ₄ Cu ₄
	O ₄ P ₄ [+solvent]	P ₄ [+ solvent]	O ₄ P ₄ [+ solvent]	$F_{12}O_{16}P_4S_4$
Mr	1379.28	1755.08	2112.93	2201.61
Temperature	100 K	100 K	100 K	100 K
Wavelength	0.71703 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	$P2_l/n$	P -1	P-1	$P2_1/n$
Unit cell	<i>a</i> = 16.391(5)	<i>a</i> = 11.012(3) Å	<i>a</i> = 11.0314(18)	a = 14.262(4)
dimensions	Å		Å	Å
	<i>b</i> = 10.259(3)	<i>b</i> = 13.359(3) Å	<i>b</i> = 13.720(2) Å	<i>b</i> = 18.863(5)
	Å			Å
	<i>c</i> = 22.237(7)	<i>c</i> =15.688(4) Å	c= 15.256(2) Å	c= 17.852(5) Å
	Å			
	$\alpha = 90^{\circ}$	$\alpha = 101.991(8)^{\circ}$	$\alpha = 102.657(4)^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 91.976(9)^{\circ}$	$\beta = 101.226(8)^{\circ}$	$\beta = 101.013(5)^{\circ}$	$\beta = 107.047(7)$
				0
	$\gamma = 90^{\circ}$	$\gamma = 110.003(7)$ °	$\gamma = 91.511(5)^{\circ}$	$\gamma = 90^{\circ}$
Volume	3737(2)	2030.7(9)	2205.7 (6)	4592(2)
Ζ	1	1	1	2
Density	1.294 g/cm ³	1.506 g/cm^3	1.591 g/cm ³	1.592 g/cm ³
(calculated)				
Absorption	0.827 mm ⁻¹	3.190 mm ⁻¹	2.587 mm ⁻¹	1.278 mm ⁻¹
coefficient				
F(000)	1515.0	929.10	1040.0	2240.0
Theta range				
for data	2.49 to 28.41°	2.45 to 28.29°	2.49 to 28.27°	2.42 to 26.11°
collection				
	-19<=h<=19,	-14<=h<=14,	-14<=h<=14,	-19<=h<=19,
Index ranges	-12<=k<=12,	-17<=k<=17,	-18<=k<=18,	-25<=k<=25,
	-26<=1<=26	-21<=l<=21	-20<=1<=20	-23<=1<=23
Reflections	128654	75600	94097	148346
collected				

Independent	6522 [R(int) =	10201[R(int) =	11045 [R(int) =	11846 [R(int) =
reflections	0.0412]	0.0610]	0.0546]	0.1024]
Coverage of				
independent	96.3%	99.5%	99.6%	99.9%
reflections				
Function	$\Sigma \mathrm{w}(\mathrm{Fo^2} - \mathrm{Fc^2})^2$			
minimized				
Data /				
restraints /	6522/0/430	10201/ 0 / 477	11045 / 0 / 448	11846/ 0 / 584
parameters				
Goodness-of-	1.218	1.031	1.031	1.025
fit on F ²				
Δ/σ max	0.002	0.001	0.001	0.001
	6308 data[7541 data[3961 data[7743 data[
	I>2σ(I)],	I>2σ(I)],	I>2σ(I)],	I>2σ(I)],
Final D	R1 = 0.0309,	R1 = 0.0587, wR2	R1 = 0.0368,	R1 = 0.0460,
Final K	wR2 = 0.0956	= 0.1401	wR2 =	wR2 =
marces			0.0750	0.0766
	all data, R1 =			
	0.0321, wR2 =	0.0884, wR2 =	0.0554, wR2 =	0.0912, wR2 =
	0.0964	0.1603	0.0822	0.0897
Largest diff.	0.571 and -	1.307 and -	1.511 and -1.436	0.737 to -0.694
peak and hole	1.120 eÅ ⁻³	1.261eÅ ⁻³	eÅ-3	eÅ-3
R.M.S.				
deviation from	0.164 eÅ ⁻³	0.187 eÅ ⁻³	0.122 eÅ ⁻³	0.091 eÅ ⁻³
mean				

	6	7	8	9
Sum Formula	$C_{124}H_{120}Cu_4$	C ₂₁₄ H ₂₁₃ B ₆ Cl ₄	$C_{77}H_{82}Ag_4Br_4Cl_2O_4$	$C_{78}H_{83}Ag_4Cl_4I_4O_4P_4$
	O ₄ P ₈ [+solvent]	$Cu_{6}F_{24}N_{12}O_{9}P_{8}$	P_4	
Mr	2176.17	4388.70	2017.32	2289.21
Temperature	100 K	100 K	100 K	100 K
Wavelength	0.71703 Å	0.71073 Å	0.71703 Å	0.71073 Å
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	C2/c	P-1	C2/c	C2/c
Unit cell	<i>a</i> = 26.715(6) Å	a = 13.814(5) Å	<i>a</i> = 16.1275(5) Å	a = 27.384(8) Å
dimensions				
	<i>b</i> = 23.138(6) Å	<i>b</i> = 16.572(6) Å	<i>b</i> = 24.4987(8) Å	b = 28.232(8) Å
	c = 20.914(5) Å	c = 23.261(8) Å	<i>c</i> = 21.1870(9) Å	c = 11.836(3) Å
	$\alpha = 90^{\circ}$	$\alpha = 93.161(10)^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 93.309(8)^{\circ}$	$\beta = 90.315(11)^{\circ}$	$\beta = 105.565(1)^{\circ}$	$\beta = 112.454(8)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 103.514(10)^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume	12906(5) Å ³	5169(3) Å ³	8064.0(1) Å ³	8457 (4) Å ³
Ζ	4	1	4	4
Density	1.120 g/cm^3	1.410 g/cm ³	1.662 g/cm ³	1.797 g/cm ³
(calculated)				
Absorption	0.794 mm ⁻¹	0.802 mm ⁻¹	3.130 mm ⁻¹	2.620 mm ⁻¹
coefficient				
F(000)	4528.0	2260.0	3992.0	4440.0
Theta range for	4 62 to 50°	4 328 to 50°	1 996 to 28 370°	2 40 to 28 61°
data collection	4.02 10 50	4.520 10 50	1.550 to 20.570	2.40 10 20.01
	-31<=h<=31,	-16<=h<=16,	-21<=h<=21,	-37<=h<=37,
Index ranges	-27<=k<=27,	-19<=k<=19,	-32<=k<=32,	-38<=k<=38,
	-24<=1<=24	-27<=1<=27	-28<=1<=28	-16<=l<=16
Reflections	183866	178187	174464	192252
collected				
Independent	11346 [Rint =	18187 [Rint =	10039 [R(int) =	10813 [R(int) =
reflections	0.1787]	0.2358]	0.0636]	0.0533]
Coverage of				
independent	99.9%	99.9%	99.4%	94.1%

reflections				
Function	$\Sigma \mathrm{w}(\mathrm{Fo^2} - \mathrm{Fc^2})^2$			
minimized				
Data / restraints /	11346 /0 /637	18187 / 0 / 1291	10039 /0 /436	10813 / 0 / 453
parameters	11510707057	101077071291	10057707150	10015707155
Goodness-of-fit	1.038	1.074	1.071	1.126
on F ²				
Δ/σ max	0.002	0.001	0.002	0.002
	[I>2σ(I)],	[I>2σ(I)],	8082 data[I>2σ(I)],	9701 data[I>2σ(I)],
Final R indices	R1 = 0.0507,	R1 = 0.0922, wR2	R1 = 0.0266, wR2 =	R1 = 0.0348, wR2 =
	wR2 = 0.1037	= 0.1745	0.0535	0.0971
	all data, R1 =	all data, R1 =	all data, $R1 = 0.0434$,	all data , R1 =
	0.1004, wR2 =	0.1677, wR2 =	wR2 = 0.0588	0.0426, wR2 =
	0.1241	0.2030		0.1036
Largest diff.	0.52 and -0.41	$1.27 \text{ and } -0.94 \text{ e}^{3}$	0.475 and -0.678 eÅ $^{-3}$	1.031 and -1.809 eÅ $^{-3}$
peak and hole	eÅ ⁻³	1.27 and -0.97 CA	0475 and -0.076 CA	1.001 and -1.007 CA
R.M.S. deviation	0.069 eÅ ⁻³	0.116 eÅ ⁻³	0.100 eÅ ⁻³	0 347 eÅ ⁻³
from mean	0.007 CA	0.110 0/1	0.100 0/1	0.577 0/1

	10	11	12
Sum Formula	$C_{84}H_{95}AgF_6O_6P_4Sb$	$C_{42}H_{48}Au_2Cl_2O_3P_2$	$C_{79}H_{85}Au_2Cl_6F_{12}O_4P_4Sb_2$
		[+solvent]	
Mr	1668.12	1127.59	2300.52
Temperature	100 K	100 K	100 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Monoclinic	Orthorhombic
Space group	P-1	$P2_1/n$	Pbca
Unit cell	<i>a</i> = 14.6752(6) Å	<i>a</i> = 21.921(9) Å	a = 22.657(4) Å
dimensions			
	<i>b</i> = 15.9922(6) Å	<i>b</i> = 16.939(7) Å	b = 25.548(4) Å
	c = 17.7042(7) Å	c = 24.632(9) Å	c = 29.827(6)Å
	$\alpha = 103.034(2)^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 91.157(2)^{\circ}$	$\beta = 96.918(13)^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 103.181(2)^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume	3930.0(3) Å ³	9080 Å ³	17265(6) Å ³
Ζ	2	4	8
Density	1.410 g/cm ³	1.650 g/cm ³	1.770 g/cm ³
(calculated)			
Absorption	0.740 mm ⁻¹	6.677 mm ⁻¹	4.340 mm ⁻¹
coefficient			
F(000)	1718.0	4368.0	8968.0
Theta range for	2.18 to 22.16°		
data collection		2.40 to 28.39°	2.37 to 25.14°
	-17<=h<=17,	-26<=h<=26,	-27<=h<=27,
Index ranges	-19<=k<=19,	-20<=k<=20,	-30<=k<=30,
	-21<=l<=21	-29<=1<=29	-35<=1<=35
Reflections	103417	248168	74303
collected			
Independent	14238 [R(int) =	16446 [R(int) =	15600 [R(int) =
reflections	0.1183]	0.1064]	0.1526]
Coverage of	100%		
independent		99.9%	99.9%

reflections			
Function	$\Sigma \mathrm{w}(\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$	$\Sigma \mathrm{w}(\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$	$\Sigma \mathrm{w}(\mathrm{Fo^2} - \mathrm{Fc^2})^2$
minimized			
Data / restraints /	14238 / 0 / 960		
parameters		16446/ 0 / 960	15600/ 0 / 984
Goodness-of-fit	1.025	1.017	1.050
on F ²			
Δ/σ max	0.001	0.001	0.001
	9144 data [I>2σ(I)],	12689 data [I>2σ(I)],	9480 data [I>2σ(I)],
Final R indices	R1 = 0.0633, wR2 =	R1 = 0.0358, wR2 =	R1 = 0.0630, wR2 =
	0.1332	0.0709	0.0945
	all data, $R1 = 0.1178$,	all data, $R1 = 0.0574$,	all data, $R1 = 0.1324$,
	wR2 = 0.1572	wR2 = 0.0808	wR2 = 0.1126
Largest diff.	2.51 to -0.85 eÅ ⁻³	1.847 to -1.387 eÅ ⁻³	1.740 to -1.475 eÅ ⁻³
peak and hole			
R.M.S. deviation	0.099 eÅ ⁻³	0.159 eÅ ⁻³	0.203 eÅ ⁻³
from mean			

Figure S27. I/ σ (I) (up) vs. Resolution and Rmerge vs. Resolution (down) for complex 7. Concerning data quality, crystal quality is very poor; hence, that data quality is poor. We usually keep the scan at 0.5 to 1, and the exposure time is about 10-15 sec. depends on spot intensity at 0.84 Å resolution.

Figure S28. I/ σ (I) (up) *vs.* Resolution and Rmerge *vs.* Resolution (down) for complex **12.** Concerning data quality, crystal quality is very poor; hence, that data quality is poor. We usually keep the scan at 0.5 to 1, with an exposure time of 40-45 sec. depends on spot intensity at 0.84 Å resolution.

S4. Photophysical Study

Steady state absorption spectra were recorded on Shimadzu, UV-2600 UV spectrophotometer. Microsecond flash lamp (of 1.5-2.5 µs bandwidth) and Edinburgh FLS980 instrument were used during phosphorescence decay collection, and phosphorescence spectra measurement for complexes 4, 6, and 7 at 298 K. Steady State PL and lifetime was measured using an Edinburgh Instruments FS5 spectro-fluorometer and Xenon lamp for complexes 2, 3, 4 (variable temperature), 11 and 12.

Figure S29. UV-visible spectra of Complexes 2-4, 7, 11, 12 in THF.

Figure S30. Decay profile for complex 2 at 80 K

Fit: A+B1exp(-t/ τ_1)+B2exp(-t/ τ_2)+B3exp(-t/ τ_3)

T=80.00K

Parame	eter Value	Std. Dev.	<u>Rel %</u>
τ_1	8.106E-006 s	6.037E-007 s	
τ_2	5.283E-005 s	1.990E-006 s	
τ_3	1.817E-004 s	1.194E-006 s	
B1	300.2333	11.8793	3.38
B2	296.3012	7.9292	21.75
В3	296.5236	4.9270	74.87
A	0.2593		
χ^2	0.7908		

Figure S31. Decay profile for complex 3 at 80 K

Fit: A+B1exp(-t/ τ_1) +B2exp (-t/ τ_2) +B3exp (-t/ τ_3)

T=80.00K

Parame	eter <u>Value</u>	Std. Dev.	<u>Rel %</u>
τ_1	3.728E-005 s	5.451E-006 s	
τ_2	2.198E-004 s	1.447E-005 s	
τ_3	6.665E-004 s	1.103E-004 s	
B1	30.6288	2.5384	7.02
B2	48.2907	1.7237	65.30
В3	6.7503	2.2511	27.68
А	0.1752		
χ^2	0.6632		

Fit: A+B1exp(-t/ τ_1)+B2exp(-t/ τ_2)

T=80.00K

Parameter Value		Std. Dev.	<u>Rel %</u>
τ_1	3.976E-006 s	2.161E-007 s	
τ_2	2.275E-005 s	3.449E-007 s	
B1	126.0995	4.2370	20.57
B2	85.0581	2.2877	79.43
А	0.3369		
χ^2	0.6961		

Figure S32. Decay profile for complex 11 at 80 K

Fit: A+B1exp(-t/ τ_1)+B2exp(-t/ τ_2)+B3exp(-t/ τ_3)

T=80.00K

Parame	eter	Value	Std. Dev.	<u>Rel %</u>
τ_1	3.668E	-006 s	2.113E-007 s	
τ_2	1.224E	-005 s	3.206E-007 s	
τ_3	2.762E	-005 s	1.029E-006 s	
B1	941.58	18	54.8272	7.94
B2	2334.9	937	33.9138	65.64
B3	416.26	86	52.9845	26.42
А	5.6839			

χ² 1.1185

Figure S33. Decay profile for complex 12 at 80 K

T=80.00K

Fit: A+B1exp(-t/ τ_1)+B2exp(-t/ τ_2)+B3exp(-t/ τ_3)

Parameter Value		Std. Dev.	<u>Rel %</u>
τ_1	7.061E-006 s	5.189E-007 s	
τ_2	3.571E-005 s	1.449E-006 s	
τ_3	8.260E-005 s	9.529E-007 s	
B1	1052.1160	46.0087	4.39
B2	1532.7595	38.5037	32.38
В3	1294.0853	53.7412	63.23
А	1.1936		

χ² 1.0896

Figure S34. PXRD pattern of complex 2 at 298 K

Figure S35. PXRD pattern of complex 3 at 298 K

Figure S36. PXRD pattern of complex 4 at 298 K

Figure S37. PXRD pattern of complex 6 at 298 K

Figure S38. PXRD pattern of complex 12 at 298 K

S6. Mass Spectrometric Data for complexes 2-12

Figure S40. MALDI-TOF data of Complex 3

Figure S42. MALDI-TOF data of Complex 5

Figure S44. MALDI-TOF data of Complex 7

Figure S46. MALDI-TOF data of Complex 9

Figure S47. MALDI-TOF data of Complex 10

re S48. MALDI-TOF data of Complex 11

Figure S49. ESI-MS data of Complex 12

S7. Quantum Chemical Calculation for Complexes 2-4, 6, 7, 11, and 12

Co-ordinates from crystal structures are used as initial geometries for obtaining the ground state (S_0) optimized geometries of these complexes. The Gaussian 09 program package was used to perform these calculations.⁵ All these calculations are performed at the Grimme's dispersion corrected B3LYP functional (B3LYP-D3) using a def2-SVP basis set with ultrafine numerical integration grid and tight convergence criteria. Harmonic vibrational frequencies of these S_0 geometries were obtained to ensure the local minima of optimized structures. These geometries were further used to perform the TDDFT calculations to obtain further insights into the various singlet/triplet excited states, such as energies of excited states, oscillator strengths, and optical excitations.

Figure S50. Ground state (S0) optimized geometries of the complexes 2-4, 6, 7, 11, and 12 calculated at the B3LYP-D3/def2-SVP level.

Figure S51. HOMO and LUMO of complexes 2-4 at ground state.

Figure S52. HOMO and LUMO of complexes 6 and 7 at ground state.

Figure S53. HOMO and LUMO of complexes 11 and 12 at the ground state.

Figure S54. NTO analysis for complex 2.

Figure S55. NTO analysis for complex 3.

Figure S56. (a) MOs of complex 4 in the ground state; (b)NTO analysis for complex 4.

Figure S57. NTO analysis for complex 6.

Figure S58. NTO analysis for complex 7.

Figure S59. NTO analysis for complex 11.

Figure S60. NTO analysis for complex 12.

	2	3	4
S ₀ -T ₁	26.27527	1.01734	1.00089
S ₀ -T ₂	100.0052	97.57894	73.17875
S ₀ -T ₃	34.08661	0.46184	1.40215
S ₁ - T ₁	6.68691	14.55867	0.13333
S ₁ - T ₂	4.73363	0.16354	5.42224
S ₁ - T ₃	7.21313	14.94565	0.07077
S ₂ - T ₁	4.06299	0.16193	7.58012
S ₂ -T ₂	7.65177	16.99998	0.15399
S ₂ -T ₃	4.42956	0.142	8.11849
S ₃ - T ₁	9.03803	12.19809	3.38845
S ₃ -T ₂	8.60884	0.46646	0.06677
S ₃ -T ₃	12.77628	7.99878	5.87418

Table S1. Spin-orbit coupling (SOC) values for complexes 2-4 in cm⁻¹

Table S2. Excitation energies and oscillator strengths of emission properties

Complex number	Excited state	Excitation involved	Oscillator strength
2	S ₁	(M+X)LCT	f=0.0005
	S_2	(M+X)LCT	f=0.0110
	S_3	(M+X)LCT	f=0.0448
	T_1	(M+X)LCT	f=0.0000
	T ₂	(M+X)LCT	f=0.0000
	Τ ₃	(M+X)LCT	f=0.0000
3	S1	(M+X)LCT	f=0.0075
	S_2	(M+X)LCT	f=0.0000
	S_3	(M+X)LCT	f=0.0157
	T ₁	(M+X)LCT	f=0.0000
	T_2	(M+X)LCT	f=0.0000
	Τ ₃	(M+X)LCT	f=0.0000
4	S ₁	(M+X)LCT	f=0.0000
	S_2	(M+X)LCT	f=0.0031
	S_3	(M+X)LCT	f=0.0149

	T ₁	(M+X)LCT	f=0.0000
	T ₂	(M+X)LCT	f=0.0000
	T ₃	(M+X)LCT	f=0.0000
6	S ₁	MLCT	f=0.0529
	S_2	MLCT	f=0.0000
	S_3	MLCT	f=0.0528
	T ₁	MLCT	f=0.0000
	T ₂	MLCT	f=0.0000
	T ₃	MLCT	f=0.0000
7	S ₁	MLCT	f=0.0056
	S_2	LE	f=0.0018
	S_3	MLCT	f=0.0506
	T ₁	MLCT	f=0.0000
	T ₂	LE	f=0.0000
	T ₃	LMCT	f=0.0000
11	S ₁	LL'CT	f=0.0430
	S_2	LL'CT	f=0.0154
	S_3	LL'CT	f=0.0003
	T_1	LE	f=0.0000
	T ₂	LE	f=0.0000
	T ₃	LE	f=0.0000
12	S ₁	LMCT	f=0.0016
	S_2	LMCT	f=0.0028
	S_3	LL'CT	f=0.0070
	T_1	LMCT	f=0.0000
	T ₂	LE	f=0.0000
	T ₃	LE	f=0.0000

References

1. R. B. Bedford, M. Betham, M. E. Blake, S. J. Coles, S. M. Draper, M. B. Hursthouse and P. N. Scully, *Inorganica Chim. Acta*, 2006, **359**, 1870-1878.

- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- 3. G. M. Sheldrick, Acta Crystallogr. C Struct., 2015, 71, 3-8.
- 4. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. H. Li, H. P., A. F. B. Izmaylov, J., G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Revision D.01, Gaussian, Inc., Wallingford CT (2009)*.