# Supporting Information 

for<br>\title{ Diverse Structural Reactivity Pattern of a POCOP Ligand with Coinage Metals }<br>Moushakhi Ghosh ${ }^{\text {a }}$, Nasrina Parvin ${ }^{\text {b }}$, Prakash Panwaria ${ }^{\text {a }}$, Srinu Tothadi ${ }^{\text {c }}$, Rangarajan Bakthavatsalam ${ }^{\text {c }}$, Arshad Therambram ${ }^{\text {a }}$, Shabana Khan ${ }^{\text {a* }}$<br>${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India.<br>${ }^{\mathrm{b}}$ CSIR-Central Salt and Marine Chemicals Research Institute, Gijub Badheka Marg, Bhavnagar-364002, India<br>${ }^{\mathrm{c}}$ Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India<br>*Corresponding author. E-mail: shabana@iiserpune.ac.in

## Contents

S1. Experimental Details
S2. NMR Data for 2-12

S3. Crystallographic details of 2-12
S4. Photophysical Data
S5. Powder X-Ray Diffraction (PXRD) patterns of complex 2-4, 6 and 12

S6. Mass Spectrometric Data for complexes 2-12
S7. Quantum Chemical Calculation for Complexes 2-4, 6, 7, 11, and 12

## S1. Experimental Details

All experiments were carried out under an atmosphere of dry argon or in vacuo using a standard Schlenk technique and in a dinitrogen filled MBRAUN MB 150-G1 glovebox. The solvents used were purified by an MBRAUN solvent purification system MB SPS-800. All other chemicals purchased from Aldrich were used without further purification. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ for ${ }^{11} \mathrm{~B}$ NMR spectra were recorded with the Bruker 400 MHz spectrometer, using $\mathrm{CDCl}_{3}$ and DMSO- $d_{6}$ as a solvent with an external standard ( $\mathrm{SiMe}_{4}$ for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} ; 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ and $\mathrm{CHF}_{3}$ for ${ }^{19} \mathrm{~F}$ ).

## * Synthesis of 1

We modified the existing procedure. 4,6-di-tert-butyl resorcinol ( $3.33 \mathrm{~g}, 15 \mathrm{mmol}$ ) was taken in a 100 ml schlenk flask and was made soluble in 50 ml anhydrous diethyl ether. $12 \mathrm{ml} n$-BuLi (2.5 M in n -Hexane) was added slowly dropwise to the reaction mixture at $-78^{\circ} \mathrm{C}$ and stirred for 4 hrs at room temperature. Diphenylchlorophosphine $\left(\mathrm{PPh}_{2} \mathrm{Cl}\right)(5.55 \mathrm{ml}, 30 \mathrm{mmol})$ was added to the reaction mixture at $-78^{\circ} \mathrm{C}$. After overnight stirring at room temperature, LiCl was precipitated out from the reaction mixture and was filtered off. The solvent was evaporated, and the oily residue was made soluble in excess $n$-hexane, which afforded colourless crystals. Yield: $6.2 \mathrm{~g}(70 \%)$. The ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$, and ${ }^{13} \mathrm{C}$ matched well with previously reported literature. ${ }^{1}$

## * Synthesis of 2

$\mathbf{1}(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{CuCl}(0.067 \mathrm{~g}, 0.5 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture after 1 day at room temperature. Yield: 450 mg ( 65 \%). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 1.15$ ( $\mathrm{s}, 36 \mathrm{H}, \mathrm{CMe}_{3}$ ), $7.02-7.04$ (m, 16 H , aromatic $\mathrm{CH}), 7.12(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH$), 7.13-7.26(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$), 7.32-7.33(\mathrm{~m}, 16 \mathrm{H}$, aromatic CH ), $8.20(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH$) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 29.40$ ( $\mathrm{CMe}_{3}$ ), 33.30 ( $\mathrm{CMe}_{3}$ ), 110.72 (resorcinyl aromatic CH , ortho), 123.65 (resorcinyl aromatic CH, meta), 126.80,127.25, 128.85, 129.18, 130.35, 130.45, 130.97, 131.01,131.05,131.09, $134.79,149.79,150.57 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $161.976 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 90.74,92.88$ ppm. Mp: $266.9{ }^{\circ} \mathrm{C}$. MALDI TOF: $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Cu}_{2} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{P}_{4}: \mathrm{m} / \mathrm{z} 1379.342$ Found m/z: 689.0856 (for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{CuClO}_{2} \mathrm{P}_{2}$ ) (Monomer)

## Synthesis of 3

$\mathbf{1}(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{CuBr}(0.14 \mathrm{~g}, 1 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture after a few days at room temperature. Yield: 700 mg ( $80 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 1.12\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CMe}_{3}\right.$ ), $6.99-7.05$ ( $\mathrm{m}, 16 \mathrm{H}$, aromatic CH ), $7.09(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH$), 7.18-7.24(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$), 7.28-7.34(\mathrm{~m}, 16 \mathrm{H}$, aromatic CH ), $8.20(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH$) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 29.40$ $\left(\mathrm{CMe}_{3}\right), 33.29\left(\mathrm{CMe}_{3}\right), 111.81$ (resorcinyl aromatic CH , ortho), 123.72 (resorcinyl aromatic CH, meta), 126.74, 127.20, 128.88, 129.22, 131.16, 131.20, 131.24, 131.29, 134.67, 134.73, $134.79,149.61,150.42 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $161.976 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 91.40 \mathrm{ppm} . \mathrm{Mp}:$ $205.0{ }^{\circ} \mathrm{C}$. ESI MS: $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Cu}_{4} \mathrm{Br}_{4} \mathrm{O}_{4} \mathrm{P}_{4}$ : m/z 1755.142 Found $\mathrm{m} / \mathrm{z}: 1755.5341$

## * Synthesis of 4

$\mathbf{1}(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{CuI}(0.19 \mathrm{~g}, 1 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: $650 \mathrm{mg}(67 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 1.15$ (s, $36 \mathrm{H}, \mathrm{CMe}_{3}$ ), 7.02-7.04 (m, 16H, aromatic CH ), 7.11 ( s , 2 H , aromatic CH$), 7.21(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$), 7.33(\mathrm{~m}, 16 \mathrm{H}$, aromatic CH$), 8.20(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH ) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 29.50(\mathrm{CMe} 3$ ), $33.29(\mathrm{CMe}-$ 3), 113.39 (resorcinyl aromatic CH , ortho), 124.02 (resorcinyl aromatic CH , para), 126.65, 127.20, 128.94, 131.59, 134.51, $149.10 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(161.976 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta$ 92.9 ppm. Mp: $255.4{ }^{\circ} \mathrm{C}$ MALDI TOF: $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Cu}_{4} \mathrm{I}_{4} \mathrm{O}_{4} \mathrm{P}_{4}: \mathrm{m} / \mathrm{z} 1943.146$ Found $\mathrm{m} / \mathrm{z}: 1980.4334$ (for $\mathrm{M}+\mathrm{K}-2$ )

## * Synthesis of 5

$\mathbf{1}(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and CuOTf.toluene $(0.516 \mathrm{~g}, 1 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: $520 \mathrm{mg}(51 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 1.17\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CMe}_{3}\right.$ ), $6.29(\mathrm{~s}, 2 \mathrm{H}$, aromatic H$), 7.22-7.28(\mathrm{~m}, 16 \mathrm{H}$, phenyl H), $7.29(\mathrm{~s}, 2 \mathrm{H}$, aromatic H ), 7.32-7.37 (m, 8 H , phenyl H), 7.45-7.53 (m, 16H, phenyl H) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $161.976 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 98.28 \mathrm{ppm}$. Mp: $207.6^{\circ} \mathrm{C}$ MALDI TOF: $\mathrm{C}_{80} \mathrm{H}_{80} \mathrm{Cu}_{4} \mathrm{~F}_{2} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{~S}_{4}: \mathrm{m} / \mathrm{z} 2031.804$ Found $\mathrm{m} / \mathrm{z}: 2031.5327$

## * Synthesis of 6

Complex $2(0.690 \mathrm{~g}, 0.5 \mathrm{mmol})$ was made soluble in anhydrous THF, and $\mathrm{KPPh}_{2}(2 \mathrm{ml}$ in 0.5 M solution) was added to the same flask at room temperature. The colour of the reaction instantly changed to bright yellow from colourless. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a THF and toluene mixture at $0^{\circ} \mathrm{C}$. Yield: $720 \mathrm{mg}(66 \%)$. MALDI TOF: $\mathrm{C}_{124} \mathrm{H}_{120} \mathrm{Cu}_{4} \mathrm{O}_{4} \mathrm{P}_{8}: \mathrm{m} / \mathrm{z}$ 2175.4287 Found m/z: 2215.4287

## * Synthesis of 7

$1(0.59 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{CuBF}_{4}(\mathrm{ACN})_{4}(0.471 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 2-2'-bipyridine $(0.396 \mathrm{~g}, 1.5 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and diethylether mixture at room temperature. Yield: $710 \mathrm{mg}(72 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{6}$, 298K): $\delta 1.09(\mathrm{~s}, 36 \mathrm{H}$, $\left.\mathrm{CMe} e_{3}\right), 6.42(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), 7.17(33 \mathrm{H}$, aromatic CH$), 7.31(4 \mathrm{H}$, aromatic CH$), 7.49$ $(8 \mathrm{H}$, aromatic CH$), 7.61(5 \mathrm{H}$, aromatic CH$), 8.18(6 \mathrm{H}$, aromatic CH$), 8.53(\mathrm{~m}, 6 \mathrm{H}$, aromatic $\mathrm{CH}) \mathrm{ppm},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $161.976 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 104.8,94.3,91.3,{ }^{11} \mathrm{~B}$ NMR ( $\mathrm{CDCl}_{3}$, 128.387 MHz ): $\delta 0.65 \mathrm{ppm},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $376.66 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): -152.9 ppm. MALDI TOF: $\mathrm{C}_{106} \mathrm{H}_{104} \mathrm{Cu}_{3} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{~N}_{6} \mathrm{~B}_{3} \mathrm{~F}_{12}$ : m/z 2100.9974 Found $\mathrm{m} / \mathrm{z}: 2215.4287$

## * Synthesis of 8

$1(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{AgBr}(0.188 \mathrm{~g}, 1 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: $690 \mathrm{mg}(70 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $_{6}, 298 \mathrm{~K}$ ): $\delta 1.21\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CMe}_{3}\right), 6.27(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH$), 7.22(\mathrm{~s}, 2 \mathrm{H}$, aromatic H$), ~ 7.35-7.42(\mathrm{~m}, 16 \mathrm{H}$, aromatic CH$), ~ 7.45-7.51(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$)$, 7.64-7.72 (m, 16 H , aromatic CH) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $161.976 \mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}$ ): $\delta 107.24 \mathrm{ppm} . \mathrm{Mp}$ : $255.4{ }^{\circ} \mathrm{C}$ MALDI TOF: $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Ag}_{4} \mathrm{Br}_{4} \mathrm{O}_{4} \mathrm{P}_{4}: \mathrm{m} / \mathrm{z} 1932.431$ Found $\mathrm{m} / \mathrm{z}: 1932.431$ (for $\mathrm{M}^{+}$)

## Synthesis of 9

$1(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{AgI}(0.232 \mathrm{~g}, 1 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a
dichloromethane and n-pentane mixture at room temperature. Yield: 730 mg ( $65 \%$ ). Mp: 256.1 ${ }^{\circ}{ }^{\circ}$ MALDI TOF: $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Ag}_{4} \mathrm{I}_{4} \mathrm{O}_{4} \mathrm{P}_{4}: \mathrm{m} / \mathrm{z} 2119.7383$ Found m/z: $2159.4146(\mathrm{M}+\mathrm{K}+1)$

## * Synthesis of 10

$\mathbf{1}(0.59 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.172 \mathrm{~g}, 0.5 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a THF and n-pentane mixture after two days at room temperature. Yield: $500 \mathrm{mg}(65 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $_{6}, 298 \mathrm{~K}$ ): $\delta 1.25\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CMe}_{3}\right), 6.57(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH ), $7.27(\mathrm{~s}, 2 \mathrm{H}$, aromatic CH ), 7.40-7.47 ( $\mathrm{m}, 16 \mathrm{H}$, aromatic CH ), 7.48-7.57 (m, 24 H , aromatic CH ) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.6 MHz, DMSO- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right): ~ \delta 30.29\left(\mathrm{CMe}_{3}\right), 30.62$ ( $\mathrm{CMe}_{3}$ ), 34.17 (CMe ${ }_{3}$ ), 34.60 ( $\mathrm{CMe}_{3}$ ), 124.99, 129.40, 129.53, 129.64, 129.74, 130.67, 130.83, 130.87, 131.09, 131.14, $131.33,131.35,132.01,132.34,132.89,132.92,153.04,154.20 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (161.976 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}, 298 \mathrm{~K}\right): \delta 18.56,27.68$, $111.27 \mathrm{ppm} . \mathrm{Mp}: 248.1^{\circ} \mathrm{C}$. MALDI TOF: $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{AgO}_{4} \mathrm{P}_{4} \mathrm{SbF}_{6}: \mathrm{m} / \mathrm{z} 1522.3000$ Found $\mathrm{m} / \mathrm{z}: 1329.9229\left(\mathrm{M}+\mathrm{K}-\mathrm{SbF}_{6}\right)$

## * Synthesis of 11

$\mathbf{1}(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{AuCl} . \mathrm{SMe}_{2}(0.298 \mathrm{~g}, 1 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, the reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a THF and n-pentane mixture at room temperature. Yield: $600 \mathrm{mg}(75 \%) .{ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right): \delta 1.24\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CMe}_{3}\right), 6.06(\mathrm{~s}, 1 \mathrm{H}$, aromatic CH$) 7.39(\mathrm{~s}, 1 \mathrm{H}$, aromatic CH$)$, 7.55-7.70 (m, 20H, aromatic CH) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 100.6 MHz , DMSO- $\mathrm{d}_{6}, 298 \mathrm{~K}$ ): $\delta 30.08$ (CMe ${ }_{3}$ ), 34.69 ( $\mathrm{CMe}_{3}$ ), 126.54, 130.33, 130.45, 131.75, 131.92, 133.68, 135.72, 151.44 ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 161.976 MHz, DMSO-d $_{6}, 298 \mathrm{~K}$ ): $\delta 110.91 \mathrm{ppm}$. Mp: $154.2^{\circ} \mathrm{C}$. MALDI TOF: $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{AuO}_{2} \mathrm{P}_{2} \mathrm{Cl}: \mathrm{m} / \mathrm{z} 1060.1681$ Found m/z: 1021.9920 (M-1-Cl)

## * Synthesis of 12

$1(0.295 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{AuCl} . \mathrm{SMe}_{2}(0.298 \mathrm{~g}, 1 \mathrm{mmol})$ were taken in a flask, and 40 mL of DCM was added to the reaction mixture. After overnight stirring at room temperature, 1 equivalent of $\mathrm{AgSbF}_{6}(0.344 \mathrm{~g}, 1 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and stirred at room temperature. The reaction was filtered off. The colourless crystals suitable for X-ray analysis were obtained from a dichloromethane and n-pentane mixture at room temperature. Yield: $600 \mathrm{mg}(66 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.{ }_{6}, 298 \mathrm{~K}\right): \delta 1.17$ (s, $36 \mathrm{H}, \mathrm{CMe}_{3}$ ), 6.80 (s, 2 H , aromatic CH ), 7.30-
$7.57(\mathrm{~m}, 36 \mathrm{H}$, aromatic CH$), 7.67-7.76(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.6 \mathrm{MHz}$, DMSO-d $\left._{6}, 298 \mathrm{~K}\right): \delta 30.07$ ( $\mathrm{CMe}_{3}$ ), 34.89 ( $\mathrm{CMe}_{3}$ ), 128.28, 130.27, 130.61, 130.82, 130.88, $130.95,131.68,131.77,131.86,135.11,136.44,151.25,165.04 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 161.976 MHz, DMSO-d $\left._{6}, 298 \mathrm{~K}\right): \delta 127.20 \mathrm{ppm} . \mathrm{Mp}: 251.9{ }^{\circ} \mathrm{C}$ ESI-MS: $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Au}_{2} \mathrm{Sb}_{2} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{4}: \mathrm{m} / \mathrm{z}$ 1811.08 Found m/z: 1813.6002.

## S2. NMR Spectroscopic Data for complexes 2-12



Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$


Figure S2. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{2}$


Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$


Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$


Figure S5. ${ }^{31} \mathrm{P}$ NMR spectrum of 3


Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$


Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of 4


Figure S8. ${ }^{31} \mathrm{P}$ NMR spectrum of 4


Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of 5


Figure S10. ${ }^{31} \mathrm{P}$ NMR spectrum of 5


Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of 7


Figure S12. ${ }^{31} \mathrm{P}$ NMR spectrum of 7


Figure S13. ${ }^{11}$ B NMR spectrum of 7


Figure S14. ${ }^{19} \mathrm{~F}$ NMR spectrum of 7


Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$


Figure S16. ${ }^{31}$ P NMR spectrum of $\mathbf{8}$


Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$


Figure S18. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 0}$


Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}$


Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$


Figure S21. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 1}$


Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}$


Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$


Figure S24. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 2}$


Figure S25. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}$


Figure S26. ${ }^{19}$ F NMR spectrum of $\mathbf{1 2}$

## S3. Crystallographic Details of 2-12.

Crystal data for 2-12 were collected on a Bruker Smart Apex Duo diffractometer at 100 K using $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA)$. The absorption correction was done using the multi-scan method (SADABS). The structures were solved by direct methods and refined by full-matrix least-squares methods against F2 (SHELXL-2014/6) and Olex ${ }^{2}$ with the ShelXT ${ }^{3}$ structure solution program. Attempts to refine residual electron density peaks as disordered or partial occupancy solvent toluene carbon atoms were unsuccessful. The data were corrected for disordered electron density using the SQUEEZE procedure implemented in PLATON. ${ }^{4}$ We used solvent masking for complexes $\mathbf{2 , 3}$ and $\mathbf{4}$, the solvent mask corresponds to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Moreover, we also used solvent mask for 6, the solvent mask corresponds to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene. Crystallographic data files for the 2-12 have been deposited with the Cambridge Crystallographic Data Centre. CCDC No.: 2244747 (2), 2244748 (3), 2244749 (4), 2244750 (5), 2244751 (6), 2244752 (7), 2244753 (8), 2244755 (9), 2244756 (10), 2244757 (11), 2244758 (12)

## S3. Crystal Data and Structure Refinement Data for 2-12

|  | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| Sum formula | $\begin{aligned} & \mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \\ & \mathrm{O}_{4} \mathrm{P}_{4}[+ \text { solvent }] \end{aligned}$ | $\begin{aligned} & \mathrm{C}_{76} \mathrm{H}_{80} \mathrm{Br}_{4} \mathrm{Cu}_{4} \mathrm{O}_{4} \\ & \mathrm{P}_{4}[+ \text { solvent }] \end{aligned}$ | $\begin{aligned} & \mathrm{C}_{78} \mathrm{H}_{84} \mathrm{Cl}_{4} \mathrm{Cu}_{4} \mathrm{I}_{4} \\ & \left.\mathrm{O}_{4} \mathrm{P}_{4} \text { [+ solvent }\right] \end{aligned}$ | $\begin{aligned} & \mathrm{C}_{80} \mathrm{H}_{80} \mathrm{Cl}_{4} \mathrm{Cu}_{4} \\ & \mathrm{~F}_{12} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{~S}_{4} \end{aligned}$ |
| Mr | 1379.28 | 1755.08 | 2112.93 | 2201.61 |
| Temperature | 100 K | 100 K | 100 K | 100 K |
| Wavelength | $0.71703 \AA$ | 0.71073 £ | 0.71073 A | 0.71073 A |
| Crystal system | Monoclinic | Triclinic | Triclinic | Monoclinic |
| Space group | $P 2{ }_{1} / n$ | P-1 | $P-1$ | P2 ${ }_{1} / n$ |
| Unit cell dimensions | $\begin{aligned} & a=16.391(5) \\ & \AA \end{aligned}$ | $a=11.012(3) \AA$ | $\begin{aligned} & a=11.0314(18) \\ & \AA \end{aligned}$ | $\begin{aligned} & a=14.262(4) \\ & \AA \end{aligned}$ |
|  | $\begin{aligned} & b=10.259(3) \\ & \AA \end{aligned}$ | $b=13.359(3) \AA$ | $b=13.720(2) \AA$ | $\begin{aligned} & b=18.863(5) \\ & \AA \end{aligned}$ |
|  | $\begin{aligned} & c=22.237(7) \\ & \AA \end{aligned}$ | $c=15.688(4) \AA$ | $\mathrm{c}=15.256(2) \AA$ | $\mathrm{c}=17.852(5) \AA$ |
|  | $\alpha=90^{\circ}$ | $\alpha=101.991(8){ }^{\circ}$ | $\alpha=102.657(4)^{\circ}$ | $\alpha=90^{\circ}$ |
|  | $\beta=91.976(9)^{\circ}$ | $\beta=101.226(8)^{\circ}$ | $\beta=101.013(5)^{\circ}$ | $\beta=107.047(7)$ |
|  | $\gamma=90^{\circ}$ | $\gamma=110.003(7)^{\circ}$ | $\gamma=91.511(5)^{\circ}$ | $\gamma=90^{\circ}$ |
| Volume | 3737(2) | 2030.7(9) | 2205.7 (6) | 4592(2) |
| Z | 1 | 1 | 1 | 2 |
| Density (calculated) | $1.294 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.506 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.591 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.592 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $0.827 \mathrm{~mm}^{-1}$ | $3.190 \mathrm{~mm}^{-1}$ | $2.587 \mathrm{~mm}^{-1}$ | $1.278 \mathrm{~mm}^{-1}$ |
| F(000) | 1515.0 | 929.10 | 1040.0 | 2240.0 |
| Theta range for data collection | 2.49 to $28.41^{\circ}$ | 2.45 to $28.29^{\circ}$ | 2.49 to $28.27^{\circ}$ | 2.42 to $26.11^{\circ}$ |
| Index ranges | $\begin{aligned} & -19<=\mathrm{h}<=19, \\ & -12<=\mathrm{k}<=12, \\ & -26<=\mathrm{l}<=26 \end{aligned}$ | $\begin{aligned} & -14<=\mathrm{h}<=14, \\ & -17<=\mathrm{k}<=17, \\ & -21<=1<=21 \end{aligned}$ | $\begin{aligned} & -14<=\mathrm{h}<=14, \\ & -18<=\mathrm{k}<=18, \\ & -20<=1<=20 \end{aligned}$ | $\begin{aligned} & -19<=\mathrm{h}<=19, \\ & -25<=\mathrm{k}<=25, \\ & -23<=1<=23 \end{aligned}$ |
| Reflections collected | 128654 | 75600 | 94097 | 148346 |


| Independent reflections | $\begin{aligned} & 6522[\mathrm{R}(\mathrm{int})= \\ & 0.0412] \end{aligned}$ | $\begin{aligned} & 10201[\mathrm{R}(\mathrm{int})= \\ & 0.0610] \end{aligned}$ | $\begin{aligned} & 11045[\mathrm{R}(\text { int })= \\ & 0.0546] \end{aligned}$ | $\begin{aligned} & 11846[\mathrm{R}(\text { int })= \\ & 0.1024] \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Coverage of independent reflections | 96.3\% | 99.5\% | 99.6\% | 99.9\% |
| Function minimized | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ |
| Data / restraints / parameters | 6522/0/430 | 10201/ 0 / 477 | 11045 / 0 / 448 | 11846/ 0 / 584 |
| Goodness-offit on $\mathbf{F}^{2}$ | 1.218 | 1.031 | 1.031 | 1.025 |
| $\Delta / \sigma$ max | 0.002 | 0.001 | 0.001 | 0.001 |
| Final R indices | $\begin{aligned} & 6308 \text { data } \\ & \mathrm{I}>2 \sigma(\mathrm{I})] \\ & \mathrm{R} 1=0.0309 \\ & \mathrm{wR} 2=0.0956 \end{aligned}$ | $\begin{aligned} & 7541 \text { data[ } \\ & \mathrm{I}>2 \sigma(\mathrm{I})], \\ & \mathrm{R} 1=0.0587, \mathrm{wR} 2 \\ & =0.1401 \end{aligned}$ | $\begin{aligned} & 3961 \text { data } \\ & \mathrm{I}>2 \sigma(\mathrm{I})], \\ & \mathrm{R} 1=0.0368, \\ & \mathrm{wR} 2= \\ & 0.0750 \end{aligned}$ | $\begin{aligned} & 7743 \text { data } \\ & \mathrm{I}>2 \sigma(\mathrm{I})], \\ & \mathrm{R} 1=0.0460, \\ & \mathrm{wR} 2= \\ & 0.0766 \end{aligned}$ |
|  | $\begin{aligned} & \text { all data, } \mathrm{R} 1= \\ & 0.0321, \mathrm{wR} 2= \\ & 0.0964 \end{aligned}$ | $\begin{aligned} & \text { all data, } \mathrm{R} 1= \\ & 0.0884, \mathrm{wR} 2= \\ & 0.1603 \end{aligned}$ | $\begin{aligned} & \hline \text { all data, } \mathrm{R} 1= \\ & 0.0554, \mathrm{wR} 2= \\ & 0.0822 \end{aligned}$ | $\begin{aligned} & \text { all data, } \mathrm{R} 1= \\ & 0.0912, \mathrm{wR} 2= \\ & 0.0897 \end{aligned}$ |
| Largest diff. peak and hole | $\begin{aligned} & 0.571 \text { and - } \\ & 1.120 \mathrm{e}^{-3} \end{aligned}$ | $\begin{aligned} & 1.307 \text { and - } \\ & 1.261 \mathrm{e}^{-3} \end{aligned}$ | $\begin{aligned} & 1.511 \text { and }-1.436 \\ & \mathrm{e} \AA^{-3} \end{aligned}$ | $\begin{aligned} & 0.737 \text { to }-0.694 \\ & \mathrm{e} \AA^{-3} \end{aligned}$ |
| R.M.S. deviation from mean | $0.164 \mathrm{e}^{\AA^{-3}}$ | $0.187 \mathrm{e}^{\AA}{ }^{-3}$ | $0.122 \mathrm{e}^{\AA^{-3}}$ | $0.091 \mathrm{e}^{\text {® }}$-3 |


|  | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: |
| Sum Formula | $\begin{gathered} \mathrm{C}_{124} \mathrm{H}_{120} \mathrm{Cu}_{4} \\ \mathrm{O}_{4} \mathrm{P}_{8}[+ \text { solvent }] \end{gathered}$ | $\begin{gathered} \hline \mathrm{C}_{214} \mathrm{H}_{213} \mathrm{~B}_{6} \mathrm{Cl}_{4} \\ \mathrm{Cu}_{6} \mathrm{~F}_{24} \mathrm{~N}_{12} \mathrm{O}_{9} \mathrm{P}_{8} \end{gathered}$ | $\begin{gathered} \mathrm{C}_{77} \mathrm{H}_{82} \mathrm{Ag}_{4} \mathrm{Br}_{4} \mathrm{Cl}_{2} \mathrm{O}_{4} \\ \mathrm{P}_{4} \end{gathered}$ | $\mathrm{C}_{78} \mathrm{H}_{83} \mathrm{Ag}_{4} \mathrm{Cl}_{4} \mathrm{I}_{4} \mathrm{O}_{4} \mathrm{P}_{4}$ |
| Mr | 2176.17 | 4388.70 | 2017.32 | 2289.21 |
| Temperature | 100 K | 100 K | 100 K | 100 K |
| Wavelength | $0.71703 \AA$ | 0.71073 A | $0.71703 \AA$ | 0.71073 £ |
| Crystal system | Monoclinic | Triclinic | Monoclinic | Monoclinic |
| Space group | C2/c | P-1 | C2/c | C2/c |
| Unit cell dimensions | $a=26.715(6) \AA$ | $a=13.814(5) \AA$ | $a=16.1275(5) \AA$ | $a=27.384(8) \AA$ |
|  | $b=23.138(6) \AA$ | $b=16.572(6) \AA$ | $b=24.4987(8) \AA$ | $b=28.232(8) \AA$ |
|  | $c=20.914(5) \AA$ | $c=23.261(8) \AA$ | $c=21.1870(9) \AA$ | $c=11.836(3) \AA$ |
|  | $\alpha=90^{\circ}$ | $\alpha=93.161(10)^{\circ}$ | $\alpha=90^{\circ}$ | $\alpha=90^{\circ}$ |
|  | $\beta=93.309(8)^{\circ}$ | $\beta=90.315(11)^{\circ}$ | $\beta=105.565(1)^{\circ}$ | $\beta=112.454(8)^{\circ}$ |
|  | $\gamma=90^{\circ}$ | $\gamma=103.514(10)^{\circ}$ | $\gamma=90^{\circ}$ | $\gamma=90^{\circ}$ |
| Volume | 12906(5) $\AA^{3}$ | 5169(3) $\AA^{3}$ | 8064.0(1) $\AA^{3}$ | 8457 (4) $\AA^{3}$ |
| $Z$ | 4 | 1 | 4 | 4 |
| Density (calculated) | $1.120 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.410 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.662 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.797 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $0.794 \mathrm{~mm}^{-1}$ | $0.802 \mathrm{~mm}^{-1}$ | $3.130 \mathrm{~mm}^{-1}$ | $2.620 \mathrm{~mm}^{-1}$ |
| F(000) | 4528.0 | 2260.0 | 3992.0 | 4440.0 |
| Theta range for data collection | 4.62 to $50^{\circ}$ | 4.328 to $50^{\circ}$ | 1.996 to $28.370^{\circ}$ | 2.40 to $28.61^{\circ}$ |
| Index ranges | $\begin{aligned} & -31<=\mathrm{h}<=31, \\ & -27<=\mathrm{k}<=27, \\ & -24<=\mathrm{l}<=24 \end{aligned}$ | $\begin{aligned} & -16<=\mathrm{h}<=16, \\ & -19<=\mathrm{k}<=19, \\ & -27<=1<=27 \end{aligned}$ | $\begin{aligned} & -21<=\mathrm{h}<=21, \\ & -32<=\mathrm{k}<=32, \\ & -28<=1<=28 \end{aligned}$ | $\begin{aligned} & -37<=\mathrm{h}<=37, \\ & -38<=\mathrm{k}<=38, \\ & -16<=\mathrm{l}<=16 \end{aligned}$ |
| Reflections collected | 183866 | 178187 | 174464 | 192252 |
| Independent reflections | $\begin{gathered} 11346[\text { Rint }= \\ 0.1787] \end{gathered}$ | $\begin{gathered} 18187 \text { [ Rint }= \\ 0.2358] \end{gathered}$ | $\begin{gathered} 10039[\mathrm{R}(\mathrm{int})= \\ 0.0636] \end{gathered}$ | $\begin{gathered} 10813[\mathrm{R}(\mathrm{int})= \\ 0.0533] \end{gathered}$ |
| Coverage of independent | 99.9\% | 99.9\% | 99.4\% | 94.1\% |


| reflections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function minimized | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ |
| Data / restraints / parameters | 11346 /0 /637 | 18187 / 0 / 1291 | 10039 /0 /436 | 10813 / 0 / 453 |
| Goodness-of-fit on $\mathbf{F}^{2}$ | 1.038 | 1.074 | 1.071 | 1.126 |
| $\Delta / \sigma$ max | 0.002 | 0.001 | 0.002 | 0.002 |
| Final R indices | $\begin{gathered} {[\mathrm{I}>2 \sigma(\mathrm{I})],} \\ \mathrm{R} 1=0.0507, \\ \mathrm{wR} 2=0.1037 \end{gathered}$ | $\begin{gathered} {[\mathrm{I}>2 \sigma(\mathrm{I})]} \\ \mathrm{R} 1=0.0922, \mathrm{wR} 2 \\ =0.1745 \end{gathered}$ | $\begin{gathered} 8082 \text { data }[\mathrm{I}>2 \sigma(\mathrm{I})], \\ \mathrm{R} 1=0.0266, \mathrm{wR} 2= \\ 0.0535 \end{gathered}$ | $\begin{gathered} \hline 9701 \text { data }[\mathrm{I}>2 \sigma(\mathrm{I})], \\ \mathrm{R} 1=0.0348, \mathrm{wR} 2= \\ 0.0971 \end{gathered}$ |
|  | $\begin{gathered} \text { all data, } \mathrm{R} 1= \\ 0.1004, \mathrm{wR} 2= \\ 0.1241 \end{gathered}$ | $\begin{gathered} \text { all data, } \mathrm{R} 1= \\ 0.1677, \mathrm{wR} 2= \\ 0.2030 \end{gathered}$ | $\begin{gathered} \text { all data, } \mathrm{R} 1=0.0434, \\ \quad \mathrm{wR} 2=0.0588 \end{gathered}$ | $\begin{gathered} \text { all data, } \mathrm{R} 1= \\ 0.0426, \mathrm{wR} 2= \\ 0.1036 \end{gathered}$ |
| Largest diff. peak and hole | $\begin{gathered} 0.52 \text { and }-0.41 \\ \mathrm{e} \AA^{-3} \end{gathered}$ | 1.27 and -0.94 e $\AA^{-3}$ | 0475 and $-0.678 \mathrm{e}^{-3}$ | 1.031 and -1.809 e $\AA^{-3}$ |
| R.M.S. deviation from mean | $0.069 \mathrm{e}^{\text {A }}{ }^{-3}$ | $0.116 \mathrm{e}^{\text {® }}{ }^{-3}$ | $0.100 \mathrm{e}^{\text {® }}{ }^{-3}$ | $0.347 \mathrm{e} \AA^{-3}$ |


|  | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: |
| Sum Formula | $\mathrm{C}_{84} \mathrm{H}_{95} \mathrm{AgF}_{6} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{Sb}$ | $\begin{aligned} & \mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \\ & {[+ \text { solvent }]} \end{aligned}$ | $\mathrm{C}_{79} \mathrm{H}_{85} \mathrm{Au}_{2} \mathrm{Cl}_{6} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Sb}_{2}$ |
| Mr | 1668.12 | 1127.59 | 2300.52 |
| Temperature | 100 K | 100 K | 100 K |
| Wavelength | 0.71073 A | 0.71073 A | 0.71073 A |
| Crystal system | Triclinic | Monoclinic | Orthorhombic |
| Space group | P-1 | $P 2{ }_{1} / n$ | Pbca |
| Unit cell dimensions | $a=14.6752(6) \AA$ | $a=21.921(9) \AA$ | $a=22.657(4) \AA$ |
|  | $b=15.9922(6) \AA$ | $b=16.939(7) \AA$ | $b=25.548(4) \AA$ |
|  | $c=17.7042(7) \AA$ | $c=24.632(9) \AA$ | $c=29.827(6) \AA$ |
|  | $\alpha=103.034(2)^{\circ}$ | $\alpha=90^{\circ}$ | $\alpha=90^{\circ}$ |
|  | $\beta=91.157(2)^{\circ}$ | $\beta=96.918(13)^{\circ}$ | $\beta=90^{\circ}$ |
|  | $\gamma=103.181(2)^{\circ}$ | $\gamma=90^{\circ}$ | $\gamma=90^{\circ}$ |
| Volume | 3930.0(3) $\AA^{3}$ | $9080 \AA^{3}$ | 17265(6) $\AA^{3}$ |
| $\boldsymbol{Z}$ | 2 | 4 | 8 |
| Density (calculated) | $1.410 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.650 \mathrm{~g} / \mathrm{cm}^{3}$ | $1.770 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $0.740 \mathrm{~mm}^{-1}$ | $6.677 \mathrm{~mm}^{-1}$ | $4.340 \mathrm{~mm}^{-1}$ |
| F(000) | 1718.0 | 4368.0 | 8968.0 |
| Theta range for data collection | 2.18 to $22.16^{\circ}$ | 2.40 to $28.39^{\circ}$ | 2.37 to $25.14^{\circ}$ |
| Index ranges | $\begin{aligned} & -17<=\mathrm{h}<=17, \\ & -19<=\mathrm{k}<=19, \\ & -21<=\mathrm{l}<=21 \end{aligned}$ | $\begin{aligned} & -26<=\mathrm{h}<=26, \\ & -20<=\mathrm{k}<=20, \\ & -29<=\mathrm{l}<=29 \end{aligned}$ | $\begin{aligned} & -27<=\mathrm{h}<=27, \\ & -30<=\mathrm{k}<=30, \\ & -35<=1<=35 \end{aligned}$ |
| Reflections collected | 103417 | 248168 | 74303 |
| Independent reflections | $\begin{aligned} & 14238[\mathrm{R}(\mathrm{int})= \\ & 0.1183] \end{aligned}$ | $\begin{aligned} & 16446[\mathrm{R}(\mathrm{int})= \\ & 0.1064] \end{aligned}$ | $\begin{aligned} & 15600[\mathrm{R}(\mathrm{int})= \\ & 0.1526] \end{aligned}$ |
| Coverage of independent | 100\% | 99.9\% | 99.9\% |


| reflections |  |  |  |
| :---: | :---: | :---: | :---: |
| Function minimized | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ | $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$ |
| Data / restraints / parameters | 14238 / 0 / 960 | 16446/ 0 / 960 | 15600/ 0 / 984 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.025 | 1.017 | 1.050 |
| $\Delta / \sigma$ max | 0.001 | 0.001 | 0.001 |
| Final R indices | $\begin{aligned} & 9144 \text { data }[\mathrm{I}>2 \sigma(\mathrm{I})], \\ & \mathrm{R} 1=0.0633, \mathrm{wR} 2= \\ & 0.1332 \end{aligned}$ | $\begin{aligned} & 12689 \text { data }[\mathrm{I}>2 \sigma(\mathrm{I})], \\ & \mathrm{R} 1=0.0358, \mathrm{wR} 2= \\ & 0.0709 \end{aligned}$ | $\begin{aligned} & 9480 \text { data }[\mathrm{I}>2 \sigma(\mathrm{I})], \\ & \mathrm{R} 1=0.0630, \mathrm{wR} 2= \\ & 0.0945 \end{aligned}$ |
|  | $\begin{aligned} & \text { all data, } \mathrm{R} 1=0.1178, \\ & \mathrm{wR} 2=0.1572 \end{aligned}$ | $\begin{aligned} & \text { all data, } \mathrm{R} 1=0.0574, \\ & \text { wR2 }=0.0808 \end{aligned}$ | $\begin{aligned} & \text { all data, } R 1=0.1324, \\ & \text { wR2 }=0.1126 \end{aligned}$ |
| Largest diff. peak and hole | 2.51 to $-0.85 \mathrm{e}^{\text {¢ }}{ }^{-3}$ | 1.847 to -1.387 e $\AA^{-3}$ | 1.740 to -1.475 e $\AA^{-3}$ |
| R.M.S. deviation from mean | $0.099 \mathrm{e}^{\AA}{ }^{-3}$ | $0.159 \mathrm{e}^{\text {® }}$ - | $0.203 \mathrm{e}^{\AA}{ }^{-3}$ |




Figure S27. I/ $\sigma$ (I) (up) vs. Resolution and Rmerge vs. Resolution (down) for complex 7. Concerning data quality, crystal quality is very poor, hence, that data quality is poor. We usually keep the scan at 0.5 to 1 , and the exposure time is about $10-15 \mathrm{sec}$. depends on spot intensity at $0.84 \AA$ resolution.


Figure S28. I/ $\sigma$ (I) (up) vs. Resolution and Rmerge vs. Resolution (down) for complex 12. Concerning data quality, crystal quality is very poor, hence, that data quality is poor. We usually keep the scan at 0.5 to 1 , with an exposure time of $40-45 \mathrm{sec}$. depends on spot intensity at $0.84 \AA$ i resolution.

## S4. Photophysical Study

Steady state absorption spectra were recorded on Shimadzu, UV-2600 UV spectrophotometer. Microsecond flash lamp (of 1.5-2.5 $\mu \mathrm{s}$ bandwidth) and Edinburgh FLS980 instrument were
used during phosphorescence decay collection, and phosphorescence spectra measurement for complexes 4, 6, and 7 at 298 K. Steady State PL and lifetime was measured using an Edinburgh Instruments FS5 spectro-fluorometer and Xenon lamp for complexes 2, 3, 4 (variable temperature), $\mathbf{1 1}$ and $\mathbf{1 2}$.


Figure S29. UV-visible spectra of Complexes 2-4, 7, 11, 12 in THF.


Figure S30. Decay profile for complex 2 at 80 K

## Fit Results for complex 2

Fit: $\mathrm{A}+\mathrm{B} 1 \exp \left(-\mathrm{t} / \tau_{1}\right)+\mathrm{B} 2 \exp \left(-\mathrm{t} / \tau_{2}\right)+\mathrm{B} 3 \exp \left(-\mathrm{t} / \tau_{3}\right)$

## $\mathrm{T}=\mathbf{8 0 . 0 0 \mathrm { K }}$

Parameter Value Std. Dev. Rel \%
$\tau_{1} \quad 8.106 \mathrm{E}-006 \mathrm{~s} \quad 6.037 \mathrm{E}-007 \mathrm{~s}$
$\tau_{2} \quad 5.283 \mathrm{E}-005 \mathrm{~s} \quad 1.990 \mathrm{E}-006 \mathrm{~s}$
$\tau_{3} \quad 1.817 \mathrm{E}-004 \mathrm{~s} \quad 1.194 \mathrm{E}-006 \mathrm{~s}$
$\begin{array}{llll}B 1 & 300.2333 & 11.8793 & 3.38\end{array}$
$\begin{array}{llll}\text { B2 } & 296.3012 & 7.9292 & 21.75\end{array}$
$\begin{array}{llll}\text { B3 } & 296.5236 & 4.9270 & 74.87\end{array}$
A 0.2593
$\chi^{2} \quad 0.7908$


Figure S31. Decay profile for complex $\mathbf{3}$ at 80 K
Fit Results for complex 3
Fit: $\mathrm{A}+\mathrm{B} 1 \exp \left(-\mathrm{t} / \tau_{1}\right)+\mathrm{B} 2 \exp \left(-\mathrm{t} / \tau_{2}\right)+\mathrm{B} 3 \exp \left(-\mathrm{t} / \tau_{3}\right)$

## $\mathrm{T}=\mathbf{8 0 . 0 0 \mathrm { K }}$

| Parameter Value |  |  | Std. Dev. | $\underline{\text { Rel \% }}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\tau_{1}$ | $3.728 \mathrm{E}-005 \mathrm{~s}$ | $5.451 \mathrm{E}-006 \mathrm{~s}$ |  |  |
| $\tau_{2}$ | $2.198 \mathrm{E}-004 \mathrm{~s}$ | $1.447 \mathrm{E}-005 \mathrm{~s}$ |  |  |
| $\tau_{3}$ | $6.665 \mathrm{E}-004 \mathrm{~s}$ | $1.103 \mathrm{E}-004 \mathrm{~s}$ |  |  |
| B1 | 30.6288 | 2.5384 | 7.02 |  |
| B2 | 48.2907 | 1.7237 | 65.30 |  |
| B3 | 6.7503 | 2.2511 | 27.68 |  |
| A | 0.1752 |  |  |  |
| $\chi^{2}$ | 0.663 |  |  |  |

## Fit Results for complex 4

Fit: $\mathrm{A}+\mathrm{B} 1 \exp \left(-\mathrm{t} / \tau_{1}\right)+\mathrm{B} 2 \exp \left(-\mathrm{t} / \tau_{2}\right)$

## $\mathrm{T}=\mathbf{8 0 . 0 0 \mathrm { K }}$

| Parameter Value |  | Std. Dev. | Rel \% |
| :--- | :--- | :--- | :--- |
| $\tau_{1}$ | $3.976 \mathrm{E}-006 \mathrm{~s}$ | $2.161 \mathrm{E}-007 \mathrm{~s}$ |  |
| $\tau_{2}$ | $2.275 \mathrm{E}-005 \mathrm{~s}$ | $3.449 \mathrm{E}-007 \mathrm{~s}$ |  |
| B1 | 126.0995 | 4.2370 | 20.57 |
| B2 | 85.0581 | 2.2877 | 79.43 |
| A | 0.3369 |  |  |
| $\chi^{2}$ | 0.6961 |  |  |



Figure S32. Decay profile for complex 11 at 80 K

## Fit Results for complex 11

Fit: $\mathrm{A}+\mathrm{B} 1 \exp \left(-\mathrm{t} / \tau_{1}\right)+\mathrm{B} 2 \exp \left(-\mathrm{t} / \tau_{2}\right)+\mathrm{B} 3 \exp \left(-\mathrm{t} / \tau_{3}\right)$

## $\mathrm{T}=\mathbf{8 0 . 0 0 K}$

Parameter Value Std. Dev. Rel \%
$\tau_{1} \quad 3.668 \mathrm{E}-006 \mathrm{~s} \quad 2.113 \mathrm{E}-007 \mathrm{~s}$
$\tau_{2} \quad 1.224 \mathrm{E}-005 \mathrm{~s} \quad 3.206 \mathrm{E}-007 \mathrm{~s}$
$\tau_{3} \quad 2.762 \mathrm{E}-005 \mathrm{~s} \quad 1.029 \mathrm{E}-006 \mathrm{~s}$
$\begin{array}{llll}\text { B1 } & 941.5818 & 54.8272 & 7.94\end{array}$
$\begin{array}{llll}\text { B2 } & 2334.9937 & 33.9138 & 65.64\end{array}$
$\begin{array}{llll}\text { B3 } & 416.2686 & 52.9845 & 26.42\end{array}$
A 5.6839
$\chi^{2} \quad 1.1185$


Figure S33. Decay profile for complex 12 at 80 K

## Fit Results for complex 12

## $\mathrm{T}=\mathbf{8 0 . 0 0 \mathrm { K }}$

Fit: $\mathrm{A}+\mathrm{B} 1 \exp \left(-\mathrm{t} / \tau_{1}\right)+\mathrm{B} 2 \exp \left(-\mathrm{t} / \tau_{2}\right)+\mathrm{B} 3 \exp \left(-\mathrm{t} / \tau_{3}\right)$
Parameter Value Std. Dev. $\quad$ Rel \%
$\tau_{1} \quad 7.061 \mathrm{E}-006 \mathrm{~s} \quad 5.189 \mathrm{E}-007 \mathrm{~s}$
$\tau_{2} \quad 3.571 \mathrm{E}-005 \mathrm{~s} \quad 1.449 \mathrm{E}-006 \mathrm{~s}$
$\tau_{3} \quad 8.260 \mathrm{E}-005 \mathrm{~s} \quad 9.529 \mathrm{E}-007 \mathrm{~s}$
$\begin{array}{llll}\text { B1 } & 1052.1160 & 46.0087 & 4.39\end{array}$
$\begin{array}{llll}\text { B2 } & 1532.7595 & 38.5037 & 32.38\end{array}$
$\begin{array}{llll}\text { B3 } & 1294.0853 & 53.7412 & 63.23\end{array}$
A 1.1936
$\chi^{2} \quad 1.0896$

S5. Powder X-Ray Diffraction (PXRD) patterns of complex 2-4, 6 and 12


Figure S34. PXRD pattern of complex 2 at 298 K


Figure S35. PXRD pattern of complex $\mathbf{3}$ at 298 K


Figure S36. PXRD pattern of complex 4 at 298 K


Figure S37. PXRD pattern of complex 6 at 298 K


Figure S38. PXRD pattern of complex 12 at 298 K

S6. Mass Spectrometric Data for complexes 2-12




Figure S39. MALDI-TOF data of Complex 2


Figure S40. MALDI-TOF data of Complex 3





Figure S41. MALDI-TOF data of Complex 4





Figure S42. MALDI-TOF data of Complex 5



Figure S43. MALDI-TOF data of Complex 6


Figure S44. MALDI-TOF data of Complex 7


Figure S45. MALDI-TOF data of Complex 8





Figure S46. MALDI-TOF data of Complex 9




Figure S47. MALDI-TOF data of Complex 10

re S48. MALDI-TOF data of Complex 11


Figure S49. ESI-MS data of Complex 12

## S7. Quantum Chemical Calculation for Complexes 2-4, 6, 7, 11, and 12

Co-ordinates from crystal structures are used as initial geometries for obtaining the ground state $\left(\mathrm{S}_{0}\right)$ optimized geometries of these complexes. The Gaussian 09 program package was used to perform these calculations. ${ }^{5}$ All these calculations are performed at the Grimme's dispersion corrected B3LYP functional (B3LYP-D3) using a def2-SVP basis set with ultrafine numerical integration grid and tight convergence criteria. Harmonic vibrational frequencies of these $\mathrm{S}_{0}$ geometries were obtained to ensure the local minima of optimized structures. These geometries were further used to perform the TDDFT calculations to obtain further insights into the various singlet/triplet excited states, such as energies of excited states, oscillator strengths, and optical excitations.






Figure S50. Ground state (S0) optimized geometries of the complexes 2-4, 6, 7, 11, and 12 calculated at the B3LYP-D3/def2-SVP level.

HOMO



Complex 3


Figure S51. HOMO and LUMO of complexes 2-4 at ground state.

HOMO

Complex 6




Figure S52. HOMO and LUMO of complexes 6 and 7 at ground state.


Figure S53. HOMO and LUMO of complexes 11 and $\mathbf{1 2}$ at the ground state.


Figure S54. NTO analysis for complex 2.


Figure S55. NTO analysis for complex 3.
(a)

(b)


Figure S56. (a) MOs of complex 4 in the ground state; (b)NTO analysis for complex 4.


Figure S57. NTO analysis for complex 6.


Figure S58. NTO analysis for complex 7.


Figure S59. NTO analysis for complex 11.


Figure S60. NTO analysis for complex 12.

Table S1. Spin-orbit coupling (SOC) values for complexes 2-4 in $\mathrm{cm}^{-1}$

|  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{S}_{\mathbf{0}}-\mathbf{T}_{\mathbf{1}}$ | 26.27527 | 1.01734 | 1.00089 |
| $\mathbf{S}_{\mathbf{0}}-\mathbf{T}_{\mathbf{2}}$ | 100.0052 | 97.57894 | 73.17875 |
| $\mathbf{S}_{\mathbf{0}}-\mathbf{T}_{\mathbf{3}}$ | 34.08661 | 0.46184 | 1.40215 |
| $\mathbf{S}_{\mathbf{1}}-\mathbf{T}_{\mathbf{1}}$ | 6.68691 | 14.55867 | 0.13333 |
| $\mathbf{S}_{\mathbf{1}}-\mathbf{T}_{\mathbf{2}}$ | 4.73363 | 0.16354 | 5.42224 |
| $\mathbf{S}_{\mathbf{1}} \mathbf{-} \mathbf{T}_{\mathbf{3}}$ | 7.21313 | 14.94565 | 0.07077 |
| $\mathbf{S}_{\mathbf{2}}-\mathbf{T}_{\mathbf{1}}$ | 4.06299 | 0.16193 | 7.58012 |
| $\mathbf{S}_{\mathbf{2}}-\mathbf{T}_{\mathbf{2}}$ | 7.65177 | 16.99998 | 0.15399 |
| $\mathbf{S}_{\mathbf{2}}-\mathbf{T}_{\mathbf{3}}$ | 4.42956 | 0.142 | 8.11849 |
| $\mathbf{S}_{\mathbf{3}}-\mathbf{T}_{\mathbf{1}}$ | 9.03803 | 12.19809 | 3.38845 |
| $\mathbf{S}_{\mathbf{3}} \mathbf{-} \mathbf{T}_{\mathbf{2}}$ | 8.60884 | 0.46646 | 0.06677 |
| $\mathbf{S}_{\mathbf{3}}-\mathbf{T}_{\mathbf{3}}$ | 12.77628 | 7.99878 | 5.87418 |

Table S2. Excitation energies and oscillator strengths of emission properties

| Complex number | Excited state | Excitation involved | Oscillator strength |
| :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | $\mathrm{S}_{1}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0005$ |
|  | $\mathrm{~S}_{2}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0110$ |
|  | $\mathrm{~S}_{3}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0448$ |
|  | $\mathrm{~T}_{1}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
|  | $\mathrm{~T}_{2}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
|  | $\mathrm{~T}_{3}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
| $\mathbf{3}$ | $\mathrm{~S}_{1}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0075$ |
|  | $\mathrm{~S}_{2}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
|  | $\mathrm{~S}_{3}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0157$ |
|  | $\mathrm{~T}_{1}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
|  | $\mathrm{~T}_{2}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
|  | $\mathrm{~T}_{3}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
|  | $\mathrm{~S}_{1}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0000$ |
|  | $\mathrm{~S}_{2}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0031$ |
|  | $\mathrm{~S}_{3}$ | $(\mathrm{M}+\mathrm{X}) \mathrm{LCT}$ | $\mathrm{f}=0.0149$ |


|  | $\begin{aligned} & \hline \mathrm{T}_{1} \\ & \mathrm{~T}_{2} \\ & \mathrm{~T}_{3} \end{aligned}$ | $\begin{aligned} & \hline(\mathrm{M}+\mathrm{X}) \mathrm{LCT} \\ & (\mathrm{M}+\mathrm{X}) \mathrm{LCT} \\ & (\mathrm{M}+\mathrm{X}) \mathrm{LCT} \end{aligned}$ | $\begin{aligned} & \mathrm{f}=0.0000 \\ & \mathrm{f}=0.0000 \\ & \mathrm{f}=0.0000 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 6 | $\mathrm{S}_{1}$ | MLCT | $\mathrm{f}=0.0529$ |
|  | $\mathrm{S}_{2}$ | MLCT | $\mathrm{f}=0.0000$ |
|  | $\mathrm{S}_{3}$ | MLCT | $\mathrm{f}=0.0528$ |
|  | $\mathrm{T}_{1}$ | MLCT | $\mathrm{f}=0.0000$ |
|  | $\mathrm{T}_{2}$ | MLCT | $\mathrm{f}=0.0000$ |
|  | $\mathrm{T}_{3}$ | MLCT | $\mathrm{f}=0.0000$ |
| 7 | $\mathrm{S}_{1}$ | MLCT | $\mathrm{f}=0.0056$ |
|  | $\mathrm{S}_{2}$ | LE | $\mathrm{f}=0.0018$ |
|  | $\mathrm{S}_{3}$ | MLCT | $\mathrm{f}=0.0506$ |
|  | $\mathrm{T}_{1}$ | MLCT | $\mathrm{f}=0.0000$ |
|  | $\mathrm{T}_{2}$ | LE | $\mathrm{f}=0.0000$ |
|  | $\mathrm{T}_{3}$ | LMCT | $\mathrm{f}=0.0000$ |
| 11 | $\mathrm{S}_{1}$ | LL'CT | $\mathrm{f}=0.0430$ |
|  | $\mathrm{S}_{2}$ | LL'CT | $\mathrm{f}=0.0154$ |
|  | $\mathrm{S}_{3}$ | LL'CT | $\mathrm{f}=0.0003$ |
|  | $\mathrm{T}_{1}$ | LE | $\mathrm{f}=0.0000$ |
|  | $\mathrm{T}_{2}$ | LE | $\mathrm{f}=0.0000$ |
|  | $\mathrm{T}_{3}$ | LE | $\mathrm{f}=0.0000$ |
| 12 | $\mathrm{S}_{1}$ | LMCT | $\mathrm{f}=0.0016$ |
|  | $\mathrm{S}_{2}$ | LMCT | $\mathrm{f}=0.0028$ |
|  | $\mathrm{S}_{3}$ | LL'CT | $\mathrm{f}=0.0070$ |
|  | T | LMCT | $\mathrm{f}=0.0000$ |
|  | T2 | LE | $\mathrm{f}=0.0000$ |
|  | $\mathrm{T}_{3}$ | LE | $\mathrm{f}=0.0000$ |

## References

1. R. B. Bedford, M. Betham, M. E. Blake, S. J. Coles, S. M. Draper, M. B. Hursthouse and P. N. Scully, Inorganica Chim. Acta, 2006, 359, 1870-1878.
2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
3. G. M. Sheldrick, Acta Crystallogr. C Struct., 2015, 71, 3-8.
4. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
5. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. H. Li, H. P., A. F. B. Izmaylov, J., G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Revision D.01, Gaussian, Inc., Wallingford CT (2009).
