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S1. Synthesis of ECL Luminophores

Coupling reaction was used for synthesizing the ancillary ligands, namely 4-(2-naphthalenyl)-1,10-
phenanthroline (napphen), and 4-(2-naphthalenyl)-2,2'-bipyridine (napbpy). Nonoyama reaction was
employed to obtain the bis u-chloro dinuclear Ir(IIT) complex (ppy)z-Ir-u-Clo. Coordination reaction was
used to yield cationic Ir(III)/Ru(Il) complexes.3! 52 Fig. 1 displays the molecular structures of Ir(I1T)/Ru(II)
complexes, namely (1,10-phenanthroline)bis[2-(2-pyridinyl)phenyl]iridium(III) (Ir(ppy)2(phen)’, 1),
(1,10-phenanthroline)bis(2,2'-bipyridine)ruthenium(II) (Ru(bpy)2(phen)**, 2), tris(2,2'-
bipyridine)ruthenium(II) (Ru(bpy)s*", 3) [4-(2-naphthalenyl)-1,10-phenanthroline]bis[2-(2-
pyridinyl)phenyl]iridium(III) (Ir(ppy)2(napphen)’, 4), [4-(2-naphthalenyl)-1,10-phenanthroline]bis(2,2'-
bipyridine)ruthenium(II) (Ru(bpy)z(napphen)**, 5), and [4-(2-naphthalenyl)-2,2'-bipyridine]bis(2,2'-
bipyridine)ruthenium(II) (Ru(bpy)2(napbpy)?*, 6). Synthesis details of these compounds were described in
Figs. S1-S5.

S1.1. Synthesis of NN ligands

Ligand 4-(2-naphthalenyl)-1,10-phenanthroline (napphen) was prepared in the following procedure. 5-
Bromo-1,10-phenanthroline (110 mg, 0.43 mmol), (2-naphthalenyl) boronic acid (147.0 mg, 0.85 mmol)
and NaxCOs3 (490 mg, 4.67 mmol) were dissolved in tetrahydrofuran (32 mL) and water (3.9 mL), and Pd
(PPh3)s (24.6 mg, 0.021 mmol) was then added. After being refluxed at 80 °C for 24 h, the organic layer
was collected by performing extraction with dichloromethane (10 mL x 3), washed with water (15 mL) and
saturated brine (15 mL), and dried by Na>SO4. After being purified by column chromatography and eluting
with ethyl acetate: petroleum ether = 1: 3, the ligand was obtained as a white solid (89.8 mg, 68.2%). 'H
NMR (400 MHz, Chloroform-d) ¢ 9.26 (s, 2H), 8.33 (dd, J = 12.6, 8.3 Hz, 2H), 8.04 (d, /= 7.0 Hz, 2H),
8.01-7.94 (m, 2H), 7.88 (s, 1H), 7.74-7.65 (m, 2H), 7.61 (dd, J = 6.5, 3.2 Hz, 3H).

Na;COy/Pd(PPhy),
THF/H,0

N,,80°C, 24 h

M~ NaZCO;-,IPd(PPh3)4
=N N\= THF!H20

80°C,24h

napbpy

Fig. S1 Illustration of the synthesis of two ancillary ligands (N*N), namely (a) napphen and (b) napbpy.
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Ligand 4-(2-naphthalenyl)-2,2'-bipyridine (napbpy) was prepared following same way expect that 5-
bromo-1,10-phenanthroline was replaced by 4-bromo-2,2'-bipyridine. The product was obtained as a white
solid (85.0 mg, 70.5%). '"H NMR (400 MHz, Chloroform-d) & 8.87 (s, 1H), 8.81 (d, J = 5.2 Hz, 1H), 8.78
(d,/=4.6 Hz, 1H), 8.56 (d, J= 7.9 Hz, 1H), 8.31 (s, 1H), 8.00 (t,J= 8.3 Hz, 2H), 7.96-7.88 (m, 3H), 7.74
(d, J=5.2 Hz, 1H), 7.61-7.53 (m, 2H), 7.40 (dd, J=17.5, 4.8 Hz, 1H).

S1.2. Synthesis of bis y-chloro dinuclear Ir(IIT) complex

The bis m-chloro dinuclear Ir(IIl) complex (ppy).-Ir-m-Cl, was synthesized according to the previous

- 7 N\
4
\ x =
cl
__ IrCly / \
Q_@ CH30CH,CH,0H/H,0 Ir I
Ny, 120°C, 12 h \ /
PRy Cl
N =
7N N
_ \ 7

(ppy),-Ir-u-Cl,

literature.53 54

Fig. S2 Illustration of synthesis of bis u-chloro dinuclear Ir(IIT) complex (ppy)2-Ir-u-Cla.

S1.3. Synthesis of Ir(I1I) complexes

Ir(ppy)2(phen)* (1). Dissolved in dichloromethane (15 mL) and methanol (9 mL), the mixture of 1,10-
phenanthroline (0.2 mmol, 36 mg) and (ppy)2-Ir-u-Clz (0.1 mmol, 108.6 mg) was stirred at 55 °C for 16 h.
Then the reactant was extracted by dichloromethane and water, washed with saturated brine and dried with
NazS04. After being purified by column chromatography and eluting with dichloromethane: methanol = 10:
1. The concentrated product was added to a saturated aqueous solution of ammonium hexafluorophosphate
(NH4PF), the suspension was stirred for 1 h, filtered, washed with water and dried. Ir(ppy)2(phen)” (1) was
collected as a yellow-orange solid (124.6 mg, 71.6%). 'H NMR (400 MHz, Acetonitrile-d3) & 8.71 (dd, J =
8.3, 1.5 Hz, 2H), 8.33 (d, J = 3.6 Hz, 2H), 8.26 (s, 2H), 8.08 (d, J = 8.2 Hz, 2H), 7.93-7.76 (m, 6H), 7.45
(d, J=4.6 Hz, 2H), 7.11 (t, J= 7.5 Hz, 2H), 6.99 (t, J= 7.4 Hz, 2H), 6.88 (t, J= 6.0 Hz, 2H), 6.42 (d, J =
7.7 Hz, 2H).

Ir(ppy)2(napphen)” (4). Ir(ppy)2(napphen)” (4) was obtained as a yellow-orange solid (137.7 mg, 69.1%)
according to the same methods as those of 1, except that 1,10-phenanthrolin was replaced by 4-(2-

naphthalenyl)-1,10-phenanthroline. '"H NMR (400 MHz, Chloroform-d) & 8.59 (d, J = 8.4 Hz, 2H), 8.31 (d,
J=3.7Hz, 1H), 8.26 (d, /J=4.4 Hz, 1H), 8.19 (s, 1H), 8.14 (s, 1H), 7.93 (dd, J = 14.6, 7.9 Hz, 5H), 7.79—
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7.68 (m, 7H), 7.61-7.54 (m, 3H), 7.41 (d, /= 5.8 Hz, 1H), 7.15-7.03 (m, 3H), 7.00 (t, /= 7.5 Hz, 3H), 6.44
(t,J=7.4 Hz, 2H). ®'C NMR (101 MHz, CD3CN) & 168.44, 152.08, 152.06, 151.07, 150.77, 150.43, 150.35,
148.28, 147.27, 145.26, 141.75, 139.43, 139.32, 138.17, 135.42, 134.28, 134.09, 132.68, 132.66, 131.92,
131.31, 131.29, 130.27, 129.56, 129.20, 129.16, 128.77, 128.46, 128.06, 127.99, 127.60, 125.82, 124.35,
124.32, 123.57, 120.76. High resolution mass spectrum (HR-MS) for Ir(ppy)2(napphen)**: calculated m/z
807.2094, observed m/z 807.2050.

_| +
(a)

_ MeOHICHCI,
— + -Ir-p-Cl Ir——nN
\ 7 7 N (PPY-Ir-4i-Cl), 5°c 16 h %kf
N N=
phen

Ir(ppy),(phen)*

MeOHICHZCIz
-Ir-u-Cl Ir—N
(PPY,-Ir-p-Cl), N,, 55oc 16h % g
napphen

Ir(ppy),(napphen)*

Fig. S3 Illustration of synthesis of Ir(IIl) complexes (a) Ir(ppy)2(phen)” (1) and (b) Ir(ppy)2(napphen)* (4).
S1.4. Synthesis of Ru(Il) complexes

Ru(bpy)2(phen)?* (2). cis-Ru(bpy)2Cl>-2H>0 (0.2 mmol, 104 mg) and 1,10-phenanthroline (0.2 mmol, 36
mg) were added to a mixture of 30 mL of ethanol. The mixture was refluxed at 80°C for 16 h under the N»
atmosphere. After being purified by column chromatography and eluting with potassium nitrate: water:
acetonitrile = 1: 10: 100. The concentrated product was added to a saturated aqueous solution of ammonium
hexafluorophosphate (NH4PFg), the suspended was stirred for 1 h, filtered, washed with water and dried.
Ru(bpy)2(phen)?* (2) was collected as a red solid (130.8 mg, 74.0%). '"H NMR (400 MHz, Acetonitrile-ds)
0 8.63 (d, /= 8.3 Hz, 2H), 8.54 (dd, J = 17.3, 8.2 Hz, 4H), 8.26 (s, 2H), 8.14 — 8.08 (m, 4H), 8.00 (t, J =
7.9 Hz, 2H), 7.86 (d, J = 5.4 Hz, 2H), 7.75 (dd, J = 8.3, 5.2 Hz, 2H), 7.54 (d, J = 5.4 Hz, 2H), 7.46 (t, J =
6.6 Hz, 2H), 7.23 (t, J= 6.3 Hz, 2H).

Ru(bpy):* (3). Ru(bpy)s*" was collected as a red solid (132.4 mg, 73.2%) by the similar synthesis steps of
2, expect that 1,10-phenanthroline was replaced by 2,2'-bipyridine. 'H NMR (400 MHz, Acetonitrile-ds) &
8.56 (d, /J=8.1 Hz, 6H), 8.08 (td, /= 7.9, 1.5 Hz, 6H), 7.74 (d, /= 5.6 Hz, 6H), 7.41 (ddd, J=7.4,5.6, 1.3
Hz, 6H).
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Ru(bpy)2(napphen)?* (5). Ru(bpy)2(napphen)** (5) was collected as a red solid (146.5 mg, 69.5%) by the
similar synthesis steps of 2, expect that 1,10-phenanthroline was replaced by 4-(2-naphthalenyl)-1,10-
phenanthroline. 'H NMR (400 MHz, Acetonitrile-ds) & 8.66 (d, J = 8.2 Hz, 1H), 8.63-8.52 (m, 5H), 8.34
(s, 1H), 8.20-8.11 (m, 6H), 8.11-8.02 (m, 4H), 7.90 (d, J = 5.6 Hz, 2H), 7.83-7.76 (m, 2H), 7.67 (ddt, J =
15.9,10.2,4.5 Hz, 5H), 7.49 (t,J=5.7 Hz, 2H), 7.30 (dt, J= 6.4, 4.6 Hz, 2H). >*C NMR (101 MHz, CD3CN)
0 158.22, 158.18, 157.98, 153.27, 152.92, 152.84, 149.01, 148.04, 141.68, 138.79, 138.77, 138.69, 138.67,
137.61, 136.56, 135.43, 134.26, 134.08, 131.42, 131.39, 130.25, 129.55, 129.18, 129.00, 128.75, 128.48,
128.44, 128.39, 128.35, 128.05, 127.99, 127.32, 126.82, 125.21, 125.19, 125.13. HR-MS for
Ru(bpy)2(napphen)**: calculated m/z 360.0782, observed m/z 360.0773.

Ru(bpy)2(napbpy)?* (6). Ru(bpy)2(napbpy)>* (6) was prepared as a red solid (134.3 mg, 65.2%) by the
similar synthesis steps of 2, except that 1,10-phenanthroline was replaced by 4-(2-naphthalenyl)-2,2'-
bipyridine. "H NMR (400 MHz, Acetonitrile-d3) & 8.91 (s, 1H), 8.76 (d, J= 8.1 Hz, 1H), 8.55 (dd, J = 8.2,
5.3 Hz, 4H), 8.48 (d, J = 1.9 Hz, 1H), 8.14-8.05 (m, 7H), 8.02-7.96 (m, 2H), 7.86 (d, J = 4.9 Hz, 1H),
7.82-7.76 (m, 6H), 7.66-7.61 (m, 2H), 7.47-7.40 (m, 5H). *C NMR (101 MHz, CD3CN) § 158.36, 158.08,
157.96, 157.92, 152.66, 152.62, 152.60, 150.31, 138.76, 138.70, 134.92, 134.29, 133.87, 130.20, 129.64,
128.71, 128.68, 128.60, 128.55, 128.52, 128.43, 128.13, 125.88, 125.40, 125.22, 125.12, 122.97. HR-MS
for Ru(bpy)2(napbpy)**: calculated m/z 348.0782, observed m/z 348.0777.

Tz
(a)
J A cis-Ru(bpy),Cl,
=N N= EtOH B
N,, 80°C,16 h
phen
(b)

cis-Ru(bpy),Cl,

EtOH
N,, 80°C,16 h

h
napphen Ru(bpy),(napphen)?

Fig. S4 Illustration of synthesis of Ru(II) complexes (a) Ru(bpy)2(phen)?* (2) and (b) Ru(bpy)2(napphen)**
(3).
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cis-Ru(bpy),Cl, _

7 N—¢ N\ EtOH
—N \=

N,,80°C,16 h

cis-Ru(bpy),Cl,

EtOH
N,, 80 °C, 16 h

napbpy
Ru(bpy),(napbpy)*
Fig. S5 Illustration of synthesis of Ru(II) complexes (a) Ru(bpy)s;** (3) and (b) Ru(bpy)2(napbpy)>" (6).
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S2.'H NMR Characterization of 1-6

'"H NMR characterization of the synthesized compounds was carried out on a 400 MHz spectrometer

(Bruker, Germany) and presented in Fig. S6.
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Fig. S6 'H NMR spectra of two types of ancillary ligands (N*N) napphen and napbpy, bis m-chloro
dinuclear Ir(I11) complex (ppy2-Ir-m-Cly, Ir(IIT)/Ru(Il) complexes Ir(ppy)2(phen)” (1), Ru(bpy)2(phen)** (2),
Ru(bpy)s>* (3), Ir(ppy)2(napphen)” (4), Ru(bpy)z(napphen)** (5), and Ru(bpy)2(napbpy)** (6). Insets show

the molecular structures.
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S3.13C NMR Characterization of 4/5/6

13C NMR characterization of the synthesized compounds were carried out on a 400 MHz spectrometer

(Bruker, Germany) and presented in Fig. S7.
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S4. High Resolution Mass Spectra of 4/5/6
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Fig. S8 High resolution mass spectra of metal complexes, 4 (a), 5 (b), and 6 (c). The measurement (top)

and calculation (bottom) data were obtained with a Q Exactive Orbitrap Mass Spectrometer (ThermoFisher).
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S5. ECL Performance of 1/2/3/4/6

Fig. S9 indicates the ECL intensity-potential curves overlaid with CVs of 1/2/3/4/6 obtained in
acetonitrile containing 0.1 M TBAPFs and 50 mM TPrA. The concentrations of these complexes
were 10 mM. The ECL intensity of these complexes increased as the oxidation potential was
increased. Moreover, the intensity follows the order of 5>1> 6 >3 >4 > 2. That is, 5 is the most
efficient ECL luminophore among these six complexes. This result can be further confirmed by

spooling ECL spectra (Fig. S10).
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Fig. S9 (a-e) ECL intensity-potential curves overlaid with CVs of 1/2/3/4/6 (10 mM) dissolved in
acetonitrile containing 50 mM TPrA and 0.1 M TBAPFs. The photomultiplier tube (PMT) was
biased at 400 V. The scan rate was 0.1 V s~!.
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Fig. S10 (a-e) Spooling ECL spectra of 1/2/3/4/6 (500 mM) dissolved in acetonitrile containing 50 mM
TPrA and 0.1 M TBAPFs. The scan rate was 0.1 V s~!. The spectral integration time was 0.5 s, and two
adjacent spectra were obtained at potential intervals of 50 mV. 1/2/3/4/6 presents the ECL spectrum at
formal oxidation voltage of +1.44 V, +1.52 'V, +1.49 V, +1.46 V, and +1.54 V, respectively.
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S6. ECL Efficiencies (®gcr)

t’SS

The ®rcr of 1-6 was measured as photons emitted per oxidation event,> which were calculated by

comparing both the integrated ECL intensities (equivalent to the number of photons) and the current values

(same as charges) vs time with that of the reference Ru(bpy)s>*/TPrA, using the equation as follows:S!> 56

[tECLdt [SECLdt
DpcL = ( o 2 (SD)
fo Currentdt fo Currentdt ot

X

where @ is the ECL efficiency relative to Ru(bpy)s(PFs)2, whose ECL efficiency is taken as 1, x represents
complex 1-6, ECL represents the ECL intensity, current is the electrochemical current value, and st means
the standard.

The current-time and ECL intensity-time curves of 1-6 were obtained by MPI-A capillary
electrophoresis-electrochemiluminescence analyzer. The potential window was set from 0 V to about 100
mV higher than the oxidation peak potential for each complex, which was ca. +1.44 V, +1.52'V, +1.49 V,
+1.46 'V, +1.52V, and +1.54 V (vs SCE), respectively. The PMT was biased at 400 V and the scan rate was
0.1 V s'. By the equation of Q = fot Current dt and ECL = fot ECL dt, electric charges (Q) and ECL
intensities (ECL) were obtained. As illustrated in Fig. S11, the area of shaded parts represents the integral
of Q, which was calculated as 2258.9, 2473.6, 2046.7, 2078.1, 1693.4, and 2177.7 uC for 1-6, respectively.
While the area that stands for the integral of ECL in Fig. S13 was calculated to be 3797.0, 1013.8, 2901.8,
2625.5,4271.0, and 3765.0, respectively (see Table S1). After dividing ECL by Q, the ®gcr was determined
with that of Ru(bpy);?>"/TPrA and summarized in Table 1. Taking both electrochemical reactions and
emission processes, 5 ultimately gives efficient emission with the highest value of ®gcr that obtained as
1.78. After removing O2, the area of shaded parts represents the integral of Q, which was calculated as
2258.9, 2473.6,2046.7, 2078.1, 1693.4, and 2177.7 puC for 1-6, respectively (see Fig. S12). While the area
that stands for the integral of ECL in Fig. S14 was calculated to be 38870.5, 5758.6, 5202.4, 8157.6,
16400.8 and 16646.1, respectively (see Table S1). After dividing ECL by Q, the ®gc1 was determined with
that of Ru(bpy)s**/TPrA.
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Fig. S11 Current-time curves of 1-6. The experiment was conducted in acetonitrile containing 10 mM of 1-

6, 50 mM of TPrA and 0.1 M TBAPFs.
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Fig. S12 Current-time curves of 1-6. The experiment was conducted in acetonitrile containing 10 mM of

1-6, 50 mM of TPrA and 0.1 M TBAPFs without Ox.
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Fig. S13 ECL intensity-time curves of 1-6. The experiment was conducted in acetonitrile containing 10

mM of 1-6, 50 mM of TPrA and 0.1 M TBAPFs in nitrogen-saturated acetonitrile solution,
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Fig. S14 ECL intensity-time curves of 1-6. The experiment was conducted in acetonitrile containing 10

mM of 1-6, 50 mM of TPrA and 0.1 M TBAPFs in nitrogen-saturated acetonitrile solution,

S-20



Table S1. Calculation of ECL QE by integrating both ECL intensities and the current values vs time

Probe f tECL dt f tCurrent dt (mC)
0 0
1 3797.0°/8870.5¢ 2258.99/1847.2¢
2 1013.8/5758.6 2473.6/1624.4
3 2901.8/5202.4 2046.7/1824.8
4 2625.5/8157.6 2078.1/1689.9
5 4271.0/16400.8 1693.4/2302.3
6 3765.0/16646.1 2177.7/1968.1

“The ®kcL of Ru(bpy);>*/TPrA was set to 1.00 as a standard. * “Integration of ECL intensities obtained in
aerated and nitrogen-saturated acetonitrile solution, respectively. ¢ °Integration of the electrochemical
current obtained in aerated and nitrogen-saturated acetonitrile solution, respectively.
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S7. Fluorescence Titration Experiment

Fluorescence titrations were performed to confirm the formation of a host-guest complex (HGC) between
6-deoxy-6-thiol-/cyclodextrin (#~CD-SH) and 5. 10 uM of § was dissolved in DMSO/H>O (v/v: 1/1)
solution while nearly saturated f~-CD-SH (ca. 75.23 mM) in pure DMSO solution was gradually added in
microliters. Fluorescence spectra of § via different concentrations of f~-CD-SH were recorded. The data of
each fluorescence intensity centred at the maximum wavelength as well as corresponding concentration of
[-CD-SH were extracted, and a binding constant of HGC was determined by the modified Benesi-

Hildebrand equation,®’

[GIH] _ (L n @) (S2)
F-Fy Ka o

where [G] and [H] represents the concentration of 5 and f-CD-SH, respectively. (F-Fo) is the change value
relative to pure 5 (Fo) in fluorescence intensity with the addition of S~-CD-SH. « is the sensitive factor of

fluorescence spectrum. K stands for the binding constant of the supramolecular system.
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Fig. S15 (a, c, e) PL spectra and (b, d, f) dependence of PL intensity on the host concentrations for 4 (a, b),
5 (c,d) and 6 (e, f) in a DMSO/H>0 (v/v: 1/1) solution, showing an increase in PL intensity with increasing
concentrations of f~-CD-SH. An excitation wavelength of 450 nm was used. The concentration of 4-6 was
10 uM.
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S8. XPS Characterization of Host-Guest Thin Film

A sputter coater (GVC-2000T) was used to deposit gold layer on the substrate with a thickness of ca. 200
nm. A working current of 60 mA and a working time of 20 min were used. The prepared gold membrane
electrode was used to fabricate host-guest thin film.

As shown in Fig. S14, XPS signals of N and S elements were recorded with the gold thin films. In the
XPS spectra, the signals of N1s and S2p can simultaneously be identified for host-guest thin film, while
only S2p can be observed for f-CD film. While no obvious XPS signal was observed for the bare gold

electrode.
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0 200 400 600 800

Binding energy / eV
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Fig. S16 (a) XPS survey spectra and high-resolution (b) N1s and (c) S2p spectra of the bare gold thin
film, /~CD modified and host-guest thin film modified gold thin films.
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S9. ECL Generation from Host-Guest Thin Films
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Fig. S17 ECL intensity-potential curves obtained with gold electrode without f-CD-SH treatment (blue

line), and host-guest thin films modified gold electrode (red line).
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