Supplementary Information

Mechanisms of Hydrogen Evolution by Six-Coordinate Cobalt Complexes: A Density Functional Study on the Role of Redox-Active Pyridinyl-Substituted Diaminotriazine Benzamidine Ligand as a Proton Relay

Kittimeth Thammanatpong^{\dagger} and Panida Surawatanawong^{$*,\dagger,\ddagger}$ </sup>

[†]Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand [‡]Center of Sustainable Energy and Green Materials, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand *E-mail: panida.sur@mahidol.ac.th

Table S3. The solvent corrected relative free energies for intermediates upon reductions of $[Co^{III}(L^{1-})(LH)]^{2+}(LH = py-DAT-amidine)$
Fig. S4 Optimized geometries of 1 [Co ^{III} (L ¹⁻)(LH)] ²⁺ (S = 0) and 4 [Co ^{II} (L ¹⁻)(LH)] ¹⁺ (S = 3/2). Selected bond distances are shown in Å
Fig. S5 Optimized geometries of triethanolamine (TEOA) and [HTEOA] ⁺ . The solvent corrected relative free energies are with respect to the lowest energy conformer (in kcal/mol)
Fig. S6 Optimized geometries of L ⁻ , LH, and LH ₂ ⁺
Fig. S7 The reduced forms of protonated ligand LH in triplet $LH^{\cdot 2^{-}}$ (S = 1), open-shell singlet diradical $LH^{\cdot 2^{-}}$ (S = 0, BS(1,1)) and closed-shell singlet $LH^{2^{-}}$ (S = 0). The solvent corrected relative free energies are with respect to the lowest energy conformer (in kcal/mol)
Fig. S8 The reduced forms of protonated ligand LH ₂ in closed-shell singlet LH_2^{1-} (S = 0) and triplet $LH_2^{\cdot 1-}$ (S = 1). The open-shell singlet diradical $LH_2^{\cdot 1-}$ (S = 0, BS(1,1)) was not found. The solvent corrected relative free energies are with respect to the lowest energy conformer (in kcal/mol)
Scheme S1 . (a) The calculated proton-transfer free energy from $[HTEOA]^+$ to pyridine in DMF solvent is shown on the horizontal arrow. (b) The calculated reduction potentials (E^0) and proton-transfer free energy of py-DAT-amidinate L ⁻ in DMF solvent. The calculated reduction potentials E^0 vs. SCE (4.684 V) are shown on the vertical arrow. The calculated proton-transfer free energy from $[HTEOA]^+$ to the amidinate moiety of L ⁻ and to the pyridine moiety of LH are shown on the horizontal arrow. 12
Scheme S2. Possible protonation states of ⁴ [Co ^{II} (LH)(LH)] ²⁺ . The free energies relative to the most stable protonation state are given in kcal/mol
Table S4. The solvent corrected relative free energies for intermediates upon proton reductions of 1 [Co ^{III} (L ¹⁻)(LH)] ²⁺ (LH = py-DAT-amidine).14
Table S5. The calculated relative free energies (ΔG), reduction potentials (E^0) ^a , and proton-transfer free energy (ΔG^{PT}) ^b for the Co intermediates in the most likely pathway for H ₂ evolution (black paths in Scheme 6)
Table S6. The calculated relative free energies (ΔG), reduction potentials (E^0) ^a , and proton-transfer free energy (ΔG^{PT}) ^b for other Co intermediates in the unlikely pathway for H ₂ evolution
Fig. S9 Frontier molecular orbitals (MOs) and MO energies (in eV) of tpy (tpy = terpyridine), LH and LH_{2^+} (LH = py-DAT-amidine)
Table S7. Calculated electronic excitation energies (eV) of tpy (tpy = terpyridine), LH and LH_2^+ (LH = py-DAT-amidine) from TD-DFT calculation.18

Scheme S3. Possible protonation states of ${}^{4}[Co^{II}(LH^{-1})(LH_{2})]^{1+}$. The relative free energies are given in
kcal/mol
Fig. S10 The optimized geometries of ${}^{4}[Co^{II}(LH^{\cdot 1-})(LH_{2}^{\cdot})]^{1+}$ and ${}^{4}[Co^{II}H(LH)(LH)]^{1+}$. The relative free
energies are shown in kcal/mol. The key bond distances are shown in Å
Fig. S11 The optimized geometries of ${}^{3}[Co^{II}(LH)(LH^{-1})]^{1+}$ and ${}^{3}[Co^{III}H(L^{1-})(LH)]^{1+}$. The relative free
energies are shown in kcal/mol. The key bond distances are shown in Å
Fig. S12 (a) Frontier MOs and spin density plot of the ${}^{4}[Co^{II}(LH^{\cdot 1-})(LH_{2}^{\cdot})]^{1+}$ (S = 3/2, BS(4,1)). (b) Frontier
MOs and spin density plot of the ${}^{6}[Co^{II}(LH^{\cdot 1})(LH_{2})]^{1+}$ (S = 5/2). The doubly occupied orbitals were
represented by quasi-restricted orbitals and the singly occupied orbitals were represented by corresponding
orbitals (isodensity = 0.05)
Fig. S13 (a) Frontier MOs and spin density plot of the ${}^{3}[Co^{II}H(LH)(LH_{2})]^{1+}(S = 1, BS(3,1))$. (b) Frontier
MOs and spin density plot of the ${}^{5}[Co^{II}H(LH)(LH_{2})]^{1+}(S = 2)$. The doubly occupied and unoccupied
orbitals were represented by quasi-restricted orbitals and the singly occupied orbitals were represented by
corresponding orbitals (isodensity = 0.05)
Fig. S14 (a) The relative free energy (in kcal/mol) for the H_2 elimination from the Co ^{II} -H HN(TEOA) vs.
Co ^{II} -H. HN(pyridine) intermediates. (b) Optimized geometries of ⁵ [Co ^{II} (LH ^{•1-})(LH ₂ ¹⁻)] ⁰ , ⁵ [Co ^{II} H(LH ^{•1-})
$(LH)]^{0}$ and ${}^{5}[TS_{TEOA}]^{1+}$
Fig. S15 (a) The relative free energy (in kcal/mol) for the H ₂ elimination from the Co ^{II} -H HN(TEOA)
intermediate. (b) Optimized geometries of ${}^{4}[Co^{II}(LH^{-1-})(LH_{2}^{-1-})]^{1+}$, ${}^{4}[Co^{II}H(LH)(LH)]^{1+}$ and ${}^{4}[TS_{TEOA}]^{2+}$ 24
References

Standard-state conversions¹

By default, the geometry optimization in Gaussian 16 was carried out at the standard pressure and temperature (1 atm at 298.15 K). To convert to the standard state in the solution phase (1 M at 298.15 K), the equation S1 was applied to convert the free energy from the standard state at 1 atm to the standard state at 1 M. Let A, B, and C as an example of ideal gases,

$$\mathbf{A} + \mathbf{B} \rightleftharpoons \mathbf{C} \tag{S1}$$

Thus,

$$\Delta G^{\circ\prime} = \Delta G^{\circ} + RT ln \frac{Q^{\circ\prime}}{Q^{\circ}}$$
(S2)

where R is the gas constant, T is the temperature, Q is the reaction quotient $(Q = \frac{[B][C]}{[A]})$, Q° is the reaction quotient at 1 atm, $Q^{\circ'}$ is the reaction quotient at 1 M, ΔG° is the free energy at 1 atm, and $\Delta G^{\circ'}$ is the free energy at 1 M.

The concentration of 1 atm of ideal gas is $\frac{1}{24.46}$ mol/L at 298.15 K.

$$\Delta G^{\circ'} = \Delta G^{\circ} + RT ln \frac{\frac{1\cdot 1}{1}}{\frac{24.46}{24.46\cdot 24.46}}$$
(S3)

$$\Delta G^{\circ\prime} = \Delta G^{\circ} + RT ln(24.46) \tag{S4}$$

Thus,

1			
Deasting	E^0 (V) vs Fc/Fc ⁺ in CH ₃ CN		
Reaction	Calc ^a	$\mathrm{Exp}^{\mathrm{c}}$	
${}^{4}[\text{Co}^{\text{II}}(\text{tpy})_{2}]^{2+} + e^{-} \rightarrow {}^{3}[\text{Co}^{\text{II}}(\text{tpy})_{2}]^{1+}$	-1.25	-1.19 (-1.17) ^d	
${}^{3}[\text{Co}^{\text{I}}(\text{tpy})_{2}]^{1+} + e^{-} \rightarrow {}^{4}[\text{Co}^{\text{II}}(\text{tpy}^{-})_{2}]^{0}$	-2.08	-2.07 (-2.04) ^d	
$tpy + e^- \rightarrow tpy^-$	-2.59	-2.52	
Prostion	$E^{0}(V)$ vs S	SCE in CH ₃ CN	
Reaction	Calc ^b	Exp^{e}	
$^{1}[\operatorname{Ru}^{II}(\operatorname{bpy})_{3}]^{2+} + e^{-} \rightarrow ^{2}[\operatorname{Ru}^{I}(\operatorname{bpy})_{3}]^{1+}$	-1.38	-1.32	

Table S1. Calculated reduction potentials (E^0) of $[Co(tpy)_2]^{2+}$ and $[Ru(bpy)_3]^{2+}$.

^aThe calculated E^0 vs experimental E^0 of ferrocene/ferrocenium (Fc/Fc⁺) (4.98 V).² ^bThe calculated E^0 vs experimental E^0 (SCE) (4.684 V). This is obtained from E^0 vs E^0 (SHE) (4.44 V),³ which is converted to E^0 vs E^0 (SCE) (4.684 V) by applying 0.244 V correction.⁴ ^cThe experimental E^0 vs Fc/Fc^+ in CH₃CN is from Ferreira et al.⁵ The scan rate was 0.05 V/s. ^dThe experimental E^0 vs Fc/Fc^+ in CH₃CN is from Aroua et al.⁶. The scan rate was 0.05 V/s.

^eThe experimental E^0 vs SCE in CH₃CN is from Wacholtz et al.⁷ The scan rate was 0.2 V/s.

 $[Co^{III}(L^{1-})(LH)]^{2+}$

Fig. S1 Selected geometry parameters of the ${}^{1}[Co^{III}(L^{1-})(LH)]^{2+}$ (S = 0) from the X-ray crystallography⁸ and from the calculation.

	E ⁰ (V) vs SCE		
	^a Calc	^b Exp	
Oxidative quenching			
${}^{2}[\operatorname{Ru}^{\operatorname{III}}(\operatorname{bpy})_{3}]^{3+} + e^{-} \rightarrow {}^{*3}[\operatorname{Ru}^{\operatorname{III}}(\operatorname{bpy}^{-})(\operatorname{bpy})_{2}]^{2+}$	-0.88	$\textbf{-0.81} \pm 0.07$	
Reductive quenching			
* ³ [Ru ^{III} (bpy ^{•-})(bpy) ₂] ²⁺ + e^{-} \rightarrow ² [Ru ^{II} (bpy ^{•-})(bpy) ₂] ¹⁺	0.62	0.77 ± 0.07	
$TEOA^{+} + e^{-} \rightarrow TEOA$	0.63	0.82°	
${}^{1}[\operatorname{Ru}^{II}(\operatorname{bpy})_{3}]^{2+} + e^{-} \rightarrow {}^{2}[\operatorname{Ru}^{II}(\operatorname{bpy}^{-})(\operatorname{bpy})_{2}]^{1+}$	-1.38	-1.33 ± 0.07	

Table S2. Calculated reduction potentials for $[Ru(bnv)_2]^{2+}$ and TEOA

^aThe calculated E⁰ vs SCE in DMF using B3LYP/BS2 (this work). In BS2, def2-TZVP was used for Co and 6-311++G(d,p) for C, H, N. ^bThe experimental E^0 vs SCE in CH₃CN is from Bock *et al.*^{12, 13} ^cThe experimental E^0 vs SCE in aqueous is from Grätzel *et al.*¹⁴

Fig. S2 Optimized geometries and relative electronic energies (ΔE in kcal/mol) for the low spin 2 [Co^{II}(L¹⁻)(LH)]¹⁺, minimum energy crossing point (MECP),^{15, 16} and the high spin 4 [Co^{II}(L¹⁻)(LH)]¹⁺. Selected bond distances are shown in Å.

Fig. S3 Spin density plots of ${}^{4}[Co^{II}(tpy)_{2}]^{2+}$ and ${}^{3}[Co^{I}(tpy)_{2}]^{1+}$. The Löwdin spin (ρ) and charge population (q) are shown.

	Spin state		E_{elec}	< S ² >	Absolute free energy	Relative free energy
			(Hartree)		(Hartree)	(kcal/mol)
$[C_{0}]$	$\mathbf{S} = 0$		-3308.034035	0.00	-3307.560915	0.0
[C0 (L ⁻)(LH)]	S = 1		-3307.926622	2.03	-3307.458749	64.1
	S = 1/2		-3308.193972	0.76	-3307.730099	6.7
$[C0^{-1}(L^{-1})(LH)]^{-1}$	S = 3/2		-3308.199443	3.76	-3307.740761	0.0
	$\mathbf{S} = 0$	closed shell	-3308.280253	0.00	-3307.816626	27.3
	$\mathbf{S} = 0$	BS(1,1)	-3308.294087	1.02	-3307.832290	17.5
$[Co^{II}(L^{1-})(LH^{\cdot 1-})]^0$	S = 1	BS(2,0)	-3308.294153	2.02	-3307.848778	7.1
	S = 1	BS(3,1)	-3308.315935	3.01	-3307.858591	0.9
	S = 2		-3308.316546	6.02	-3307.860094	0.0
	S = 1/2		-3308.412341	1.78	-3307.954403	4.9
	S = 3/2	BS(3,0)	-3308.412613	3.78	-3307.955428	4.2
$[C0^{n}(L^{2})(LH^{2})]^{2}$	S = 3/2	BS(4,1)	-3308.415618	4.76	-3307.961469	0.5
	S = 5/2		-3308.416208	8.78	-3308.043661	0.0
	$\mathbf{S} = 0$		-3308.487902	1.02	-3308.033669	9.7
	S = 1		-3308.488198	2.02	-3308.034737	9.1
$[Co^{II}(L^{-2-})(LH^{-2-})]^{2-}$	S = 2	BS(4,2)	-3308.494776	3.83	-3308.043751	3.4
	S = 2	BS(5,1)	-3308.496390	6.89	-3308.049177	0.0
	S = 3		-3308.493315	12.04	-3308.043661	3.5

Table S3. The solvent corrected relative free energies for intermediates upon reductions of $[Co^{III}(L^{1-})(LH)]^{2+}$ (LH = py-DAT-amidine).

Fig. S4 Optimized geometries of ${}^{1}[Co^{III}(L^{1-})(LH)]^{2+}$ (S = 0) and ${}^{4}[Co^{II}(L^{1-})(LH)]^{1+}$ (S = 3/2). Selected bond distances are shown in Å.

Fig. S5 Optimized geometries of triethanolamine (TEOA) and [HTEOA]⁺. The solvent corrected relative free energies are with respect to the lowest energy conformer (in kcal/mol).

Fig. S6 Optimized geometries of L^- , LH, and LH₂⁺.

Fig. S7 The reduced forms of protonated ligand LH in triplet LH^{*2-} (S = 1), open-shell singlet diradical LH^{*2-} (S = 0, BS(1,1)) and closed-shell singlet LH^{2-} (S = 0). The solvent corrected relative free energies are with respect to the lowest energy conformer (in kcal/mol).

Fig. S8 The reduced forms of protonated ligand LH₂ in closed-shell singlet LH_2^{1-} (S = 0) and triplet $LH_2^{\bullet 1-}$ (S = 1). The open-shell singlet diradical $LH_2^{\bullet 1-}$ (S = 0, BS(1,1)) was not found. The solvent corrected relative free energies are with respect to the lowest energy conformer (in kcal/mol).

Scheme S1. (a) The calculated proton-transfer free energy from $[HTEOA]^+$ to pyridine in DMF solvent is shown on the horizontal arrow. (b) The calculated reduction potentials (E⁰) and proton-transfer free energy of py-DAT-amidinate L⁻ in DMF solvent. The calculated reduction potentials E⁰ vs. SCE (4.684 V) are shown on the vertical arrow. The calculated proton-transfer free energy from $[HTEOA]^+$ to the amidinate moiety of L⁻ and to the pyridine moiety of LH are shown on the horizontal arrow.

Scheme S2. Possible protonation states of 4 [Co^{II}(LH)(LH)]²⁺. The free energies relative to the most stable protonation state are given in kcal/mol.

	Spin state	Broken Symmetry	E_{elec}	< S ² >	Absolute free energy	Relative free energy
			(Hartree)		(Hartree)	(kcal/mol)
	S =1/2		-3308.099296	0.76	-3308.174994	8.7
$[CO''(LH)(LH)]^{2}$	S = 3/2		-3308.112934	3.76	-3308.188856	0.0
	$\mathbf{S} = 0$		-3308.224485	1.02	-3308.305239	5.9
	S = 1	BS(2,0)	-3308.225741	2.02	-3308.306446	5.2
$[\mathrm{Co}^{\mathrm{o}}(\mathrm{LH})(\mathrm{LH}^{\mathrm{o}})]^{\mathrm{o}}$	S = 1	BS(3,1)	-3308.233384	2.99	-3308.314164	0.3
	S = 2		-3308.233672	6.02	-3308.314705	0.0
	S = 1/2		-3308.337360	1.78	-3308.423593	7.4
	S = 3/2	BS(3,0)	-3308.338217	3.78	-3308.424683	6.7
$[\text{Co}^{(\text{LH}^{-})}(\text{LH}^{-})]^{\circ}$	S = 3/2	BS(4,1)	-3308.347807	4.77	-3308.434250	0.7
	S = 5/2		-3308.348793	8.78	-3308.435394	0.0
	S = 1/2		-3308.780210	1.72	-3308.865919	3.7
$[\mathbf{C}_{0}^{\mathrm{II}}(\mathbf{I},\mathbf{U}^{\bullet}]^{-})(\mathbf{I},\mathbf{U},\bullet)]^{1+}$	S = 3/2	BS(3,0)	-3308.779946	3.78	-3308.864958	4.3
$[C0^{-1}(LH^{-1})(LH_2)]^{-1}$	S = 3/2	BS(4,1)	-3308.786604	4.45	-3308.871794	0.0
	S = 5/2		-3308.780595	8.77	-3308.865886	3.7
	$\mathbf{S} = 0$		-3308.896201	1.01	-3308.985952	5.6
$[C_{0}]^{II}(I_{1} U^{1})(I_{1} U^{1})(I_{1} U^{1})]^{0}$	S = 1		-3308.897148	2.02	-3308.986911	5.1
$[CO(LH)(LH_2)]^2$	S = 1	BS(3,1)	-3308.893628	3.26	-3308.976744	11.4
	S = 2	BS(4,0)	-3308.905497	6.02	-3308.994971	0.0
	$\mathbf{S} = 0$		-3309.346058	1.02	-3309.430816	4.0
$[Co^{II}H(LH)(LH_2^{\bullet})]^{1+}$	S = 1	BS(2,0)	-3309.346952	2.02	-3309.431800	3.4
	S = 1	BS(3,1)	-3309.352095	3.02	-3309.436764	0.3
	S = 2		-3309.352539	6.02	-3309.437248	0.0
	$\mathbf{S} = 0$		-3309.799434	1.01	-3309.399689	12.4
тс	S = 1		-3309.887846	2.01	-3309.401273	11.4
10	S = 1	BS(3,1)	-3309.899337	2.90	-3309.419385	0.0
	S = 2		-3309.896370	6.02	-3309.414522	3.1
H ₂	$\mathbf{S} = 0$		-1.176714	0.00	-1.181206	

Table S4. The solvent corrected relative free energies for intermediates upon proton reductions of 1 [Co^{III}(L¹⁻)(LH)]²⁺ (LH = py-DAT-amidine).

Peaction	ΔG	$F^{\circ}(V)$	ΔG^{PT}
Keaction	(kcal/mol)	E (V)	(kcal/mol)
$[\operatorname{Ru}(\operatorname{bpy})_3]^{2+} + e^- \to [\operatorname{Ru}(\operatorname{bpy})_3]^{1+}$	-76.2	-1.38	-
${}^{1}[Co^{III}(L^{1-})(LH)]^{2+} + e^{-} \rightarrow {}^{2}[Co^{II}(L^{1-})(LH)]^{1+}$	-106.2	-0.08	-
${}^{4}[\text{Co}^{\text{II}}(\text{L}^{1\text{-}})(\text{L}\text{H})]^{1+} + [\text{HTEOA}]^{1+} \rightarrow {}^{4}[\text{Co}^{\text{II}}(\text{L}\text{H})(\text{L}\text{H})]^{2+} + \text{TEOA}$	-	-	-3.1
${}^{4}[Co^{II}(LH)(LH)]^{2+} + e^{-} \rightarrow {}^{3}[Co^{II}(LH)(LH^{\bullet 1-})]^{1+}$	-78.6	-1.27	-
${}^{3}[Co^{II}(LH)(LH^{*1-})]^{1+} + e^{-} \rightarrow {}^{4}[Co^{II}(LH^{*1-})(LH^{*1-})]^{0}$	-75.4	-1.42	-
${}^{4}[\text{Co}^{\text{II}}(\text{LH}^{\text{+}1\text{-}})(\text{LH}^{\text{+}1\text{-}})]^{0} + [\text{HTEOA}]^{1+} \rightarrow {}^{4}[\text{Co}^{\text{II}}(\text{LH}^{\text{+}1\text{-}})(\text{LH}_{2}^{\text{+}})]^{1+} + \text{TEOA}$	-	-	3.6
${}^{3}[Co^{II}(LH)(LH^{\bullet 1-})]^{1+} + e^{-} + H^{+} \rightarrow {}^{4}[Co^{II}(LH^{\bullet 1-})(LH_{2}^{\bullet})]^{1+}$	-79.2 ^c	-1.25	-
${}^{4}[Co^{II}(LH^{\bullet1-})(LH_{2}^{\bullet})]^{1+} + e^{-} \rightarrow {}^{3}[Co^{II}(LH^{\bullet-})(LH_{2}^{1-})]^{0}$	-77.3	-1.33	-
${}^{3}[\text{Co}^{\text{II}}(\text{LH}^{})(\text{LH}_{2}^{1\text{-}})]^{0} + [\text{HTEOA}]^{1+} \rightarrow {}^{3}[\text{Co}^{\text{II}}\text{H}(\text{LH})(\text{LH}_{2}^{\text{-}})]^{1+} + \text{TEOA}$	-	-	0.9
${}^{4}[\text{Co}^{\text{II}}(\text{LH}^{\bullet1-})(\text{LH}_{2}^{\bullet})]^{1+} + e^{-} + \text{H}^{+} \rightarrow {}^{3}[\text{Co}^{\text{II}}\text{H}(\text{LH})(\text{LH}_{2}^{\bullet})]^{1+}$	-83.8 ^c	-1.05	-
${}^{3}[\text{Co}^{II}\text{H}(\text{LH})(\text{LH}_{2}^{\bullet})]^{1+} \rightarrow {}^{3}[\text{TS}_{\text{A}}]^{1+}$	10.9	-	-
${}^{3}[\text{Co}^{\text{II}}\text{H}(\text{LH})(\text{LH}_{2}^{\bullet})]^{1+} \rightarrow {}^{3}[\text{Co}^{\text{II}}(\text{LH})(\text{LH}^{\bullet 1-})]^{1+} + \text{H}_{2}$	-36.8	-	-

Table S5. The calculated relative free energies (ΔG), reduction potentials (E^0)^a, and protontransfer free energy (ΔG^{PT})^b for the Co intermediates in the most likely pathway for H₂ evolution (black paths in Scheme 6).

^aE^o vs E^o(SCE) (4.684 V).^{3, 4}

 ${}^{b}\Delta G^{PT}$ is the proton-transfer free energy from $[HTEOA]^{+}$ to the Co intermediate.

^cProton solvation free energy in DMF is -264.46 kcal/mol¹⁷ and the proton free energy in the gas phase is obtained from Sackur–Tetrode equation (-6.28 kcal/mol).^{18, 19}

Reaction		$\mathbf{E}^{\circ}(\mathbf{V})$	ΔG^{PT}
		E (V)	(kcal/mol)
${}^{1}[Co^{III}(L^{1-})(LH)]^{2+} + [HTEOA]^{1+} \rightarrow {}^{1}[Co^{III}(LH)(LH)]^{3+} + TEOA$	-	-	9.5
1 [Co ^{III} (LH)(LH)] ³⁺ + e ⁻ \rightarrow 4 [Co ^{II} (LH)(LH)] ²⁺	-125.4	0.75	-
${}^{4}[\text{CoII}(\text{LH})(\text{LH})]^{2+} + [\text{HTEOA}]^{1+} \rightarrow {}^{4}[\text{CoII}(\text{LH})(\text{LH}_{2}^{1+})]^{3+} + \text{TEOA}$	-	-	33.8
${}^{3}[Co^{II}(LH)(LH^{\bullet 1-})]^{1+} + [HTEOA]^{1+} \rightarrow {}^{3}[Co^{II}(LH)(LH_{2}^{\bullet})]^{2+} + TEOA$	-	-	14.7
${}^{3}[Co^{II}(LH)(LH_{2}^{\bullet})]^{2+} + e^{-} \rightarrow {}^{4}[Co^{II}(LH^{\bullet 1-})(LH_{2}^{\bullet})]^{1+}$	-86.5	-0.93	-
${}^{4}[Co^{II}(LH^{\bullet 1-})(LH_{2}^{\bullet})]^{1+} + [HTEOA]^{1+} \rightarrow {}^{4}[Co^{II}H(LH)(LH_{2}^{1+})]^{2+} + TEOA$	-	-	9.8
${}^{4}[Co^{II}H(LH)(LH_{2}^{1+})]^{2+} + e^{-} \rightarrow {}^{3}[Co^{II}H(LH)(LH_{2}^{\bullet})]^{1+}$	-86.2	-0.94	-

Table S6. The calculated relative free energies (ΔG), reduction potentials (E^0)^a, and protontransfer free energy (ΔG^{PT})^b for other Co intermediates in the unlikely pathway for H₂ evolution.

^aE^o vs E^o(SCE) (4.684 V).^{3, 4}

 ${}^{b}\Delta G^{PT}$ is the proton-transfer free energy from [HTEOA]⁺ to the Co intermediate.

Fig. S9 Frontier molecular orbitals (MOs) and MO energies (in eV) of tpy (tpy = terpyridine), LH and LH_2^+ (LH = py-DAT-amidine).

		Electronic excitation	Oscillator strength
		energy (eV)	(<i>f</i>)
tpy	HOMO → LUMO (94.1%)	4.35	0.43
	HOMO \rightarrow LUMO+1 (88.6%)	4.63	0.22
LH	HOMO \rightarrow LUMO (24.4%)	3.90	0.01
	HOMO-1 \rightarrow LUMO (35.4%)		
	HOMO-2 \rightarrow LUMO (30.0%)		
	HOMO → LUMO (50.1%)	4.22	0.08
	HOMO-2 → LUMO (31.6%)		
LH_2^+	HOMO → LUMO (75.2%)	3.47	0.01
	HOMO-1 \rightarrow LUMO (16.8%)		
	HOMO \rightarrow LUMO (21.2%)	3.52	0.01
	HOMO-1 \rightarrow LUMO (48.5%)		
	HOMO-2 \rightarrow LUMO (14.3%)		

Table S7. Calculated electronic excitation energies (eV) of tpy (tpy = terpyridine), LH and LH_2^+ (LH = py-DAT-amidine) from TD-DFT calculation.

Scheme S3. Possible protonation states of ${}^{4}[Co^{II}(LH^{*1-})(LH_{2}^{*})]^{1+}$. The relative free energies are given in kcal/mol.

Fig. S10 The optimized geometries of ${}^{4}[Co^{II}(LH^{*1-})(LH_{2}^{*})]^{1+}$ and ${}^{4}[Co^{II}H(LH)(LH)]^{1+}$. The relative free energies are shown in kcal/mol. The key bond distances are shown in Å.

Fig. S11 The optimized geometries of ${}^{3}[Co^{II}(LH)(LH^{*1-})]^{1+}$ and ${}^{3}[Co^{III}H(L^{1-})(LH)]^{1+}$. The relative free energies are shown in kcal/mol. The key bond distances are shown in Å.

Fig. S12 (a) Frontier MOs and spin density plot of the ${}^{4}[Co^{II}(LH^{*1-})(LH_{2}^{*})]^{1+}$ (S = 3/2, BS(4,1)). (b) Frontier MOs and spin density plot of the ${}^{6}[Co^{II}(LH^{*1-})(LH_{2}^{*})]^{1+}$ (S = 5/2). The doubly occupied orbitals were represented by quasi-restricted orbitals and the singly occupied orbitals were represented by corresponding orbitals (isodensity = 0.05).

Fig. S13 (a) Frontier MOs and spin density plot of the ${}^{3}[Co^{II}H(LH)(LH_{2}^{\bullet})]^{1+}$ (S = 1, BS(3,1)). (b) Frontier MOs and spin density plot of the ${}^{5}[Co^{II}H(LH)(LH_{2}^{\bullet})]^{1+}$ (S = 2). The doubly occupied and unoccupied orbitals were represented by quasi-restricted orbitals and the singly occupied orbitals were represented by corresponding orbitals (isodensity = 0.05).

Fig. S14 (a) The relative free energy (in kcal/mol) for the H₂ elimination from the Co^{II}-H^{...}HN(TEOA) vs. Co^{II}-H^{...}HN(pyridine) intermediates. (b) Optimized geometries of ${}^{5}[Co^{II}(LH^{\cdot 1-})(LH_{2}^{1-})]^{0}$, ${}^{5}[Co^{II}H(LH^{\cdot 1-})(LH)]^{0}$ and ${}^{5}[TS_{TEOA}]^{1+}$.

Fig. S15 (a) The relative free energy (in kcal/mol) for the H₂ elimination from the Co^{II}-H^{...}HN(TEOA) intermediate. (b) Optimized geometries of 4 [Co^{II}(LH^{•1-})(LH₂[•])]¹⁺, 4 [Co^{II}H(LH)(LH)]¹⁺ and 4 [TS_{TEOA}]²⁺.

References

- 1. C. J. Cramer, *Essentials of computational chemistry*, John Wiley & Sons, Chichester, England, 2 edn., 2004.
- 2. M. Namazian, C. Y. Lin and M. L. Coote, *Journal of Chemical Theory and Computation*, 2010, **6**, 2721-2725.
- 3. S. Trasatti, *Pure and Applied Chemistry*, 1986, **58**, 955-966.
- 4. V. V. Pavlishchuk and A. W. Addison, *Inorganica Chimica Acta*, 2000, **298**, 97-102.
- 5. H. Ferreira, M. M. Conradie and J. Conradie, *Data Brief*, 2019, **22**, 436-445.
- 6. S. Aroua, T. K. Todorova, P. Hommes, L. M. Chamoreau, H. U. Reissig, V. Mougel and M. Fontecave, *Inorg Chem*, 2017, **56**, 5930-5940.
- 7. W. F. Wacholtz, R. A. Auerbach and R. H. Schmehl, *Inorganic Chemistry*, 1986, **25**, 227-234.
- 8. S. Rajak, K. Chair, L. K. Rana, P. Kaur, T. Maris and A. Duong, *Inorg Chem*, 2020, **59**, 14910-14919.
- 9. L. Tong, L. Duan, A. Zhou and R. P. Thummel, *Coordination Chemistry Reviews*, 2020, 402.
- 10. N. Queyriaux, R. T. Jane, J. Massin, V. Artero and M. Chavarot-Kerlidou, *Coordination Chemistry Reviews*, 2015, **304-305**, 3-19.
- 11. A. Rodenberg, M. Orazietti, B. Probst, C. Bachmann, R. Alberto, K. K. Baldridge and P. Hamm, *Inorganic Chemistry*, 2015, **54**, 646-657.
- 12. D. M. Arias-Rotondo and J. K. McCusker, *Chemical Society Reviews*, 2016, **45**, 5803-5820.
- 13. B. Probst, A. Rodenberg, M. Guttentag, P. Hamm and R. Alberto, *Inorganic Chemistry*, 2010, **49**, 6453-6460.
- 14. M. D. Karkas, O. Verho, E. V. Johnston and B. Akermark, *Chem Rev*, 2014, **114**, 11863-12001.
- 15. J. N. Harvey, M. Aschi, H. Schwarz and W. Koch, *Theoretical Chemistry Accounts*, 1998, **99**, 95-99.
- 16. J. Rodríguez-Guerra, *jaimergp/easymecp: v0.3.2 (v0.3.2). Zenodo.* <u>https://doi.org/10.5281/zenodo.4293422</u>, 2020.
- 17. Z. Marković, J. Tošović, D. Milenković and S. Marković, *Computational and Theoretical Chemistry*, 2016, **1077**, 11-17.
- 18. P. Surawatanawong, J. W. Tye, M. Y. Darensbourg and M. B. Hall, *Dalton Transactions*, 2010, **39**, 3093-3104.
- 19. G. J. Tawa, I. A. Topol, S. K. Burt, R. A. Caldwell and A. A. Rashin, *The Journal of Chemical Physics*, 1998, **109**, 4852-4863.