ELECTRONIC SUPPORTING INFORMATION

Electronic Supporting Information for:

Stable cyclopropenylvinyl ligands *via* insertion into a transient cyclopropenyl-metal bond.

Lachlan J. Watson and Anthony F. Hill*

General Considerations

Unless otherwise stated, experimental work was carried out at room temperature under a dry and oxygen-free nitrogen atmosphere using standard Schlenk techniques with dried and degassed solvents.

NMR spectra were obtained on a Bruker Avance 400 (¹H at 400.1 MHz, ¹³C at 100.6 MHz, ³¹P at 162 MHz), a Bruker Avance 600 (¹H at 600.0 MHz, ¹³C at 150.9 MHz), a Bruker Avance 700 (¹H at 700.0 MHz, ¹³C at 176.1 MHz, ³¹P at 283 MHz) or a Bruker Avance 800 (1H at 800.1 MHz, ¹³C at 201.2 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent peak, or external references (85% H₃PO₄ in H₂O for ³¹P). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. The abbreviation 'napth' is used to refer to the naphthalene backbone of the dihydroperimidine based ligand, while 'i' (ipso), 'o' (ortho), 'm' (meta), and 'p' (para) refer to positions on the phenyl rings of PPh₂ groups. Extreme insolubility in many samples resulted in low quality NMR acquisitions, and as a result some resonances may not be unequivocally assigned.

Infrared spectra were obtained using a PerkinElmer Spectrum One FT-IR spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). Elemental microanalytical data were provided by Macquarie University. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix.

Data for X-ray crystallography were collected with an Agilent Xcalibur CCD diffractometer or an Agilent SuperNova CCD diffractometer using Mo-K α radiation (λ = 0.71073 Å) or Cu-K α radiation (λ = 1.54184 Å) and the CrysAlis PRO software.¹ The

structures were solved by direct or Patterson methods and refined by full-matrix least-squares on *F*² using the SHELXS or SHELXT and SHELXL programs.² Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.³ Structural data for **4b** were collected at the Australian Synchrotron using the MX₂ beamline using silicon double crystal monochromated synchrotron radiation at 100 K. Raw frame data were collected using Blulce⁴ and data reduction, interframe scaling, unit cell refinement and absorption corrections were processed using XDS.⁵

The synthesis of [RhCl(PhPm)] and [RhCl(CyPm)] have been reported previously.⁶ The reagents [RhCl{py(NHP^tBu₂)₂-2,6}],⁷ triphenylcyclopropenium bromide,⁸ and triphenylcyclopropenium hexafluorophosphate⁹ were prepared according to literature procedures. The remaining reagents were purchased from commercial sources.

Computational Details

Computational studies were performed by using the *SPARTAN20*[®] suite of programs.¹⁰ Geometry optimisation (gas phase) for diatomics and metal complexes was performed at the DFT level of theory using the exchange functionals ω B97X-D of Head-Gordon.^{11,12} The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt ¹³⁻¹⁵ was used for I, Mo and W while Pople 6-31G* basis sets¹⁶ were used for all other atoms. For the full molecule of **3a**, the def2-SV(P) basis set of Weigend and Ahlrichs¹⁷ was used in combination with the ω B97X-D functional. Frequency calculations were performed for all compounds to confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest. Cartesian atomic coordinates are provided below. Percentage buried volume¹⁸ and NEST occupied volume¹⁹ calculations and plots were generated using the relevant web-based application.

Synthetic Procedures

Synthesis of [RhCl{py(NHP^tBu₂)₂-2,6}(C₃Ph₃)] (1). A suspension of [RhCl{py(NHP^tBu₂)₂-2,6}]⁷ (109 mg, 0.204 mmol) and $[C_3Ph_3]PF_6$ (250 mg, 0.607 mmol) was heated to reflux in toluene (35 mL) for 21 hours. After reducing the solvent volume to *ca*. 5 mL and addition of *n*-hexane, the suspension was filtered to collect the filtrate. After removal of the solvent under reduced pressure, the residue was ultrasonically triturated in *n*-pentane (10 mL) and collected by filtration as a yellow-brown solid. Yield: 146 mg (0.136 mmol, 67%).

IR (ATR, cm⁻¹) 3070 v_{NH}, 1579, 1445, 1260 v_{CCAromatic}. ¹**H NMR** (700 MHz, CDCl₃, 298 K): δ_{H} = 7.60 (d, 8 H, ³J_{HH} = 7 Hz, *o*-Ph), 7.36 (s, 1 H, py-H), 7.30 (d, 4 H, ³J_{HH} = 8 Hz, *o*-Ph), 7.27-7.23 (m, 12 H, *m*-Ph), 7.21 (t, 4 H, ³J_{HH} = 8 Hz, *p*-Ph), 7.11 (t, 2 H, ³J_{HH} = 7 Hz, *p*-Ph), 5.40 (br s, 2 H, NH), 1.26 (br s, 36 H, P^tBu₂). ³¹P{¹H} **NMR** (298 MHz, CDCl₃, 298 K): δ_{P} = 111.06 (br s). ³¹P{¹H} **NMR** (298 MHz, CDCl₃, 227 K): δ_{P} = 111.14 (br d, ¹J_{RhP} = 149 Hz). ¹³C{¹H} (176 MHz, CDCl₃, 298 K): δ_{C} = 160.0 (py-*C*_{1,5}), 143.9 (py-*C*₃), 134.6 (*i*-Ph), 129.4 (*o*-Ph), 129.3 (*o*-Ph), 129.2 (*m*-Ph), 129.0 (*m*-Ph), 127.9 (*i*-Ph), 127.6 (*p*-Ph), 126.9 (*p*-Ph), 119.6 (β-*C*₃Ph₃), 113.1 (py-*C*_{2,4}), 35.2 (α-*C*₃Ph₃), 28.6 (P^tBu₂). **MS** (ESI, +ve ion, m/z): Found: 1073.4281. Calcd. For C₆₅H₇₂N₄P₂¹⁰³Rh [M + CH₃CN]: 1073.4287.

Crystals suitable for structural determination were grown from the slow evaporation of a chloroform solution of the sample. **Crystal Data** for C₆₃H₆₉ClN₃P₂Rh (M_w =1068.51 gmol⁻¹): monoclinic, space group Cc (no. 9), a = 12.8504(8) Å, b =24.0502(9) Å, c = 18.6155(10) Å, $\beta = 106.840(6)^\circ$, V =5506.5(5) Å³, Z = 4, T = 150.0(1) K, μ (Mo K α) = 0.459 mm⁻¹, $D_{calc} = 1.289$ Mgm⁻³, 13907 reflections measured (6.598° $\leq 2\Theta \leq$ 59.148°), 10307 unique ($R_{int} = 0.0276$, $R_{sigma} = 0.0637$) which were used in all calculations. The final R_1 was 0.0501 ($I > 2\sigma(I)$) and wR_2 was 0.1178 (all data) for 643 refined parameters with 2 restraints. CCDC 2249870.

Synthesis of [RhBr₃(PhPm)] (2):. *Method A:* A solution of [RhCl(PhPm)] (50 mg, 0.078 mmol) and C₃Ph₃Br (100 mg, 0.289 mmol) were stirred in CH₂Cl₂ (10 mL) for two hours. Solvent was removed from the yellow solution under reduced pressure and the residue recrystallised from THF/Et₂O as a yellow powder which was isolated by filtration and dried. Yield: 54 mg (0.060 mmol, 76 %). *Method B:* A solution of [RhCl(PhPm)] (20 mg, 0.031 mmol) and pyridinium tribromide (C₅H₅NH.Br₃, 20 mg, 0.063 mmol) were stirred in CH₂Cl₂ for two hours. ³¹P{¹H} spectroscopy indicates ~30% product conversion with ~10% of a similar species attributed to [RhClBr₂(PhPm)] alongside other unidentified peaks.

IR (CH₂Cl₂, cm⁻¹): 1638, 1608, 1588 v_{CC}. IR (ATR, cm⁻¹): 1634, 1605, 1582 v_{CC}. ¹**H NMR** (700 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ = 7.94 (m, 8 H, *o*-PPh₂), 7.58 (d, 2 H, ³J_{HH} = 8 Hz, napth*CH*), 7.51 (t, 2 H, ³J_{HH} = 8 Hz, napth*CH*), 7.51 (t, 2 H, ³J_{HH} = 8 Hz, napth*CH*), 7.42-7.38 (2 x m, 12 H, *m*-PPh₂ and *p*-PPh₂), 7.02 (d, 2 H, ³J_{HH} = 8 Hz, napth*CH*), 5.24 (s, 4 H, NCH₂P). ³¹**P**{¹**H**} **NMR** (283 MHz, CDCl₃, 298 K): $\delta_{\rm P}$ = 17.30 (d, ¹J_{RhP} = 92 Hz). ¹³**C**{¹**H**} **NMR** (176 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ = 201.7 (d.t., ¹J_{RhC} = 39 Hz, ²J_{PC} = 4 Hz, N*C*N), 134.6 (napth*C*), 134.1 (vt, ^{2,4}J_{PC} = 5 Hz, *o*-PPh₂), 133.9 (napth*C*), 131.2 (*p*-PPh₂), 130.0 (vt, ^{1,3}J_{PC} = 27 Hz, *i*-PPh₂), 128.5 (vt, ^{3,5}J_{PC} = 5 Hz, *m*-PPh₂), 128.5 (overlapping napth*C*H peak observed by HSQC), 123.3 (napth*C*H), 119.7

(napth*C*), 108.0 (napth*C*H), 58.3 (vt, ^{1,3}*J*_{PC} = 17 Hz, N*C*H₂P). **MS** (ESI, +ve ion, m/z): Found: 826.9289. Calcd. for C₃₇H₃₀N₂P₂¹⁰³RhBr₂ [M – Br]⁺: 826.9284. **Anal.** Found C 48.87, H 3.36, N 3.21 %. Calcd. For C₃₇H₃₀N₂P₂RhBr₃: C 48.98, H 3.33, N 3.09 %. Crystals suitable for structural determination were grown from slow evaporation of a saturated benzene solution of the sample at 25 °C. *Crystal Data for* C₄₉H₄₂Br₃N₂P₂Rh (*M*_w = 1063.42 g.mol⁻¹): triclinic, space group *P*-1 (no. 2), *a* = 10.3024(2) Å, *b* = 14.2061(4) Å, *c* = 15.4757(5) Å, α = 87.154(2)°, β = 73.829(2)°, γ = 81.829(2)°, *V* = 2153.16(10) Å³, *Z* = 2, *T* = 150.0(1) K, μ(Cu Kα) = 7.453 mm⁻¹, *D*_{calc} = 1.640 Mgm⁻³, 16278 reflections measured (8.612° ≤ 20 ≤ 147.642°), 8530 unique (*R*_{int} = 0.0214, *R*_{sigma} = 0.0315) which were used in all calculations. The final *R*₁ was 0.0247 (*I* > 2σ(*I*)) and *wR*₂ was 0.0623 (all data) for 514 refined parameters without restraints. CCDC 2249869.

Generation of [RhCl(κ^2 -C₃Ph₃)(PhPm)]PF₆ (3a): In each experiment, [RhCl(PhPm)] and 1.5 equivalents or more of [C₃Ph₃]PF₆ were stirred in dichloromethane or acetone, causing an immediate colour change from bright orange to very deep blue. After 15 minutes, the reaction was deemed complete by ³¹P{¹H} NMR spectroscopy but suffers from extremely rapid decomposition which precluded its purification. Subsequent reactions were conducted with these solutions, and characterization was performed without further purification. Conversion: *ca.* 74–93% by ³¹P{¹H} NMR, tending to improve with more equivalents of [C₃Ph₃]PF₆. The following (Figure S1) displays the variation in conversion with1 and 2 equivalents of [C₃Ph₃]PF₆ over 48 hours.

¹H NMR (400 MHz, CD₂Cl₂, 298 K): δ_{H} = 8.55-6.71 (~60 H, PPh₂, RhC₃Ph₃, napthCH and excess C₃Ph₃PF₆), 6.25 (d, 2 H, ³J_{HH} = 8 Hz, napthCH), 5.25 (d.t., 2 H, ${}^{2}J_{PH}$ = 14 Hz, ${}^{2}J_{HH}$ = 3 Hz, NCH₂P), 4.85 (d.t., 2 H, ${}^{2}J_{PH}$ = 14, ${}^{2}J_{HH}$ = 3 Hz, NCH₂P). ³¹P{¹H} NMR (162 Hz, CD₂Cl₂, 298 K): δ_P = 28.24 (d, ¹J_{RhP} = 104 Hz), -142 (hept, ¹J_{FP}) = 714 Hz, PF₆). ¹H NMR (400 MHz, (CD₃)₂CO, 298 K): δ_H = 7.91– 6.80 (42 H, PPh₂, RhC₃Ph₃ and napthCH), 6.53 (d, 2 H, ${}^{3}J_{HH}$ = 7 Hz, napthCH), 5.54 (d.t., 2 H, ${}^{2}J_{PH}$ = 14 Hz, ${}^{2}J_{HH}$ = 3 Hz, NCH₂P), 5.34 (dt, 2 H, ${}^{2}J_{PH}$ = 14 Hz, ${}^{2}J_{HH}$ = 3 Hz, NCH₂P). ³¹P{¹H} NMR (162 Hz, $(CD_3)_2CO$, 298 K): $\delta_P = 28.7$ (d, ${}^{1}J_{BhP} = 104$ Hz), -144 (hept, ${}^{1}J_{FP}$ = 709 Hz, PF₆). ¹³C{¹H} NMR (176 MHz, CD₂Cl₂, 298 K): δ_C = 248.1 (m, C_3Ph_3), 214.8 (d.t., ${}^{1}J_{RhC}$ = 33 Hz, ${}^{2}J_{PC}$ = 6 Hz, NCN), 212.8 (d.t., ${}^{1}J_{RhC}$ = 22 Hz, ${}^{2}J_{PC}$ unresolved, $C_{3}Ph_{3}$), 165.4 (m, $C_{3}Ph_{3}$), 144.3, 140.7, 136.1 (3 x s, *i*-Ph), 135.1 (napthC), 134.2–133.9 (PPh₂), 134.0 (vt, $J_{PC} = 6$ Hz, PPh₂), 133.1 (vt, ${}^{3,5}J_{PC} = 4$ Hz, napthC), 132.5–132.2 (PPh₂), 130.2 (*o*-Ph), 130.0 (vt, $J_{PC} = 5$ Hz, PPh₂), 129.3 (m-Ph), 129.1 (napthCH), 129.0 (PPh₂), 128.7 (m-Ph), 128.0 (o-Ph), 124.0 (napthCH), 120.5 (napthC), 108.9 (napthCH), 59.2 (vt, ${}^{1,3}J_{PC}$ = 19 Hz, NCH₂P). The remaining peaks could not be unambiguously assigned. The sensitivity of the sample prevented mass spectrometric analysis and purification for elemental analysis. In the absence of crystallographic data, the geometry of the model complex [RhCl(C₃Ph₃)(PhPm)]⁺ was computationally optimised (@B97X-D/6-31G*/def2-SV(P)/gas phase) as shown in Figure 10 of the manuscript.

Reaction of [RhCl(PhPm)] with [C₃Ph₃]PF₆ in CD₃CN – Performing the reaction of [RhCl(PhPm)] with [C₃Ph₃]PF₆ in CD₃CN resulted in the formation of four octahedral rhodium complexes (see 31P{1H} spectrum below). While none of the chemical shifts or associated ¹J_{PRh} coupling constants corresponded exactly to those measured for **3a** in CD₂Cl₂ (δ_P = 28.24, ¹J_{RhP} = 104 Hz), some solvent dependence of the former is to be expected. It seems plausible that one of these may well be **3a** and that the other three doublets correspond to the three isomers of [RhCl(σ -C₃Ph₃)(NCMe)(PhPm)]⁺ (Figure S2). The mixture was not however amenable to chromatographic purification.

Figure S2. Crude ${}^{31}P\{{}^{1}H\}$ NMR spectrum of the reaction of [RhCl(PhPm)] with [C_3Ph_3]PF_6 in d_3 -acetonitrile.

Generation of [RhCl(κ^2 -C₃Ph₃)(CyPm)]PF₆ (3b): As for 3a above, in each experiment, [RhCl(CyPm)] and 1.5 equivalents or more of [C₃Ph₃]PF₆ were stirred in dichloromethane, causing an immediate colour change from bright orange to green. No length of reaction time allowed for complete conversion, usually stabilising at ~56 % by ³¹P{¹H} NMR spectroscopy after 15 mins. Efforts to isolate this species led to rapid decomposition, and subsequent reactions were conducted from these solutions without further purification. Conversion: *ca* 56% by ³¹P{¹H</sup> NMR.

¹H NMR (800 MHz, CD₂Cl₂, 298 K): δ_{H} = 8.02 (br. m, 2 H, o-Ph), 7.66 (t, 1 H, ${}^{3}J_{HH}$ = 7 Hz, p-Ph), 7.57 (d, 2 H, ${}^{3}J_{HH}$ = 8 Hz, napthCH), 7.54 (t, 1 H, ³J_{HH} = 7 Hz, p-Ph), 7.48 (t, 2 H, ³J_{HH} = 8 Hz, napthCH), 7.45 (t, 1 H, ${}^{3}J_{HH}$ = 7 Hz, p-Ph), 7.42 (t, 2 H, ${}^{3}J_{HH}$ = 8 Hz, *m*-Ph), 7.39 (t, 2 H, ³J_{HH} = 8 Hz, *m*-Ph), 7.33 (br. m, 2 H, *o*-Ph), 7.18 (2 H, ${}^{3}J_{HH}$ = 8 Hz, m-Ph), 6.98 (d, 2 H, ${}^{3}J_{HH}$ = 7 Hz, o-Ph), 6.82 $(d, 2 H, {}^{3}J_{HH} = 8 Hz, napthCH), 4.66 (d, 2 H, {}^{2}J_{HH} = 13 Hz, NCH_{2}P),$ 3.89 (d, 2 H, ${}^{2}J_{HH}$ = 13 Hz, NCH₂P), 2.86–1.00 (multiplets, PCy₂). ¹³C{¹H} NMR (201 MHz, CD₂Cl₂, 298 K): δ_{c} = 255.3 (m, C₃Ph₃), 214.8 (d.t., ${}^{1}J_{RhC}$ = 33 Hz, ${}^{2}J_{PC}$ = 6 Hz, NCN), 207.7 (d.t., ${}^{1}J_{RhC}$ = 24 Hz, ${}^{2}J_{PC}$ = 7 Hz, $C_{3}Ph_{3}$), 165.2 (m, $C_{3}Ph_{3}$), 145.2 (*i*-Ph), 141.1 (*i*-Ph), 136.0 (p-Ph), 135.0 (p-Ph), 129.9 (napthCH), 129.9 (m-Ph), 128.5 (o-Ph), 128.4 (o-Ph), 123.5 (napthCH), 120.4 (napthC), 119.4 (o-Ph), 108.2 (napthCH), 53.9 (NCH₂P, overlapping with solvent signal), 37.8 (vt, ^{1,3}J_{PC} = 9 Hz, *i*-PCy₂), 34.0–26.4 (multiplets, PCy₂). Remaining signals could not be unambiguously assigned due to the presence of overlapping signals from other compounds including unreacted [RhCl(CyPm)], excess C₃Ph₃PF₆ and [RhCl₂(CD₂Cl)(CyPm)] from reaction with the NMR solvent. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K): δ_P = 31.52 (d, ${}^{1}J_{RhP}$ = 97 Hz), -147 (sept, ${}^{1}J_{FP}$ = 712 Hz, PF₆). The sensitivity of this species precluded mass spectrometric analysis. The sensitivity of this species precluded acquisition of useful mass spectrometric or elemental microanalytical data.

Synthesis of [Rh{ κ^2 -CHC{CO₂Me}C₃Ph₃)Cl(PhPm)]PF₆ (4a): To the solids [RhCl(PhPm)] (120 mg, 0.171 mmol) and [C₃Ph₃]PF₆ (105 mg, 0.255 mmol) was added CH₂Cl₂ (20 mL) and stirred for 10 minutes, turning rapidly from orange though deep green to dark blue. Methyl propiolate (0.30 mL, 3.4 mmol) was added, causing immediate formation of a yellow solution. After one hour of stirring, the solution was condensed to *ca* 3 mL and loaded onto a silica gel column (2 x 10 cm), washing with CH₂Cl₂ (50 mL) before eluting with 4% MeCN in CH₂Cl₂ to collect a yellow band of the product. Yield: 125 mg (0.112 mmol, 65%). Crystals suitable for structural determination were grown by liquid diffusion of benzene into a chloroform solution of the sample.

IR (ATR, cm⁻¹): 1639, 1579 ν_{CCnapth}, 1435, 1351. ¹**H NMR** (700 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ = 8.43 (s, 1 H, RhCH), 7.68 (m, 4 H, $J_{\rm HH}$ = 6 Hz, *o*-PPh₂), 7.45-7.30 (overlapped multiplets, 14 H, *o*-PPh₂, *o*-Ph, *p*-PPh₂, *p*-Ph and napthCH), 7.24, 7.23, 7.22 (overlapped multiplets, 6 H, napthCH and *m*-Ph), 7.16 (m, 4 H, *m*-PPh₂), 7.11 (overlapped multiplets, 6 H, napthCH and *m*-Ph₂), 7.06 (t, 2 H, *p*-PPh₂), 6.87 (t, 1 H, ³ $J_{\rm HH}$ = 7 Hz, *p*-C₃Ph₃), 6.78 (t, 2 H, ³ $J_{\rm HH}$ = 8 Hz, *m*-C₃Ph₃), 6.18 (d, 2 H, ³ $J_{\rm HH}$ = 8 Hz, *o*-C₃Ph₃), 5.22, 4.77 (2 x d, 2 x 2 H, ² $J_{\rm HH}$ = 13 Hz, NCH₂P), 4.12 (s, 3 H, OCH₃). ³¹P{¹H} NMR (283 MHz, CDCl₃, 298 K): $\delta_{\rm P}$ = 25.8 (d, ¹ $J_{\rm PRh}$ = 100 Hz). ¹³C{¹H} **NMR** (176 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ = 196.2 (dt, ¹ $J_{\rm RhC}$ = 48 Hz, ² $J_{\rm PC}$ = 6 Hz, Rh=C_{NHC}), 182.0 (dt, ¹ $J_{\rm RhC}$ = 26 Hz, ² $J_{\rm PC}$ = 8 Hz, RhCH), 180.7

(s, CO₂Me), 143.1 (d, ²J_{RhC} = 16 Hz, *i*-Ph), 134.1 (napthC), 133.6 (vt, ^{2,4}J_{PC} = 6 Hz, *o*-PPh₂), 132.8 (napth*C*), 132.3, 132.2 (2 x s, p-PPh₂), 130.6 (vt, ${}^{3,5}J_{PC}$ = 5 Hz, m-PPh₂), 129.8 (vt, ${}^{3,5}J_{PC}$ = 5 Hz, m-PPh₂), 129.5 (*m*-Ph), 129.2 (*p*-Ph), 129.09 (vt, ^{2,4}J_{PC} = 5 Hz, *o*-PPh₂), 129.0 (o-Ph), 128.8 (napthCH), 127.9 (m-Ph), 127.4 (Rh-CH=CR₂), 127.1 (vt, ^{1,3}J_{PC} = 25 Hz, *i*-PPh₂), 125.9 (*o*-Ph), 125.3 (vt, ^{1,3}*J*_{PC} = 25 Hz, *i*-PPh₂), 125.1 (*p*-Ph), 123.8 (napth*C*H), 119.3 (napthC), 116.5 (C_{β} of $C_{3}Ph_{3}$), 109.4 (napthCH), 57.1 (vt, ${}^{1}J_{CP}$ = 19 Hz, NCH₂P), 54.9 (s, OCH₃), 34.3 (s, C α of C₃Ph₃). **MS** (ESI, +ve ion, m/z): Found: 1053.2012. Calcd. for C₆₂H₄₉ClN₂O₂P₂¹⁰³Rh [M–PF₆]+: 1053.2013. Found: 787.0916. Calcd. for C41H35ClN2O2P2Rh [M-C3Ph3-PF6+H)]+: 787.0917. Anal. Found: C 62.01, H 4.15, N 2.43. Calcd. For C₆₂H₄₉ClF₆N₂O₂P₃Rh: C 62.09, H 4.12, N 2.34.

Crystal Data for C₈₁H₇₂ClN₂O₃P₂Rh (M_w =1321.70 gmol⁻¹): triclinic, space group *P*-1 (no. 2), *a* = 13.9449(3) Å, *b* = 16.4856(4) Å, *c* = 17.4017(4) Å, α = 82.943(2)°, β = 81.746(2)°, γ = 84.942(2)°, V = 3918.90(16) Å³, Z = 2, T = 150.0(1) K, μ(Mo Kα) = 0.337 mm⁻¹, D_{calc} = 1.120 Mgm⁻³, 40382 reflections measured (6.828° ≤ 2Θ ≤ 60.2°), 18758 unique (R_{int} = 0.0260, R_{sigma} = 0.0460) which were used in all calculations. The final R_1 was 0.0386 ($I > 2\sigma(I)$) and wR_2 was 0.0864 (all data) for 812 refined parameters without restraints. CCDC 2249872.

Synthesis [Rh{k2of C(CO₂Me)C(CO₂Me)C₃Ph₃Cl(PhPm)]PF₆ (5a): To the solids [RhCl(PhPm)] (80 mg, 0.114 mmol) and C₃Ph₃PF₆ (70 mg, 0.170 mmol) was added CH₂Cl₂ (20 mL) and stirred for 10 minutes, turning rapidly from orange though deep green to dark blue. Dimethyl acetylenedicarboxylate (0.30 mL, 2.5 mmol) was added, causing immediate formation of a yellow solution. After one hour stirring, the solution was condensed to ca. 3 mL and loaded onto a silica column (2 x 10 cm), washing with CH₂Cl₂ (50 mL) before eluting with 4% MeCN in CH₂Cl₂ to collect a yellow band of the product. Yield: 91 mg (0.072 mmol, 64%). Crystals suitable for structural determination were grown from a solution of benzene and heptane left to stand at room temperature for a week.

IR (CH₂Cl₂, cm⁻¹): 1701 ν_{CO} , 1640, 1586 $\nu_{CCnapth}$, 1493, 1347. Due to the number of overlapped peaks, many ¹H and ¹³C NMR resonances cannot be unequivocally assigned. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_{H} = 7.67 (d, 4 H, ${}^{3}J_{HH}$ = 8 Hz, o-PPh₂), 7.53 (d, 2 H, ${}^{3}J_{HH}$ = 8 Hz, napthCH or C₃Ph₃), 7.49 (m, o-PPh₂), 7.49-7.43 (overlapped multiplets), 7.41 (m, m-PPh₂), 7.33 (t, 2 H, coupling not resolved, p-PPh₂), 7.31-7.26 (overlapped multiplets), 7.26 (m, *m*-PPh₂), 7.21-7.16 (overlapped multiplets), 7.16 (m, m-Ph), 7.16-7.12 (overlapped multiplets), 7.06 (t, 1 H, ${}^{3}J_{HH}$ = 7 Hz, p-Ph), 6.92 (t, 1 H, ${}^{3}J_{HH}$ = 8 Hz, p-Ph), 6.77 (t, 2 H, ${}^{3}J_{HH}$ = 8 Hz, m-Ph), 6.28 (d, 2 H, ${}^{3}J_{HH}$ = 7 Hz, o-Ph), 5.40, 5.11 (2 x d, 2 x 2 H, ²J_{HH} = 14 Hz, NCH₂P), 4.24, 2.40 (2 x s, 2 x 3 H, C(O)CH₃). ³¹P{¹H} NMR (283 MHz, CDCl₃, 298 K): δ_P = 23.7 (d, ¹*J*_{PRh} = 97 Hz), -144.0 (hept, ¹*J*_{FP} = 713 Hz, PF₆). ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): 196.4 (dt, ¹J_{RhC} = 48 Hz, ²J_{PC} = 5 Hz, NCN), 182.0 (CO_2Me), 179.1 (dt, ${}^{1}J_{RhC}$ = 30 Hz, ${}^{2}J_{PC}$ = 8 Hz, RhCR{CO₂Me}), 172.5 (CO₂Me), 144.1, 143.2, 142.7 (3 x s, *i*-Ph), 134.2 (napth*C*), 133.2, 131.8 (2 x br s, *o*-PPh₂), 127.1 (vt, ^{1,3}*J*_{PC} = 25 Hz, i-PPh₂), 125.5 (napthCH), 123.9 (o-Ph), 119.1 (napthC), 119.0 (C_{β} of $C_{3}Ph_{3}$), 109.25 (napth*C*H), 55.7 (vt, ${}^{1}J_{CP}$ = 19 Hz, NCH₂P), 55.3, 51.7 (2 x s, OCH₃), 36.5 (s, Cα of C₃Ph₃). Remaining resonances could not be unequivocally assigned. **MS** (ESI, +ve ion, m/z): Found: 1111.2065. Calcd. For [M–PF₆]⁺: 1111.2068.

Crystal Data for C₆₄H₅₁ClN₂O₄P₂Rh (M_w =1112.36 gmol⁻¹): monoclinic, space group C_2/c (no. 15), a = 26.245(5) Å, b = 12.218(2) Å, c = 39.590(8) Å, $6 = 100.99(3)^\circ$, V = 12462(4) Å³, Z = 8, T = 100.0(2) K, μ (Synchrotron) = 0.412 mm⁻¹, $D_{calc} = 1.186$ Mgm⁻³, 73491 reflections measured (2.096° $\leq 2\Theta \leq 52.744^\circ$), 11824 unique ($R_{int} = 0.0896$, $R_{sigma} = 0.0658$) which were used in all calculations. The final R_1 was 0.0654 ($I > 2\sigma(I)$) and wR_2 was 0.1876 (all data) for 688 refined parameters without restraints. CCDC 2249871.

Synthesis of $[Rh{\kappa^2-CHC(CO_2Me)C_3Ph_3}Cl(CyPm)]PF_6$ (4b): Addition of CH_2Cl_2 (5 mL) to the solids [RhCl(CyPm)] (105 mg, 0.144 mmol), and $[C_3Ph_3]PF_6$ (80 mg, 0.19 mmol), resulted in immediate formation of a deep green solution. After 20 minutes stirring, methylpropiolate (0.15 mL, 1.7 mmol) was added and stirred for two hours as a yellow solution. Addition of Et₂O (20 mL) afforded a light brown precipitate which was collected by filtration, washing with Et₂O (20 mL) and *n*-pentane (20 mL) before drying *in vacuo*. This species was not amenable to silica or alumina gel chromatography. Yield: 19 mg (0.016 mmol, 11%).

IR (CH₂Cl₂, cm⁻¹): 1643 v_{CO}, 1585 v_{CC}. IR (ATR, cm⁻¹): 1638 v_{CO}, 1583 v_{CC} . ¹H NMR (800 MHz, CDCl₃, 298 K): δ_{H} = 9.22 (s, Rh-CHR), 7.80 (d, 4 H, ³J_{HH} = 8 Hz, o-Ph), 7.48 (t, 4 H, ³J_{HH} = 8 Hz, m-Ph), 7.46, 7.45, 7.44 (overlapped doublets, 4 H, napthCH), 7.38 (t, 2 H, ${}^{3}J_{HH}$ = 7 Hz, p-Ph), 7.33 (d, ${}^{3}J_{HH}$ = 8 Hz, o-Ph), 7.25 (t, 2 H, ³J_{HH} = 8 Hz, *m*-Ph) 7.15 (t, 1 H, ³J_{HH} = 7 Hz, *p*-Ph), 6.94 (d, ³J_{HH} = 7 Hz, napthCH), 4.55 (d, 2 H, ${}^{2}J_{HH}$ = 13 Hz, NCH₂P), 4.08 (s, 3 H, Rh-C=C(CO₂CH₃)), 3.91 (d, 2 H, ²J_{HH} = 13 Hz, NCH₂P), 1.99-0.8 (series of multiplets, PCy₂). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K): δ_P = 33.09 (d, ¹J_{RhP} = 94 Hz), 144, (sept, PF₆). ¹³C{¹H} NMR (201 MHz, CDCl₃, 298 K): δ_{C} = 196.5 (d.t., ${}^{1}J_{RhC}$ = 49 Hz, ${}^{2}J_{PC}$ = 5 Hz, Rh=*C*), 185.9 (br. d, ${}^{1}J_{RhC}$ = 29 Hz, Rh-CH=CR₂), 179.9 (Rh-C=C(CO₂CH₃)R), 143.7 (i-Ph), 142.1 (i-Ph), 134.2 (napthC), 132.7 (napthC), 129.9 (p-Ph), 129.6 (o-Ph), 129.5 (m-Ph), 128.8 (m-Ph), 128.7, (napthCH), 127.9 (Rh–C=C(CO₂CH₃)R), 127.0 (o-Ph), 126.3 (*p*-Ph), 123.6 (napthCH), 119.4 (napthC), 118.3 (C_{β} of $C_{3}Ph_{3}$), 108.9 (napthCH), 54.6 (Rh-C=C(CO₂CH₃)R), 52.0 (vt, ^{1,3}J_{RhC} = 15 Hz), 34.9 (C_{α} of $C_{3}Ph_{3}$), 28.4–25.4 (PCy₂). **MS** (ESI, +ve ion, m/z): Found: 1077.3881. Calcd. for C₆₂H₇₃N₂O₂P₂³⁵Cl¹⁰³Rh [M – PF₆]⁺: 1077.3891.

Successive Reaction of [RhCl(CyPm)] with HC=CCO₂Me and [C₃Ph₃]PF₆ – Treating a solution of [RhCl(CyPm)] in CD₂Cl₂ with excess methypropiolate results in the formation of two products in a ratio of 5:3. These were neither identified (no Rh– H resonances were observed in the ¹H NMR spectrum) nor isolated. Rather, subsequent treatment with [C3Ph3]PF6 resulted in the formation of *five* new octahedral rhodium complexes (¹J_{RhP} = 86 to 96 Hz), however none of these corresponded to **4b**. The 31P{1H}NMR spactra are shown below for (a) addition of excess methylpropiolate followed by (b) addition of [C₃Ph₃]PF₆. (a) RhCl(CyPm) + excess methylpropiolate

(b) RhCl(CyPm) + (i) excess methylpropiolate; (ii) [C₃Ph₃]PF₆

Figure S3. 31P{1H} NMR spectra for the successive addition of methyl propiolate and $[C_3Ph_3]PF_6$ to [RhCl(CyPm)].

References

- 1 CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- (a) G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
- (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457; (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466-470.
- 4 T. M. McPhillips, S. E. McPhillips, H.J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, *J. Synchrotron Radiat.*, 2002, **9**, 401-406.
- 5 W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795-800.
- 6 A. F. Hill and C. M. A. McQueen, Organometallics, 2012, 31, 8051–8054.
- 7 Y. Wang, B. Zheng, Y. Pan, C. Pan, L. He and K.-W. Huang, Dalton Trans., 2015, 44, 15111–15115.
- 8 R. Xu and R. Breslow, Org, Synth. 1997, 74, 72.
- 9 R. P. Hughes, J. W. Reisch and A. L. Rheingold, Organometallics, 1985, 4, 1754–1761.
- 10 *Spartan 20*[®] (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- 11 J. D. Chai and M. Head-Gordon, J Chem Phys., 2008, **128**, 084106.

- 12 J. D. Chai and M. Head-Gordon, Phys Chem Chem Phys, 2008, 10, 6615-6620.
- 13 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 14 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 15 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298.
- W. J. Hehre, R. Ditchfeld and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.
- 17 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 18 L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Olivia, V. Scarano and L. Cavallo, Nat. Chem., 2019, 11, 872-879.
- 19 G. Zuccarello, L. J. Nannini, A. Arroyo-Bondía, N. Fincias, I. Arranz, A. H. Pérez-Jimeno, M. Peeters, I. Martín-Torres, A. Sadurní, V. García, Y. Wang, M. S. Kirillova, M. Montesinos-Magraner, U. Caniparoli, G. D. Núñez, F. Maseras, M. Besora, I. Escofet, A. M. Echavarren. JACS Au, 2023, 3, 1742-1754.

Computational Results

Percent Buried Volume:

(Falivene, L. et al. Nat. Chem. 2019, 11, 872)

For [RhCl(PNP^tBu)]:

%V Free	%V Buried		9	% V Tot/V Ex		
26.1	73.9		100.0			
Quadrant	V f	V b	V t	%V f	%V b	
SW	9.7	35.1	44.9	21.7	78.3	
NW	11.6	33.3	44.9	25.8	74.2	
NE	13.4	31.5	44.9	29.8	70.2	
SE	12.1	32.8	44.9	27.0	73.0	

Figure S4. Steric map for 'Rh(PN'Bu)' based on coordinates for [RhCl(PN'Bu)].

For [RhCl(PhPm)]:

%V Free	%V Buried	% V Tot/V Ex
35.6	64.4	100.0

Quadrant	Vf	Vb	V t	%V f	%V b
SW	13.9	31.0	44.9	31.0	69.0
NW	18.3	26.6	44.9	40.7	59.3
NE	15.4	29.5	44.9	34.3	65.7
SE	16.3	28.6	44.9	36.2	63.8
inun CE Charleman (Vhandan			\1

Figure S5. Steric map for 'Rh(PhPm)' based on coordinates for [RhCl(PhPm)].

For [RhCl(CyPm)]:

%V Free	%V B	%V Buried		% V Tot/V Ex		
30.4	69.6		1	00.0		
Quadrant	Vf	V b	V t	%V f	%V b	
SW	14.2	30.7	44.9	31.7	68.3	
NW	13.1	31.8	44.9	29.2	70.8	
NE	14.2	30.7	44.9	31.5	68.5	
SE	13.1	31.8	44.9	29.1	70.9	

Figure S6. Steric map for 'Rh(CyPm)' based on coordinates for [RhCl(CyPm)].

Additional Crystal Data

Figure S7. Molecular structure of **3b** in a crystal of **3b**.2(CHCl₃). A solvent mask was required to model disordered solvent and counter anion peaks. The naphthalene and phenyl groups are simplified, and hydrogen atoms are omitted for clarity. Selected distances [Å] and angles [°]: Rh1–C1 1.978(4), Rh1–O1 2.118(3), Rh1–C1 2.4267(10), Rh1–P1 2.3140(10), Rh1–P2 2.3111(11), Rh1–C2 2.050(4), C2–C3 1.353(5), C3–C4 1.515(5), C3–C7 1.458(5), P1–Rh1–P2 162.06(4), C1–Rh1–O1 177.18(12), Cl1–Rh1–C2 169.15(11).

Figure S8. Molecular structure of 2 in a crystal of 2.2(C₆H₆) showing 50% thermal probability ellipsoids. Phenyl rings simplified for clarity and hydrogen atoms omitted. Selected distances [Å] and angles [°]: Rh1–C1 1.994(2), Rh1–Br1 2.5463(3), Rh1–Br2 2.4964(3), Rh1–Br3 2.4796(3), P1–Rh1–P2 169.500(19), Br2–Rh1–Br3 173.695(10).

Computationally Optimised Geometries.

[RhCl{py(NHPH₂)₂-2,6]
[DFT:ωB97X-D/6-31G*/LANL2Dζ]

[RhCl(CH₃){C(NHCH)₂}(PH₃)₂]⁺ [DFT:∞B97X-D/6-31G*/LANL2Dζ]

Figure S9: Optimised structure of [RhCl(HPm)] in the gas phase.

Figure S10: Optimised structure of [RhCl(CH₃){C(NHCH)₂}(PH₃)₂]⁺ in the gas phase.

Table	Table S2: Cartesian coordinates for [RhCl(CH ₃){C(NHCH) ₂ }(PH ₃) ₂] ⁺		Tab	Table S3: Cartesian coordinates for $[RhCI(\sigma-C_3H_3)(C(NHCH)_2)(PH_3)(C(NHCH)_2)(PH_3))$			
Ato	m x	y z		At	om x	y z	
Rh	-0.966859	-0.322854	-0.630553	Rh	-0.876099	-0.363757	-0.836240
Р	-0.821316	-2.613620	-0.109070	Р	-0.711480	-2.655649	-0.349233
н	-0.871348	-3.478712	-1.211192	н	-0.680362	-3.503976	-1.465638
н	-1.895163	-3.081310	0.659166	Н	-1.813327	-3.173081	0.345933
н	0.271687	-3.142223	0.599520	н	0.350643	-3.185140	0.405945
Р	-1.556339	1.857019	-1.296869	Р	-1.437126	1.805232	-1.537930
н	-1.812530	2.009439	-2.666543	н	-1.581711	1.966106	-2.923732
н	-0.721643	2.961550	-1.052940	Н	-0.641491	2.924541	-1.233878
н	-2.761770	2.299543	-0.737089	н	-2.690149	2.244179	-1.089613
CI	-3.082778	-0.910049	-1.543199	Cl	-2.949226	-0.974819	-1.874992
С	0.938095	0.125296	-0.104168	С	1.042788	0.082484	-0.331366
Ν	2.010611	0.082119	-0.925376	Ν	2.073496	0.027313	-1.207521
н	1.958021	-0.182256	-1.898320	н	1.967363	-0.240709	-2.175178
Ν	1.459549	0.519491	1.074079	N	1.631963	0.474791	0.815163
н	0.905915	0.649339	1.907566	н	1.111509	0.609235	1.670851
С	3.179828	0.442646	-0.274872	С	3.278582	0.377957	-0.620756
н	4.136598	0.467328	-0.770587	н	4.208427	0.392164	-1.165701
С	2.828014	0.720949	0.999377	С	2.996321	0.663083	0.669202
н	3.415293	1.037279	1.845996	н	3.631401	0.975803	1.482662
С	-1.560986	0.090670	1.292954	С	-1.736860	-0.010723	1.020140
н	-2.639082	-0.078209	1.291625	Н	-2.783155	-0.232823	0.803401
н	-1.340787	1.130760	1.549033	С	-1.096539	-0.257354	2.314347
н	-1.073010	-0.584194	2.001462	Н	-0.760448	-0.982709	3.040784
				С	-1.293675	0.996489	1.987323
				— н	-1.240846	2.041364	2.256025

3. [RhCl(σ -C₃H₃){C(NHCH)₂}(PH₃)₂]⁺ [DFT: ω B97X-D/6-31G*/LANL2Dζ]

Figure S11: Optimised structure of $[RhCl(\sigma-C_3H_3)\{C(NHCH)_2\}(PH_3)_2]^+$ in the gas phase.

[RhCl(κ²-C₃H₃)(CO)(PH₃)₂]⁺
[DFT:ωB97X-D/6-31G*/LANL2Dζ]

Figure S12: Optimised structure of $[RhCl(\kappa^2\mbox{-}C_3H_3)(CO)(PH_3)_2]^*$ in the gas phase.

Table S4: Cartesian coordinates for $[RhCl(\kappa^2-C_3H_3)(CO)(PH_3)_2]^+$			Tabl	Table S5: Cartesian coordinates for $[RhCl_2(\kappa^2-C_3H_4)(PH_3)_2]$					
Ato	om x	y z		Ato	om x	y z			
Rh	-0.312750	0.001160	-0.213876	Rh	-0.272456	0.002390	-0.284996		
Р	-0.185125	2.355285	-0.515590	Р	-0.459900	2.323722	-0.526783		
н	-1.255265	2.911046	-1.225229	н	0.676974	3.120678	-0.758691		
н	0.915555	2.741901	-1.287687	н	-1.069647	3.055425	0.504588		
н	-0.083409	3.211079	0.592843	н	-1.258969	2.650087	-1.625944		
Р	-0.213899	-2.356976	-0.494205	Р	-0.537572	-2.313093	-0.500299		
н	-1.287091	-2.902967	-1.206540	н	-1.620121	-2.620114	-1.329368		
н	-0.131919	-3.205670	0.621398	н	-0.804450	-3.117177	0.623862		
н	0.886462	-2.765435	-1.255254	н	0.501262	-3.050793	-1.089781		
CI	-0.247057	-0.013103	-2.647682	Cl	-0.115856	-0.115854	-2.743527		
С	-2.354319	0.012106	-0.335220	С	1.650221	-0.049307	0.187371		
0	-3.480799	0.018325	-0.433929	н	2.572056	-0.088774	-0.394871		
С	1.650878	-0.007545	0.265421	С	0.135315	0.030054	1.651525		
н	2.562002	-0.015327	-0.333929	н	-0.475735	0.065402	2.554745		
С	0.142064	0.006425	1.738960	С	1.527110	-0.015454	1.576100		
н	-0.438450	0.010700	2.662839	н	2.284069	-0.022698	2.358223		
С	1.536006	-0.000134	1.645718	Cl	-2.732299	0.145504	-0.202154		
н	2.297119	-0.000871	2.421962						

5. [RhCl₂(κ²-C₃H₄)(PH₃)₂]

[DFT:ωB97X-D/6-31G*/LANL2Dζ]

6. $[RhCl(\kappa^2-C_3Me_3){C(NHCH)_2}{PH_3}_2]^+$ [DFT: ω B97X-D/6-31G*/LANL2D ζ]

Figure S13: Optimised structure of $[RhCl_2(\kappa^2-C_3H_4)(PH_3)_2]$ in the gas phase.

Figure S14: Optimised structure of $[RhCl(\kappa^2-C_3Me_3){C(NHCH)_2}(PH_3)_2]^*$ in the gas phase.

Table	e S6: Cartesian	(PH ₃) ₂] ⁺ Tabl	Table S7: Cartesian coordinates for RhCl(σ - π -C ₃ Ph ₃)(MePm)] ⁺						
Ato	m x	y z		At	om	х	У	Z	
Rh	-0.082152	0.005313	-0.608053	Bh	05	68649	-0 235924	-0 455769	
Р	-0.101515	-2.326093	-0.829929	CI	2.56	50909	-1.488179	-1.370768	
н	0.965486	-2.864915	-1.560820	P	-0.60	07165	-2.192244	-0.874781	
н	-1.195217	-2.849371	-1.534384	Р	1.83	35297	1.331072	0.710545	
н	-0.100708	-3.167981	0.297326	Ν	0.48	87506	-2.458100	1.556121	
Р	-0.106800	2.339298	-0.801109	Ν	0.87	79325	-0.408477	2.532917	
н	0.976708	2.893731	-1.495596	C	0.63	81515	-1.122323	1.407138	
н	-0 137758	3 164997	0 337673	C	-0.88	30477	1.161686	-0.917833	
н	-1 18/100	2 868625	-1 525502	C	0.19	97243	-3.265636	0.377222	
	0 1 2 4 0 5	0.015602	2 005722	Н	-0.4	69842	-4.085106	0.658208	
Ci Ci	-0.124038	0.013093	-3.093733	Н	1.12	25320	-3.665580	-0.045022	
C	-2.081571	-0.000824	-0.174200	C	0.80	09416	-0.950160	3.843120	
C	-0.58/1//	-0.006600	1.335487	Ĺ	0.75	90933	-2.359595	3.946944	
С	-1.976078	-0.010670	1.222833	Ľ	1.22	22382	1.000836	2.415100	
С	2.033609	0.006278	-0.711260	п Ц	1.95	16252	1.239220	2.122099	
Ν	2.728484	0.008445	-1.862170	C C	0.34	+0332 54722	-2 977806	5 219252	
н	2.236988	0.010942	-2.753826	C	0.20)5667	1.465185	-1.872120	
Ν	2.994873	0.003027	0.238798	C	0.71	10781	-3.149239	2.776689	
н	2.795350	-0.000684	1.226656	C	-0.75	54965	0.571630	-2.229979	
С	4.092444	0.004714	-1.651762	С	0.92	26370	-4.393159	5.278286	
н	4.807127	0.005373	-2.458676	Н	0.98	38615	-4.878533	6.247003	
С	4.267722	0.002683	-0.309348	С	0.80	04269	-4.519652	2.858108	
н	5.162402	0.000123	0.291763	Н	0.79	7285	-5.145293	1.974773	
с	0.215810	-0.012502	2.580603	C	0.82	27043	-0.788469	6.245317	
н	0.871664	0.868009	2,598863	Н	0.82	23916	-0.160389	7.130012	
н	0 868349	-0 895748	2 591468	С	0.87	/8775	-2.151059	6.371681	
н	-0 391576	-0.016291	3 491427	Н	0.94	29890	-2.614141	7.3518/6	
C C	2 026900	0.024700	2 209217		0.92	10/89	-5.132578	4.120400	
ц	-3.020300	0.024733	2.230217		2.62	01000	1 020108	4.173311	
 Ц	2.070205	0.754052	2.005472	С	3.02	16685	-0.010341	1 000599	
	-3.005129	-0.962908	2.802773	н	4.11	17725	1.694647	1.490718	
н	-4.027260	0.083801	1.872221	Н	4.03	35879	1.222651	-0.235053	
C	-3.285208	0.008648	-1.020248	С	1.64	15132	3.145593	0.629617	
н	-3.281218	0.920915	-1.632084	н	2.01	10970	3.593603	1.559377	
Н	-4.230224	-0.063946	-0.473519	Н	0.59	92546	3.407458	0.491152	
Н	-3.214073	-0.801374	-1.757271	Н	2.22	21163	3.547265	-0.205760	
				C	-0.48	30457	-3.176606	-2.401592	
				———— Н	0.54	43495	-3.100746	-2.775958	
		(σ-π-C-Ph-)(MoDm)]+	Н	-1.1	75047	-2.796298	-3.153319	
		10-11-03-113	Minici, III)]	H	-0.72	24362	-4.223290	-2.192372	
		mB07Y_D/	5-31G*/IANI 2D/1	C	-2.37	71398	-2.229903	-0.401690	

н

-2.482577 -1.802899

0.801814 -0.168887

0.780664

-1.936110

-3.935241

-2.247412

-2.641465

-3.633640

-3.244075

-1.708543

-2.416891

-4.174109

-3.482242

-2.762627 -3.251796 -0.412899

-2.951897 -1.624653 -1.100100

0.912479

1.894511

3.285396

1.563449

2.924609

0.749047

-4.710653 3.827130 1.701803 -1.378122 -0.054879 -3.376750

0.598227

4.975820

4.921839

-0.201320

1.169992

1.118370

-0.834696

1.596092

3.616226 -0.149754

2.255197 1.801080

3.176186 -1.868319

4.415155 -0.647847

1.986981 2.825763

[DFT:ωB97X-D/6-31G*/LANL2Dζ]

Figure S15: Optimised structure of $[RhCl(\sigma-\pi-C_3Ph_3)(MePm)]^+$ in the gas phase.	

8.	[RhCl(κ²-C₃Ph₃)(PhPm)]⁺
	[DFT:ωB97X-D/6-31G*/def2-SV(P)]

Figure S16: Optimised structure of $[RhCl(\kappa^2-C_3Ph_3)(PhPm)]^+$ in the gas phase.	
	Figure S16: Optimised structure of $[RhCl(\kappa^2-C_3Ph_3)(PhPm)]^+$ in the gas phase.

С	-2.546793	-1.258176	-5.590312
С	-0.582990	-0.424947	-4.467884
С	-2.760066	-0.268607	-3.403307
С	-3.342013	-0.868867	-4.513858
С	-1.170551	-1.031647	-5.569562
Н	0.488915	-0.256142	-4.428440
Н	-3.370894	0.061008	-2.567365
Н	-4.414599	-1.029856	-4.542890
Н	-0.557738	-1.328942	-6.413933
Н	-3.002693	-1.732536	-6.453542
С	1.146030	2.423526	-2.453077
С	2.947321	4.242844	-3.545162
С	0.792820	3.770915	-2.567798
С	2.400483	1.984310	-2.887290
С	3.297412	2.899386	-3.429739
С	1.694130	4.675614	-3.117318
Н	-0.177440	4.109592	-2.216619
Н	2.669774	0.936145	-2.771053
Н	4.273857	2.559172	-3.762866
Н	1.419011	5.720639	-3.207952
Н	3.650588	4.952917	-3.968545

Table S8: Cartesian coordinates for $[RhCl(\kappa^2-C_3Ph_3)(PhPm)]^+$

Ate	om x	y z	
Rh	-0.031271	0.144035	-0.802327
CI	0.463329	0 441235	-3 212527
P	-0 044571	-2 149265	-1 206927
P	0.682429	2 282235	-0 271527
N	2 535930	-1 372165	-1 140827
N	2.555555	0 596925	-1.140027
C	1 995530	-0.255565	-0.609327
c	0.022071	0.233303	1 025172
c	-0.052071	-0.072105	1.025175
L L	2 022020	2.207005	1 705127
	2.033029	-3.313805	-1./8512/
п С	1.025129	-2.005605	-2.945727
C C	4.148030	0.277435	0.393473
c	4.720150	1 022025	-0.230127
C II	2.263030	1.832935	0.591273
	3.002330	2.034335	0.451373
н	2.055130	1.724335	1.668674
C	6.093030	-1.154965	-0.062227
C	-2.070871	0.383035	-0.596827
C	3.922930	-1.660165	-1.104/2/
C	-2.1830/1	-0.1/6165	0.699473
C	6.653030	-2.243/65	-0.782327
Н	7.708830	-2.483665	-0.644/2/
C	4.501030	-2.692065	-1.815027
н	3.924130	-3.297265	-2.511527
C	6.254430	0.689035	1.499774
н	6.835430	1.291835	2.200074
C	6.847030	-0.356965	0.839573
н	7.901530	-0.589565	0.998273
С	5.876730	-2.971765	-1.647627
Н	6.316230	-3.792965	-2.216627
С	4.898630	1.024035	1.278473
Н	4.473430	1.872735	1.810274
С	1.181329	3.417835	-1.600227
С	1.914930	5.091335	-3.710627
С	2.312030	3.122235	-2.372127
С	0.412729	4.547435	-1.899227
С	0.781029	5.379935	-2.954227
С	2.680730	3.963335	-3.416827
Н	2.903830	2.226135	-2.173227
Н	-0.470971	4.791435	-1.306127
Н	0.180029	6.262635	-3.180827
Н	3.564430	3.729035	-4.012827
Н	2.203329	5.746935	-4.534727
С	-0.191771	3.318635	0.943873
С	-1.619171	4.856435	2.796074
С	0.481629	3.999735	1.965174
С	-1.582371	3.439235	0.842173
С	-2.292971	4.204935	1.764174
С	-0.230871	4.758735	2.890074
Н	1.568229	3.945735	2.055874
Н	-2.118871	2.934535	0.038773
Н	-3.377571	4.289235	1.673474
Н	0.302529	5.280535	3.686874
Н	-2.175071	5.451635	3.523274
С	-0.041871	-3.208865	0.275673
С	-0.130371	-4.578865	2.716974
С	-1.261471	-3.408665	0.935673
С	1.132129	-3.723065	0.841273
С	1.083829	-4.408265	2.054574
С	-1.305071	-4.082765	2.152174

Atom	x	y z	
Н	-2.191271	-3.038965	0.500073
Н	2.101929	-3.585765	0.358173
Н	2.004330	-4.806965	2.485274
Н	-2.263671	-4.216465	2.657374
Н	-0.162071	-5.106766	3.671974
С	-1.159671	-2.961265	-2.382927
С	-2.908971	-4.170865	-4.186027
С	-1.906671	-2.173965	-3.267627
С	-1.292271	-4.356965	-2.402727
С	-2.163871	-4.957666	-3.306527
С	-2.780071	-2.783065	-4.166127
н	-1.783271	-1.090165	-3.265227
Н	-0.725571	-4.976266	-1.702927
Н	-2.265971	-6.044466	-3.321327
н	-3.360771	-2.167065	-4.855227
н	-3.595371	-4.644865	-4.890827
С	-0.161371	0.051035	2.318874
С	1.265129	0.462535	4.700874
С	1.015129	-0.669865	2.582974
С	-0.605171	0.990235	3.264974
С	0.110529	1.199635	4.440874
С	1.710230	-0.479865	3.771474
н	1.373229	-1.394765	1.853074
н	-1.490471	1.593435	3.052274
н	-0.236971	1.947635	5.156074
н	2.611830	-1.063065	3.969174
н	1.820329	0.623135	5.627174
С	-3.076171	1.111735	-1.349227
С	-4.909071	2.645235	-2.819127
С	-4.332071	1.460235	-0.798127
С	-2.755371	1.573635	-2.642327
С	-3.671971	2.321435	-3.374327
С	-5.233471	2.222635	-1.525627
н	-4.589671	1.146935	0.213873
н	-1.770071	1.342635	-3.056727
н	-3.412771	2.664535	-4.377527
н	-6.196671	2.491835	-1.087827
н	-5.624971	3.240435	-3.390527
С	-3.336571	-0.763965	1.416973
С	-5.468271	-2.122765	2.653474
С	-3.455371	-0.788565	2.813074
С	-4.298771	-1.448165	0.653073
С	-5.354371	-2.117565	1.262773
C	-4.515171	-1.458765	3.422674
н	-2.716571	-0.288665	3.437074
н	-4.206371	-1.466465	-0.436127
н	-6.088471	-2.643765	0.649273
н	-4.593771	-1.460465	4.511674
н	-6.296271	-2.646565	3.135174
	0.2002,1	2.010303	0.1001/ 1

ARTICLE

Figure S18. ¹H NMR (700 MHz, CDCl₃, 298 K) for [RhCl{PNP^tBu₂(C₃Ph₃)]. (1)

14 | Dalton Trans., 2024, **00**, 1-3

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 15

16 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

Figure S21. $^{31}P\{^{1}H\}$ NMR (700 MHz, CDCl_3, 227 K) for $[RhCl\{PNP^{t}Bu_{2}(C_{3}Ph_{3})_{2}]$ (1)

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 17

ARTICLE

Journal Name

18 | Dalton Trans., 2024, 00, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 19

20 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 21

22 | Dalton Trans., 2024, **00**, 1-3

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 23

24 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

ARTICLE

Please do not adjust margins

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2024

26 | Dalton Trans., 2024, 00, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 27

28 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

ARTICLE

Dalton Trans. 2024, 00, 1-3 | 29

Figure S33. IR Spectrum (ATR, cm⁻¹) for [RhCl{ κ^2 -CHC(CO₂Me)(C₃Ph₃)}(PhPm)]PF₆(4a)

ELECTRONIC SUPPORTING INFORMATION

Please do not adjust margins

Figure S34. IR Spectrum (CH₂Cl₂, cm⁻¹) for [RhCl{ κ^2 -CHC(CO₂Me)(C₃Ph₃)}(PhPm)]PF₆(4a)

30 | Dalton Trans., 2024, **00**, 1-3

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 31

32 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

Figure S37. ¹³C{¹H} NMR Spectrum (176 MHz, CDCl₃, 298 K) for [RhCl{κ²-CHC(CO₂Me)(C₃Ph₃)}(PhPm)]PF₆ (**4a**)

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 33

Journal Name 4.5 -5.0 ***** ŝ 5.5 6.0 \$ 6.5 (udd : * ¢ Ę 7.0 7.5 Ż 8.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5

Figure S38. COSY NMR Spectrum (700 MHz, CDCl₃, 298 K) for [RhCl{κ²-CHC(CO₂Me)(C₃Ph₃)}(PhPm)]PF₆ (4a)

34 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Journal Name

36 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

Figure S41. IR NMR Spectrum (CH₂Cl₂, cm⁻¹) for [RhCl{κ²-C(CO₂Me)C(CO₂Me)(C₃Ph₃)}(PhPm)]PF₆ (5a)

This journal is © The Royal Society of Chemistry 2024

Journal Name

38 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

 $\label{eq:Figure S43. $^{1}P{^{1}H} NMR Spectrum (283 MHz, CDCl_3, 298 K) for [RhCl{$\kappa^2-C(CO_2Me)C(CO_2Me)(C_3Ph_3)}(PhPm)] PF_6 (5a) Market (5a) M$

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 39

40 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 41

ARTICLE

Journal Name

Figure S45. COSY NMR Spectrum (CDCl₃, 298 K) for $[RhCl{\kappa^2-C(CO_2Me)C(CO_2Me)(C_3Ph_3)}(PhPm)]PF_6$ (5a)

42 | Dalton Trans., 2024, 00, 1-3

This journal is © The Royal Society of Chemistry 2024

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

 $\label{eq:Figure S46. } {}^{13}C^{-1}H \ \text{HSQC NMR Spectrum (CDCl}_3, 298 \ \text{K}) \ \text{for} \ [\text{RhCl}\{\kappa^2-C(CO_2Me)C(CO_2Me)(C_3Ph_3)\}(PhPm)]PF_6(\textbf{5a}) \ \text{Hore}(S_{2}Me)$

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 43

ARTICLE

Journal Name

Figure S47. ${}^{13}C^{-1}H$ HMBC NMR Spectrum (CDCl₃, 298 K) for [RhCl{ κ^2 -C(CO₂Me)C(CO₂Me)(C₃Ph₃)}(PhPm)]PF₆ (5a)

44 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Please do not adjust margins

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

Figure S48. IR spectrum (ATR, cm⁻¹) for [Rh(CHC{CO₂Me}C₃Ph₃)Cl(CyPm)]PF_{6.} (4b)

Figure S49. IR spectrum (CH_2CI_2 , cm⁻¹) for [Rh($CHC\{CO_2Me\}C_3Ph_3$)Cl(CyPm)]PF₆. (4b)

46 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

ARTICLE

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

Figure S50. ¹H NMR spectrum (800 MHz, CDCl₃, 298 K) for [Rh(CHC{CO₂Me}C₃Ph₃)Cl(CyPm)]PF_{6.} (4b)

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 47

48 | Dalton Trans., 2024, 00, 1-3

This journal is © The Royal Society of Chemistry 2024

ARTICLE

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

Figure S52. ${}^{13}C{}^{1H}$ NMR spectrum (201 MHz, CDCl₃, 298 K) for [Rh(CHC{CO₂Me}C₃Ph₃)Cl(CyPm)]PF₆. (4b)

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 49

Journal Name

Figure S53. COSY NMR spectrum (CDCl₃, 298 K) for [Rh(CHC{CO₂Me}C₃Ph₃)Cl(CyPm)]PF_{6.} (4b)

50 | Dalton Trans., 2024, **00**, 1-3

This journal is © The Royal Society of Chemistry 2024

Figure S54. $^{13}C^{-1}H$ HSQC NMR spectrum (CDCl₃, 298 K) for [Rh(CHC{CO₂Me}C₃Ph₃)Cl(CyPm)]PF₆. (4b)

Figure S55. $^{13}C_{-1}H$ HMBC NMR spectrum (CDCl₃, 298 K) for [Rh(CHC{CO₂Me}C₃Ph₃)Cl(CyPm)]PF₆. (4b)

52 | Dalton Trans., 2024, 00, 1-3

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2024

Dalton Transactions

Figure S56. IR spectrum (CH₂Cl₂, cm⁻¹) of [RhBr₃(PhPm)] (2)

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 53

Please do not adjust margins

Figure S57. IR spectrum (ATR, cm⁻¹) of [RhBr₃(PhPm)] (2)

54 | Dalton Trans., 2024, 00, 1-3

Dalton Transactions

Figure S58. ¹H NMR spectrum (700 MHz, CDCl₃, 298 K) of [RhBr₃(PhPm)] (2)

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 55

This journal is © The Royal Society of Chemistry 2024

56 | Dalton Trans., 2024, 00, 1-3

Figure S59. ${}^{31}P{}^{1}H$ NMR spectrum (283 MHz, CDCl₃, 298 K) of [RhBr₃(PhPm)] (2)

 $<^{17.46}_{17.14}$ -PPh₂ A (d) 17.30 -RhBr₃ J(91.99) PPh₂ 130 110 90 70 10 -10 -30 -50 f1 (ppm) 50 30 -90 -110 -130 -150 -170 -190 -210 -230 -2! 50 -70

Journal Name

Dalton Transactions

This journal is © The Royal Society of Chemistry 2024

Dalton Trans. 2024, 00, 1-3 | 57