Supporting Information

Coordination recognition of differential template units of lanthanide chiral chain

Wen-Wen Qin,^{a,+} Bing-Fan Long,^{a,+} Zhong-Hong Zhu,^{a,*} Hai-Ling Wang,^a Fu-Pei Liang,^{a,*} Hua-Hong Zou^{a,*}

^aSchool of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China

*E-mail (Corresponding author): 18317725515@163.com (Z.-H. Zhu), liangfupei@glut.edu.cn (F.-P. Liang), gxnuchem@foxmail.com (H.-H. Zou).

⁺These authors contributed equally to this work.

Keywords: Lanthanide chiral chain; Coordination recognition; Precise synthesis; Magnetic properties

Table of Contents:

	Supporting Tables
Table S1	Crystallographic data of the <i>R</i> -1, <i>S</i> -1, <i>R</i> -2 and <i>S</i> -2.
Table S2	Selected bond lengths (Å) and angles (°) of <i>R</i> -1.
Table S3	Selected bond lengths (Å) and angles (°) of <i>S</i> -1.
Table S4	Selected bond lengths (Å) and angles (°) of <i>R</i> -2.
Table S5	Selected bond lengths (Å) and angles (°) of <i>S</i> -2.
Table S6	SHAPE analysis of the Dy(III) in R-1 .
Table S7	SHAPE analysis of the Dy(III) in S-1.
Table S8	SHAPE analysis of the Dy(III) in R-2 .
Table S9	SHAPE analysis of the Dy(III) in S-2 .
	Supporting Figures
Figure S1	Infrared spectra (IR) of <i>R</i> -1, <i>S</i> -1, <i>R</i> -2 and <i>S</i> -2 (a, b).
Figure S2	Powder diffraction pattern (PXRD) of <i>R</i> -1, <i>S</i> -1, <i>R</i> -2 and <i>S</i> -2 (a–d).
Figure S3	TG curve of <i>R</i> -1, <i>S</i> -1, <i>R</i> -2 and <i>S</i> -2 (a), DSC curve of <i>R</i> -1, <i>S</i> -1, <i>R</i> -2 and <i>S</i> -2 (b).
Figure S4	Temperature dependence of $\chi_m T$ for <i>S</i> -1 (a) and <i>S</i> -2 (c); <i>M</i> vs. <i>H</i> / <i>T</i> plots of <i>S</i> -1 (b) and <i>S</i> -2 (d).
Figure S5	Loop curve graph of <i>R</i>-1 (a), <i>S</i>-1 (b), <i>R</i>-2 (c) and <i>S</i>-2 (d) at 2 K.
Figure S6	Temperature-dependent χ' and χ'' AC susceptibilities under 0 Oe DC fields for <i>R</i>-1 , <i>S</i>-1 , <i>R</i>-2 and <i>S</i>-2 (a-d).
Figure S7	Frequency-dependence of the in-of-phase (χ') and the out-of-phase (χ'') components under 0 Oe DC fields for <i>R</i> -1, <i>S</i> -1, <i>R</i> -2 and <i>S</i> -2 (a–h).
Figure S8	Temperature-dependent χ' and χ'' AC susceptibilities under 1200 Oe DC fields for <i>R</i>-1 (a), 800 Oe DC fields for <i>S</i>-1 (b), 1000 Oe DC fields for <i>R</i>-2 (c) and 800 Oe DC fields for <i>S</i>-2 (d).
Figure S9	Frequency-dependence of the in-of-phase (χ') and the out-of-phase (χ'') components under 1200 Oe DC fields for <i>R</i>-1 (a and b), 800 Oe DC fields for <i>S</i>-1 (c and d), 1000 Oe DC fields for <i>R</i>-2 (e and f) and 800 Oe DC fields for <i>S</i>-2 (g and h).

Materials and Measurements.

All chemicals and solvents were analytical grade and were used without further purification. The infrared spectra were carried out on a Pekin-Elmer Two spectrophotometer with pressed KBr pellets. The elemental analyses were determined on a Perkin-Elmer model 240 °C elemental analyzer. The powder X-ray diffraction (PXRD) spectra were measured on a Rigaku D/Max-3c diffractometer with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å). Thermogravimetric analyses were performed on a PerkinElmer Pyris Diamond TG-DTA instrument under an N₂ atmosphere using a heating rate of 5 °C min⁻¹ from room temperature up to 1000 °C. The circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectropolarimeter at room temperature. Magnetic properties were performed on a Superconducting Quantum Interference Device (SQUID) magnetometer. The diamagnetism of all constituent atoms was corrected with Pascal's constant.

X-ray crystallography.

Single-crystal X-ray diffraction (SCXRD) data were collected on a ROD, Synergy Custom DW system, HyPix diffractometer (Cu-K α radiation and $\lambda = 1.54184$ Å) in Φ and ω scan modes. The structures were solved by direct methods, and refined by a full-matrix least-squares method on the basis of F^2 by using SHELXL and OLEX2.^[1] Anisotropic thermal parameters were applied to all non-hydrogen atoms. Hydrogen atoms were generated geometrically. The crystallographic data for the *R*-1, *S*-1, *R*-2 and *S*-2 are listed in Table S1, and selected bond lengths and angles are given in Table S2–S5. The CCDC reference numbers for the crystal structures of *R*-1, *R*-2, *S*-1 and *S*-2 are 2306659, 2306660, 2306784, 2306664, respectively.

[1] Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

	<i>R</i> -1	<i>S</i> -1	<i>R</i> -2	<i>S</i> -2
Formula	$C_{33}H_{53}Cl_4Dy_2N_7O_{15}$	$C_{33}H_{54}Cl_4Dy_2N_6O_{15}$	$C_{30}H_{43}Cl_4Dy_2N_6O_{13}\\$	$C_{31}H_{45}Cl_4Dy_2N_6O_{13}$
Formula weight	1254.62	1241.62	1162.50	1176.53
<i>Т</i> , К	100.00(10)	100.00(10)	100.00(10)	100.00(10)
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
<i>a</i> , Å	13.47190(10)	13.47640(10)	13.06030(10)	13.07500(10)
<i>b</i> , Å	14.86600(10)	14.86660(10)	17.6285(2)	17.6728(2)
<i>c</i> , Å	24.0640(2)	24.0565(2)	17.9734(2)	18.0533(2)
α, °	90	90	90	90
β, °	90	90	90	90
γ, °	90	90	90	90
<i>V</i> , Å ³	4819.38(6)	4819.68(6)	4138.08(7)	4171.61(7)
Ζ	4	4	4	4
$D_{\rm c}$, g cm ⁻³	1.729	1.711	1.866	1.873
μ , mm ⁻¹	19.018	19.002	22.046	21.880
<i>F</i> (000)	2480.0	2456.0	2276.0	2308.0
2θ range for data collection/°	6.992 to 151.706	6.99 to 151.672	7.024 to 133.202	7 to 133.168
Reflns coll.	32105	32245	26441	26211
Unique reflns	9709	9704	7307	7375
$R_{ m int}$	0.0449	0.0431	0.0516	0.0534
$R_1^a (I > 2\sigma(I))$	0.0451	0.0431	0.0403	0.0390
wR_2^b (all data)	0.1248	0.1138	0.1046	0.1004
GOF	1.092	1.115	1.045	1.030
Flack parameter	0.016(3)	0.011(2)	0.008(3)	0.003(3)

Table S1. Crystallographic data of the *R*-1, *S*-1, *R*-2 and *S*-2.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ ^b w R_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$

Figure S1. Infrared spectra (IR) of *R***-1**, *S***-1**, *R***-2** and *S***-2** (a, b).

Figure S2. Powder diffraction pattern (PXRD) of *R*-1, *S*-1, *R*-2 and *S*-2 (a-d).

Figure S3. TG curve of *R*-1, *S*-1, *R*-2 and *S*-2 (a), DSC curve of *R*-1, *S*-1, *R*-2 and *S*-2 (b).

In order to explore the thermal stability of *R*-1/*S*-1 and *R*-2/*S*-2, TG-DSC study was conducted. The thermal stability analysis of *R*-1/*S*-1 and *R*-2/*S*-2 was performed in a flowing N₂ atmosphere while the temperature was slowly increased from 35 °C to 1,000 °C at a rate of 5 °C min⁻¹. The DSC test was also performed in a flowing N₂ atmosphere, and the temperature was slowly increased from 35 °C to 450 °C at a rate of 5 °C min⁻¹. It can be seen from the TG-DSC curve that complex *R*-1 has three weight loss processes. First, in the temperature range of 35-200 °C, the weight loss rate of complex **R-1** is 16.37% (theoretical value is 16.33%), and a sharp exothermic peak is observed at 117.3 °C in the DSC curve, corresponding to the loss of four free CH₃OH molecules, one free CH₃CN molecule and two free H₂O molecules. Secondly, as the temperature increases from 200 °C to 365 °C, the weight loss rate of complex **R-1** is 7.59% (theoretical value is 7.65%), and a weak exothermic peak is observed at 328.4 °C in the DSC curve, corresponding to the loss of three terminally coordinated CH₃OH molecules. Finally, as the temperature increased from 365 °C to 600 °C, the sample mass decreased sharply, and an exothermic peak was observed at 394.1 °C in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of **R-1** to produce dysprosium(III) oxide (Figure S3a and S3b). Similarly, there are also three weight loss processes for S-1. First, in the temperature range of 35-270 °C, the weight loss rate of S-1 is 15.31% (theoretical value is 15.42%), and a sharp exothermic peak is observed at 127.8 °C in the DSC curve, corresponding to the loss of six free CH₃OH molecules. Secondly, as the temperature increases from 270 °C to 385 °C, the weight loss rate of complex S-1 is 7.53% (theoretical value is 7.71%), and a weak exothermic peak is observed at 317.5 °C in the DSC curve, corresponding to the loss of three terminally coordinated CH₃OH molecules. Finally, as the temperature increased from 385 °C to 600 °C, the sample mass decreased sharply, and an exothermic peak was observed at 400.9 °C in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of S-1 to produce dysprosium(III) oxide (Figure S3a and S3b). Complex R-2 has two weight loss processes. When the temperature gradually increases from 35 °C to 330 °C, the weight loss rate of complex **R-2** is 18.01% (theoretical value is 18.04%), and three obvious exothermic peaks were observed at 86.9 °C, 113.6°C and 214.1 °C in the DSC curve, respectively. This process corresponds to the loss of four free CH₃OH molecules, two terminally coordinated CH₃OH molecule and one free H₂O molecule. When the temperature exceeds 330 °C to 500 °C, the sample mass decreases sharply, and an obvious endothermic peak is observed at 350 °C in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of R-2 to produce dysprosium(III) oxide (Figure S3a and S3b). Similarly, when the temperature gradually increases from 35 °C to 340 °C, the weight loss rate of S-2 is 18.53% (theoretical value is 19.03%), and three obvious exothermic peaks were observed at 89.7 °C, 136.5 °C and 223.5 °C in the DSC curve, respectively. This process corresponds to the loss of two free CH₃OH molecules and two

terminally coordinated CH₃OH molecules. When the temperature exceeds 340 °C to 500 °C, the sample mass decreases sharply, and an obvious endothermic peak is observed at 360 °C in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of *S*-2 to produce dysprosium(III) oxide (Figure S3a and S3b).

Figure S4. Temperature dependence of $\chi_m T$ for *S*-1 (a) and *S*-2 (c); *M* vs. *H*/*T* plots of *S*-1 (b) and *S*-2 (d).

Figure S5. Loop curve graph of *R*-1 (a), *S*-1 (b), *R*-2 (c) and *S*-2 (d) at 2 K.

Figure S6. Temperature-dependent χ' and χ'' AC susceptibilities under 0 Oe DC fields for *R*-1, *S*-1, *R*-2 and *S*-2 (a-d).

Figure S7. Frequency-dependence of the in-of-phase (χ') and the out-of-phase (χ'') components under 0 Oe DC fields for *R*-1, *S*-1, *R*-2 and *S*-2 (a–h).

Figure S8. Temperature-dependent χ' and χ'' AC susceptibilities under 1200 Oe DC fields for *R*-1 (a), 800 Oe DC fields for *S*-1 (b), 1000 Oe DC fields for *R*-2 (c) and 800 Oe DC fields for *S*-2 (d).

Figure S9. Frequency-dependence of the in-of-phase (χ') and the out-of-phase (χ'') components under 1200 Oe DC fields for *R*-1 (a and b), 800 Oe DC fields for *S*-1 (c and d), 1000 Oe DC fields for *R*-2 (e and f) and 800 Oe DC fields for *S*-2 (g and h).

		Bond leng	ths (Å)		
Dy1-Cl2	2.671(2)	Dy1-N6	2.486(8)	Dy2-O1 ⁱ	2.352(6)
Dy1-Cl1	2.734(3)	Dy1-O7	2.427(7)	Dy2-N1 ⁱ	2.475(8)
Dy1-O6	2.333(6)	Dy2-Cl3	2.671(2)	Dy2-O9	2.339(8)
Dy1-O5	2.421(6)	Dy2-O6	2.346(6)	Dy2-O8	2.396(7)
Dy1-O1 ⁱ	2.371(6)	Dy2-O2 ⁱ	2.435(6)	Dy2-N2 ⁱ	2.542(8)
Dy1-N5	2.555(8)				
		Bond ang	gles (°)		
Cl2-Dy1-Cl1	150.31(8)	N5-Dy1-Cl2	74.6(2)	O1 ⁱ -Dy2-O2 ⁱ	164.6(2)
O6-Dy1-Cl2	96.43(18)	N5-Dy1-Cl1	80.2(2)	O1 ⁱ -Dy2-N1 ⁱ	66.5(2)
O6-Dy1-Cl1	86.89(17)	N6-Dy1-Cl2	81.15(19)	O1 ⁱ -Dy2-O8	89.6(3)
O6-Dy1-O5	168.9(2)	N6-Dy1-Cl1	73.12(19)	O1 ⁱ -Dy2-N2 ⁱ	128.0(2)
O6-Dy1-O1 ⁱ	67.9(2)	N6-Dy1-N5	61.5(2)	N1 ⁱ -Dy2-Cl3	87.8(2)
O6-Dy1-N5	128.1(2)	O7-Dy1-Cl2	133.07(18)	N1 ⁱ -Dy2-N2 ⁱ	61.7(2)
O6-Dy1-N6	66.6(2)	O7-Dy1-Cl1	73.60(18)	O9-Dy2-Cl3	143.9(2)
O6-Dy1-O7	103.8(2)	O7-Dy1-N5	119.7(2)	O9-Dy2-O6	136.9(3)
O5-Dy1-Cl2	81.43(19)	O7-Dy1-N6	145.8(3)	O9-Dy2-O2 ⁱ	82.1(3)
O5-Dy1-Cl1	100.41(18)	O6-Dy2-Cl3	79.03(18)	O9-Dy2-O1 ⁱ	90.1(3)
O5-Dy1-N5	62.1(2)	O6-Dy2-O2 ⁱ	109.2(2)	O9-Dy2-N1 ⁱ	74.4(3)
O5-Dy1-N6	123.4(2)	O6-Dy2-O1 ⁱ	68.0(2)	O9-Dy2-O8	74.1(3)
O5-Dy1-O7	70.7(2)	O6-Dy2-N1 ⁱ	123.3(2)	O9-Dy2-N2 ⁱ	72.4(3)
O1 ⁱ -Dy1-Cl2	76.82(18)	O6-Dy2-O8	69.3(3)	O8-Dy2-Cl3	131.7(2)
O1 ⁱ -Dy1-Cl1	130.74(18)	O6-Dy2-N2 ⁱ	150.1(3)	O8-Dy2-O2 ⁱ	75.5(3)
O1 ⁱ -Dy1-O5	101.0(2)	O2 ⁱ -Dy2-Cl3	81.99(19)	O8-Dy2-N1 ⁱ	140.1(3)
O1 ⁱ -Dy1-N5	148.5(3)	O2 ⁱ -Dy2-N1 ⁱ	123.2(2)	O8-Dy2-N2 ⁱ	128.5(3)
O1 ⁱ -Dy1-N6	126.2(2)	O2 ⁱ -Dy2-N2 ⁱ	62.1(2)	N2 ⁱ -Dy2-Cl3	71.5(2)
O1 ⁱ -Dy1-O7	72.6(2)	O1 ⁱ -Dy2-Cl3	111.55(18)		

Table S2. Selected bond lengths (Å) and angles (°) of R-1.

		Bond leng	ths (Å)		
Dy1-Cl1	2.674(2)	Dy1-N5	2.555(7)	Dy2-O1 ⁱ	2.346(5)
Dy1-Cl2	2.735(3)	Dy1-N6	2.486(7)	Dy2-O9	2.351(7)
Dy1-O6	2.337(5)	Dy2-Cl3	2.671(2)	Dy2-N1 ⁱ	2.481(7)
Dy1-O5	2.428(5)	Dy2-O6	2.337(5)	Dy2-O8	2.391(7)
Dy1-O1 ⁱ	2.380(5)	Dy2-O2 ⁱ	2.445(6)	Dy2-N2 ⁱ	2.537(7)
Dy1-O7	2.426(6)				
		Bond ang	gles (°)		
Cl1-Dy1-Cl2	150.29(7)	O7-Dy1-Cl2	73.31(18)	O1 ⁱ -Dy2-Cl3	111.47(16)
O6-Dy1-Cl1	96.26(16)	O7-Dy1-O5	70.9(2)	O1 ⁱ -Dy2-O2 ⁱ	164.7(2)
O6-Dy1-Cl2	87.18(15)	O7-Dy1-N5	119.6(2)	O1 ⁱ -Dy2-O9	90.0(2)
O6-Dy1-O5	168.82(19)	O7-Dy1-N6	145.5(2)	O1 ⁱ -Dy2-N1 ⁱ	66.0(2)
O6-Dy1-O1 ⁱ	67.70(19)	N5-Dy1-Cl1	74.77(18)	O1 ⁱ -Dy2-O8	89.9(2)
O6-Dy1-O7	103.6(2)	N5-Dy1-Cl2	79.98(19)	O1 ⁱ -Dy2-N2 ⁱ	127.5(2)
O6-Dy1-N5	128.3(2)	N6-Dy1-Cl1	81.10(18)	O9-Dy2-Cl3	144.08(18)
O6-Dy1-N6	66.8(2)	N6-Dy1-Cl2	73.16(18)	O9-Dy2-O2 ⁱ	81.9(2)
O5-Dy1-Cl1	81.55(16)	N6-Dy1-N5	61.5(2)	O9-Dy2-N1 ⁱ	74.5(2)
O5-Dy1-Cl2	100.19(16)	O6-Dy2-Cl3	78.99(16)	O9-Dy2-O8	73.9(3)
O5-Dy1-N5	61.9(2)	O6-Dy2-O2 ⁱ	109.32(19)	O9-Dy2-N2 ⁱ	72.6(2)
O5-Dy1-N6	123.3(2)	O6-Dy2-O1 ⁱ	68.26(19)	N1 ⁱ -Dy2-Cl3	88.02(18)
O1 ⁱ -Dy1-Cl1	76.58(16)	O6-Dy2-O9	136.8(2)	N1 ⁱ -Dy2-N2 ⁱ	61.7(2)
O1 ⁱ -Dy1-Cl2	131.01(16)	O6-Dy2-N1 ⁱ	123.2(2)	O8-Dy2-Cl3	131.72(19)
O1 ⁱ -Dy1-O5	101.16(19)	O6-Dy2-O8	69.5(2)	O8-Dy2-O2 ⁱ	75.3(2)
O1 ⁱ -Dy1-O7	73.0(2)	O6-Dy2-N2 ⁱ	150.1(2)	O8-Dy2-N1 ⁱ	139.9(3)
O1 ⁱ -Dy1-N5	148.5(2)	O2 ⁱ -Dy2-Cl3	82.13(17)	O8-Dy2-N2 ⁱ	128.5(2)
O1 ⁱ -Dy1-N6	126.1(2)	O2 ⁱ -Dy2-N1 ⁱ	123.3(2)	N2 ⁱ -Dy2-Cl3	71.50(17)
O7-Dy1-Cl1	133.40(18)	O2 ⁱ -Dy2-N2 ⁱ	62.3(2)		

Table S3. Selected bond lengths (Å) and angles (°) of S-1.

Bond lengths (Å)						
Dy1-Cl1	2.607(2)	Dy1-N6 ⁱⁱ	2.446(7)	Dy2-07	2.369(6)	
Dy1-Cl2	2.629(2)	Dy1-N5 ⁱⁱ	2.508(8)	Dy2-N1 ⁱ	2.496(7)	
Dy1-O1	2.291(6)	Dy2-Cl3	2.687(2)	Dy2-O8	2.383(8)	
Dy1-O5 ⁱⁱ	2.411(7)	Dy2-O1 ⁱ	2.363(6)	Dy2-N2 ⁱ	2.538(7)	
Dy1-O6 ⁱⁱ	2.338(6)	Dy2-O2 ⁱ	2.428(6)	Dy2-O6	2.341(6)	
		Bond ang	les (°)			
Cl1-Dy1-Cl2	171.04(8)	N6 ⁱⁱ -Dy1-Cl2	92.49(18)	N1 ⁱ -Dy2-Cl3	74.13(16)	
O1-Dy1-Cl1	88.24(16)	N6 ⁱⁱ -Dy1-N5 ⁱⁱ	62.7(3)	N1 ⁱ -Dy2-N2 ⁱ	61.6(2)	
O1-Dy1-Cl2	92.32(16)	N5 ⁱⁱ -Dy1-Cl1	82.6(2)	O8-Dy2-Cl3	76.5(2)	
O1-Dy1-O5 ⁱⁱ	97.8(2)	N5 ⁱⁱ -Dy1-Cl2	93.9(2)	O8-Dy2-O2 ⁱ	69.6(3)	
O1-Dy1-O6 ⁱⁱ	70.3(2)	O1 ⁱ -Dy2-Cl3	83.86(15)	O8-Dy2-N1 ⁱ	150.2(3)	
O1-Dy1-N6 ⁱⁱ	137.3(2)	O1 ⁱ -Dy2-O2 ⁱ	167.5(2)	O8-Dy2-N2 ⁱ	119.8(3)	
O1-Dy1-N5 ⁱⁱ	158.7(2)	O1 ⁱ -Dy2-O7	94.2(2)	N2 ⁱ -Dy2-Cl3	83.80(17)	
O5 ⁱⁱ -Dy1-Cl1	87.32(18)	O1 ⁱ -Dy2-N1 ⁱ	66.2(2)	O6-Dy2-O7	75.3(2)	
O5 ⁱⁱ -Dy1-Cl2	83.74(18)	O1 ⁱ -Dy2-O8	105.9(3)	O6-Dy2-N1 ⁱ	124.6(2)	
O5 ⁱⁱ -Dy1-N6 ⁱⁱ	124.9(2)	O1 ⁱ -Dy2-N2 ⁱ	127.9(2)	O6-Dy2-O8	73.0(3)	
O5 ⁱⁱ -Dy1-N5 ⁱⁱ	62.8(2)	O2 ⁱ -Dy2-Cl3	105.82(16)	O6-Dy2-N2 ⁱ	145.0(2)	
O6 ⁱⁱ -Dy1-Cl1	100.38(18)	O2 ⁱ -Dy2-N1 ⁱ	123.5(2)	O7-Dy2-Cl3	149.33(18)	
O6 ⁱⁱ -Dy1-Cl2	88.21(18)	O2 ⁱ -Dy2-N2 ⁱ	62.3(2)	O7-Dy2-O2 ⁱ	81.5(2)	
O6 ⁱⁱ -Dy1-O5 ⁱⁱ	165.5(2)	O6-Dy2-Cl3	130.91(16)	O7-Dy2-N1 ⁱ	77.1(2)	
O6 ⁱⁱ -Dy1-N6 ⁱⁱ	67.4(2)	O6-Dy2-O1 ⁱ	69.1(2)	O7-Dy2-O8	132.7(3)	
O6 ⁱⁱ -Dy1-N5 ⁱⁱ	130.1(2)	O6-Dy2-O2 ⁱ	98.4(2)	O7-Dy2-N2 ⁱ	73.2(2)	
N6 ⁱⁱ -Dy1-Cl1	93.16(18)					

Table S4. Selected bond lengths (Å) and angles (°) of *R*-2.

Table S5. Selected bond lengths (Å) and angles (°) of S-2.

Bond lengths (Å)					
Dy1-Cl2	2.609(2)	Dy1-N6 ⁱⁱ	2.442(7)	Dy2-07	2.371(7)

Dy1-Cl1	2.630(2)	Dy1-N5 ⁱⁱ	2.517(8)	Dy2-O6	2.347(6)
Dy1-O5 ⁱⁱ	2.415(6)	Dy2-Cl3	2.682(2)	Dy2-N1 ⁱ	2.499(7)
Dy1-O1	2.292(5)	Dy2-O1 ⁱ	2.360(6)	Dy2-N2 ⁱ	2.542(7)
Dy1-O6 ⁱⁱ	2.347(6)	Dy2-O2 ⁱ	2.436(6)	Dy2-O8	2.391(7)
		Bond ang	les (°)		
Cl2-Dy1-Cl1	171.41(8)	N6 ⁱⁱ -Dy1-Cl1	92.93(17)	O7-Dy2-N2 ⁱ	73.3(3)
O5 ⁱⁱ -Dy1-Cl2	87.69(16)	N6 ⁱⁱ -Dy1-N5 ⁱⁱ	62.6(2)	O7-Dy2-O8	132.6(2)
O5 ⁱⁱ -Dy1-Cl1	83.76(16)	N5 ⁱⁱ -Dy1-Cl2	82.90(18)	O6-Dy2-Cl3	130.85(16)
O5 ⁱⁱ -Dy1-N6 ⁱⁱ	125.1(2)	N5 ⁱⁱ -Dy1-Cl1	93.93(19)	O6-Dy2-O1 ⁱ	69.17(19)
O5 ⁱⁱ -Dy1-N5 ⁱⁱ	63.0(2)	O1 ⁱ -Dy2-Cl3	84.05(15)	O6-Dy2-O2 ⁱ	98.4(2)
O1-Dy1-Cl2	88.21(15)	O1 ⁱ -Dy2-O2 ⁱ	167.59(19)	O6-Dy2-O7	75.2(2)
O1-Dy1-Cl1	92.09(15)	O1 ⁱ -Dy2-O7	94.0(2)	O6-Dy2-N1 ⁱ	125.1(2)
O1-Dy1-O5 ⁱⁱ	97.8(2)	O1 ⁱ -Dy2-N1 ⁱ	66.6(2)	O6-Dy2-N2 ⁱ	145.0(2)
O1-Dy1-O6 ⁱⁱ	70.32(19)	O1 ⁱ -Dy2-N2 ⁱ	127.9(2)	O6-Dy2-O8	72.0(2)
O1-Dy1-N6 ⁱⁱ	137.1(2)	O1 ⁱ -Dy2-O8	104.9(2)	N1 ⁱ -Dy2-Cl3	74.32(15)
O1-Dy1-N5 ⁱⁱ	159.0(2)	O2 ⁱ -Dy2-Cl3	105.46(15)	N1 ⁱ -Dy2-N2 ⁱ	61.3(2)
O6 ⁱⁱ -Dy1-Cl2	99.91(17)	O2 ⁱ -Dy2-N1 ⁱ	123.1(2)	N2 ⁱ -Dy2-Cl3	83.92(16)
O6 ⁱⁱ -Dy1-Cl1	88.26(18)	O2 ⁱ -Dy2-N2 ⁱ	62.2(2)	O8-Dy2-Cl3	76.55(18)
O6 ⁱⁱ -Dy1-O5 ⁱⁱ	165.4(2)	O7-Dy2-Cl3	149.53(18)	O8-Dy2-O2 ⁱ	70.5(2)
O6 ⁱⁱ -Dy1-N6 ⁱⁱ	67.3(2)	O7-Dy2-O2 ⁱ	81.8(2)	O8-Dy2-N1 ⁱ	150.3(2)
O6 ⁱⁱ -Dy1-N5 ⁱⁱ	130.0(2)	O7-Dy2-N1 ⁱ	77.0(2)	O8-Dy2-N2 ⁱ	121.0(3)
N6 ⁱⁱ -Dy1-Cl2	92.69(17)				

Table S6. SHAPE analysis of the Dy(III) in **R-1**.

Label	Shape	Symmetry	Distortion (°)
			Dy1
OP-8	$D_{8\mathrm{h}}$	Octagon	34.487
HPY-8	$C_{7\mathrm{v}}$	Heptagonal pyramid	22.988
HBPY-8	$D_{6\mathrm{h}}$	Hexagonal bipyramid	8.288
CU-8	$O_{ m h}$	Cube	7.49
SAPR-8	$D_{ m 4d}$	Square antiprism	3.974
TDD-8	D_{2d}	Triangular dodecahedron	4.09

JGBF-8	D_{2d}	Johnson-Gyrobifastigium (J26)	8.617
JETBPY-8	$D_{3\mathrm{h}}$	Johnson-Elongated triangular bipyramid (J14)	26.801
JBTP-8	$C_{2\mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	4.886
BTPR-8	$C_{2\mathrm{v}}$	Biaugmen tedtrigonal prism	3.962
JSD-8	D_{2d}	Snub disphenoid (J84)	6.342
TT-8	$T_{\rm d}$	Triakis tetrahedron	8.314
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	22.458
Label	Shape	Symmetry	Distortion (°)
			Dy2
OP-8	$D_{8\mathrm{h}}$	Octagon	34.129
HPY-8	$C_{7\mathrm{v}}$	Heptagonal pyramid	21.436
HBPY-8	$D_{6\mathrm{h}}$	Hexagonal bipyramid	9.685
CU-8	$O_{ m h}$	Cube	9.303
SAPR-8	$D_{ m 4d}$	Square antiprism	4.745
TDD-8	D_{2d}	Triangular dodecahedron	3.779
JGBF-8	$D_{ m 2d}$	Johnson-Gyrobifastigium (J26)	8.679
JETBPY-8	$D_{3\mathrm{h}}$	Johnson-Elongated triangular bipyramid	25.067
		(J14)	
JBTP-8	$C_{ m 2v}$	Johnson-Biaugmented trigonal prism	3.561
		(J50)	
BTPR-8	$C_{ m 2v}$	Biaugmen tedtrigonal prism	2.850
JSD-8	$D_{ m 2d}$	Snub disphenoid (J84)	5.831
TT-8	$T_{\rm d}$	Triakis tetrahedron	9.698
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	21.770

Table S7. SHAPE analysis of the Dy(III) in S-1.

()
Dy1
34.592
23.059
8.351
7.512
3.967
4.090
8.669
26.819
4.877
3.966
6.330

TT-8	$T_{\rm d}$	Triakis tetrahedron	8.316
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	22.525
Label	Shape	Symmetry	Distortion (°)
			Dy2
OP-8	$D_{8\mathrm{h}}$	Octagon	34.243
HPY-8	$C_{7\mathrm{v}}$	Heptagonal pyramid	21.482
HBPY-8	$D_{6\mathrm{h}}$	Hexagonal bipyramid	9.683
CU-8	$O_{ m h}$	Cube	9.301
SAPR-8	$D_{ m 4d}$	Square antiprism	4.788
TDD-8	D_{2d}	Triangular dodecahedron	3.784
JGBF-8	D_{2d}	Johnson-Gyrobifastigium (J26)	8.676
JETBPY-8	$D_{3\mathrm{h}}$	Johnson-Elongated triangular bipyramid	25.159
		(J14)	
JBTP-8	$C_{2\mathrm{v}}$	Johnson-Biaugmented trigonal prism	3.610
		(J50)	
BTPR-8	$C_{2\mathrm{v}}$	Biaugmen tedtrigonal prism	2.867
JSD-8	D_{2d}	Snub disphenoid (J84)	5.869
TT-8	$T_{\rm d}$	Triakis tetrahedron	9.721
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	21.792

Table S8. SHAPE analysis of the Dy(III) in **R-2**.

Label	Shape	Symmetry	Distortion (°)
			Dy1
HP-7	$D_{7\mathrm{h}}$	Heptagon	33.271
HPY-7	$C_{6\mathrm{v}}$	Hexagonal pyramid	21.157
PBPY-7	$D_{5\mathrm{h}}$	Pentagonal bipyramid	1.980
COC-7	$C_{3\mathrm{v}}$	Capped octahedron	7.541
CTPR-7	$C_{2\mathrm{v}}$	Capped trigonal prism	5.685
JPBPY-7	$D_{5\mathrm{h}}$	Johnson pentagonal bipyramid (J13)	7.191
JETPY-7	$C_{3\mathrm{v}}$	Elongated triangular pyramid (J7)	18.338
Label	Shape	Symmetry	Distortion (°)
			Dy2
OP-8	D_{8h}	Octagon	34.143
HPY-8	$C_{7\mathrm{v}}$	Heptagonal pyramid	21.865
HBPY-8	$D_{6\mathrm{h}}$	Hexagonal bipyramid	8.394
CU-8	$O_{ m h}$	Cube	7.344
SAPR-8	$D_{ m 4d}$	Square antiprism	3.883
TDD-8	D_{2d}	Triangular dodecahedron	3.702
JGBF-8	D_{2d}	Johnson-Gyrobifastigium (J26)	8.522
JETBPY-8	$D_{3\mathrm{h}}$	Johnson-Elongated triangular bipyramid	27.074
		(J14)	
JBTP-8	$C_{ m 2v}$	Johnson-Biaugmented trigonal prism	4.241

	(J50)		
BTPR-8	$C_{ m 2v}$	Biaugmen tedtrigonal prism	3.428
JSD-8	D_{2d}	Snub disphenoid (J84)	6.248
TT-8	$T_{\rm d}$	Triakis tetrahedron	7.859
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	22.217

Table S9. SHAPE analysis of the Dy(III) in S-2.

Label	Shape	Symmetry	Distortion (°)
			Dy1
HP-7	$D_{7\mathrm{h}}$	Heptagon	33.413
HPY-7	$C_{6\mathrm{v}}$	Hexagonal pyramid	21.230
PBPY-7	$D_{5\mathrm{h}}$	Pentagonal bipyramid	1.969
COC-7	$C_{3\mathrm{v}}$	Capped octahedron	7.650
CTPR-7	$C_{2\mathrm{v}}$	Capped trigonal prism	5.768
JPBPY-7	$D_{5\mathrm{h}}$	Johnson pentagonal bipyramid (J13)	7.176
JETPY-7	$C_{3\mathrm{v}}$	Elongated triangular pyramid (J7)	18.301
Label	Shape	Symmetry	Distortion (°)
			Dy2
OP-8	$D_{8\mathrm{h}}$	Octagon	34.055
HPY-8	$C_{7\mathrm{v}}$	Heptagonal pyramid	21.821
HBPY-8	$D_{6\mathrm{h}}$	Hexagonal bipyramid	8.266
CU-8	$O_{ m h}$	Cube	7.332
SAPR-8	$D_{ m 4d}$	Square antiprism	3.953
TDD-8	D_{2d}	Triangular dodecahedron	3.773
JGBF-8	D_{2d}	Johnson-Gyrobifastigium (J26)	8.379
JETBPY-8	$D_{ m 3h}$	Johnson-Elongated triangular bipyramid (J14)	26.975
JBTP-8	$C_{2\mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	4.246
BTPR-8	$C_{2\mathrm{v}}$	Biaugmen tedtrigonal prism	3.455
JSD-8	D_{2d}	Snub disphenoid (J84)	6.167
TT-8	$T_{\rm d}$	Triakis tetrahedron	7.843
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	22.183

Note 1

SQUEEZE results for these four compounds are as follows:

(1) *R*-1

loop_

_platon_squeeze_void_nr

_platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 0.176 0.126 0.764 188 43 " 2 -0.179 0.626 0.735 184 43 " 3 0.324 0.874 0.264 188 43 "

That is, SQUEEZE gives 43 electrons/unit cell for the voids, and each formula unit has 43/4 =10.75 electrons (since Z = 4). It is well known that 1 H₂O molecule contains 10 electrons, 1 CH₃CN molecule contains 22 electrons, and a CH₃OH molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of *R*-1 is calculated to be: $[Dy_2(R-L^1)(Cl)_3(CH_3OH)_3]\cdot Cl\cdot 4CH_3OH\cdot CH_3CN\cdot 2H_2O$.

(2) *S*-1

loop_

_platon_squeeze_void_nr

_platon_squeeze_void_average_x

_platon_squeeze_void_average_y

_platon_squeeze_void_average_z

_platon_squeeze_void_volume

_platon_squeeze_void_count_electrons

_platon_squeeze_void_content

1 -0.181 0.125 0.767 183 36 "

2 0.183 0.625 0.733 179 36 "

3 0.319 0.375 0.233 182 36 "

4 0.683 0.875 0.267 179 36 "

That is, SQUEEZE gives 36 electrons/unit cell for the voids, and each formula unit has 36/4 =9

electrons (since Z = 4). It is well known that 1 H₂O molecule contains 10 electrons, 1 CH₃CN molecule contains 22 electrons, and a CH₃OH molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of *R*-1 is calculated to be: $[Dy_2(S-L^1)(Cl)_3(CH_3OH)_3]$ ·Cl·6CH₃OH.

(3) R-2

loop_

_platon_squeeze_void_nr _platon_squeeze_void_average_x

platon squeeze void average y

platon squeeze void average z

_platon_squeeze_void_volume

_platon_squeeze_void_count_electrons

_platon_squeeze_void_content

1 -0.010 0.250 1.000 398 94 "

2 -0.016 0.750 0.500 398 94 "

That is, SQUEEZE gives 94 electrons/unit cell for the voids, and each formula unit has 94/4 = 23.5 electrons (since Z = 4). It is well known that 1 H₂O molecule contains 10 electrons, 1 CH₃CN molecule contains 22 electrons, and a CH₃OH molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of *R***-2** is calculated to be: $[Dy_2(R-L^1)(Cl)_3(CH_3OH)_2]$ ·Cl·H₂O·4CH₃OH.

(4) *S*-2

loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume platon_squeeze_void_count_electrons _platon_squeeze_void_content

1 -0.028 0.250 0.500 376 115 "

2 -0.005 0.750 0.000 376 115 "

That is, SQUEEZE gives 115 electrons/unit cell for the voids, and each formula unit has 115/4 =28.75 electrons (since Z = 4). It is well known that 1 H₂O molecule contains 10 electrons, 1 CH₃CN molecule contains 22 electrons, and a CH₃OH molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of *S*-2 is calculated to be: $[Dy_2(S-L^1)(Cl)_3(CH_3OH)_2]\cdot Cl\cdot 5CH_3OH$.