Supporting Information

Coordination recognition of differential template units of lanthanide chiral chain

Wen-Wen Qin, ${ }^{\text {a,+ }}$ Bing-Fan Long, ${ }^{\text {a,+ }}$ Zhong-Hong Zhu, ${ }^{\text {a,* }}$ Hai-Ling Wang, ${ }^{\text {a }}$ Fu-Pei Liang, ${ }^{\text {a,* }}$ Hua-Hong Zou ${ }^{a, *}$
${ }^{\text {a }}$ School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
*E-mail (Corresponding author): 18317725515@163.com (Z.-H. Zhu), liangfupei@glut.edu.cn (F.-P. Liang), gxnuchem@foxmail.com (H.-H. Zou).
${ }^{+}$These authors contributed equally to this work.

Keywords: Lanthanide chiral chain; Coordination recognition; Precise synthesis; Magnetic properties

Table of Contents:

Supporting Tables	
Table S1	Crystallographic data of the $\boldsymbol{R} \mathbf{- 1 , S - 1 , R - 2 ~ a n d ~ S - 2 . ~}$
Table S2	Selected bond lengths (\AA) and angles (${ }^{\circ}$) of $\boldsymbol{R} \mathbf{- 1}$.
Table S3	Selected bond lengths (\AA) and angles (${ }^{\circ}$) of $\boldsymbol{S} \mathbf{- 1}$.
Table S4	Selected bond lengths (\AA) and angles (${ }^{\circ}$) of $\boldsymbol{R} \mathbf{- 2}$.
Table S5	Selected bond lengths (\AA) and angles (${ }^{\circ}$) of $\boldsymbol{S} \mathbf{- 2}$.
Table S6	SHAPE analysis of the Dy(III) in $\boldsymbol{R} \mathbf{- 1}$.
Table S7	$S H A P E$ analysis of the Dy(III) in $\boldsymbol{S} \mathbf{- 1}$.
Table S8	$S H A P E$ analysis of the Dy(III) in $\boldsymbol{R} \mathbf{- 2}$.
Table S9	SHAPE analysis of the Dy(III) in $\boldsymbol{S} \mathbf{- 2}$.
Supporting Figures	
Figure S1	Infrared spectra (IR) of $\boldsymbol{R} \mathbf{- 1 , S - 1 , R - 2 ~ a n d ~ S - 2 ~ (a , ~ b) . ~}$
Figure S2	Powder diffraction pattern (PXRD) of $\boldsymbol{R} \mathbf{- 1 , S - 1 , R - 2 ~ a n d ~ S - 2 ~ (a - d) . ~}$
Figure S3	TG curve of $\boldsymbol{R} \mathbf{- 1 , ~ S - 1 , ~ R - 2 ~ a n d ~} \boldsymbol{S} \mathbf{- 2}$ (a), DSC curve of $\boldsymbol{R} \mathbf{- 1 , ~} \boldsymbol{S} \mathbf{- 1 , R - 2}$ and $\boldsymbol{S} \mathbf{- 2}$ (b).
Figure S4	Temperature dependence of $\chi_{\mathrm{m}} T$ for $\boldsymbol{S} \mathbf{- 1}$ (a) and $\boldsymbol{S} \mathbf{- 2}$ (c); M vs. H / T plots of $\boldsymbol{S} \mathbf{- 1}$ (b) and \boldsymbol{S}-2 (d).
Figure S5	Loop curve graph of $\boldsymbol{R} \mathbf{- 1}$ (a), $\boldsymbol{S} \mathbf{- 1}$ (b), $\boldsymbol{R} \mathbf{- 2}$ (c) and $\boldsymbol{S} \mathbf{- 2}$ (d) at 2 K .
Figure S6	Temperature-dependent χ^{\prime} and $\chi^{\prime \prime}$ AC susceptibilities under 0 Oe DC fields for $\boldsymbol{R} \mathbf{- 1}$, $\boldsymbol{S - 1 , R}, \mathbf{R}$ and $\boldsymbol{S - 2}$ (a-d).
Figure S7	Frequency-dependence of the in-of-phase (χ^{\prime}) and the out-of-phase ($\chi^{\prime \prime}$) components under 0 Oe DC fields for $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 1}, \boldsymbol{R} \mathbf{- 2}$ and $\boldsymbol{S} \mathbf{- 2}(\mathrm{a}-\mathrm{h})$.
Figure S8	Temperature-dependent χ^{\prime} and $\chi^{\prime \prime}$ AC susceptibilities under 1200 Oe DC fields for \boldsymbol{R} $\mathbf{1}$ (a), 800 Oe DC fields for $\boldsymbol{S} \mathbf{- 1}$ (b), 1000 Oe DC fields for $\boldsymbol{R} \mathbf{- 2}$ (c) and 800 Oe DC fields for $\boldsymbol{S}-2$ (d).
Figure S9	Frequency-dependence of the in-of-phase (χ^{\prime}) and the out-of-phase ($\chi^{\prime \prime}$) components under 1200 Oe DC fields for $\boldsymbol{R} \mathbf{- 1}$ (a and b), 800 Oe DC fields for $\boldsymbol{S} \mathbf{- 1}$ (c and d), 1000 Oe DC fields for $\boldsymbol{R} \mathbf{- 2}$ (e and f) and 800 Oe DC fields for $\boldsymbol{S}-\mathbf{2}$ (g and h).

Materials and Measurements.

All chemicals and solvents were analytical grade and were used without further purification. The infrared spectra were carried out on a Pekin-Elmer Two spectrophotometer with pressed KBr pellets. The elemental analyses were determined on a Perkin-Elmer model $240^{\circ} \mathrm{C}$ elemental analyzer. The powder X-ray diffraction (PXRD) spectra were measured on a Rigaku D/Max-3c diffractometer with $\mathrm{Cu} K \alpha$ radiation $(\lambda=1.5418 \AA$). Thermogravimetric analyses were performed on a PerkinElmer Pyris Diamond TG-DTA instrument under an N_{2} atmosphere using a heating rate of $5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ from room temperature up to $1000^{\circ} \mathrm{C}$. The circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectropolarimeter at room temperature. Magnetic properties were performed on a Superconducting Quantum Interference Device (SQUID) magnetometer. The diamagnetism of all constituent atoms was corrected with Pascal's constant.

X-ray crystallography.

Single-crystal X-ray diffraction (SCXRD) data were collected on a ROD, Synergy Custom DW system, HyPix diffractometer $(\mathrm{Cu}-\mathrm{K} \alpha$ radiation and $\lambda=1.54184 \AA)$ in Φ and ω scan modes. The structures were solved by direct methods, and refined by a full-matrix least-squares method on the basis of F^{2} by using SHELXL and OLEX2. ${ }^{[1]}$ Anisotropic thermal parameters were applied to all nonhydrogen atoms. Hydrogen atoms were generated geometrically. The crystallographic data for the $\boldsymbol{R} \mathbf{- 1}$, $\boldsymbol{S} \mathbf{- 1 , ~} \boldsymbol{R}-\mathbf{2}$ and $\boldsymbol{S} \mathbf{- 2}$ are listed in Table S1, and selected bond lengths and angles are given in Table S2-S5. The CCDC reference numbers for the crystal structures of $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{R} \mathbf{- 2}, \boldsymbol{S} \mathbf{- 1}$ and $\boldsymbol{S} \mathbf{- 2}$ are 2306659 , 2306660, 2306784, 2306664, respectively.
[1] Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

Table S1. Crystallographic data of the $\boldsymbol{R} \mathbf{- 1 , S - 1 , R - 2}$ and $\boldsymbol{S} \mathbf{- 2}$.

	R-1	$\boldsymbol{S - 1}$	R-2	S-2
Formula	$\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{Cl}_{4} \mathrm{Dy}_{2} \mathrm{~N}_{7} \mathrm{O}_{15}$	$\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{Cl}_{4} \mathrm{Dy}_{2} \mathrm{~N}_{6} \mathrm{O}_{15}$	$\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{Cl}_{4} \mathrm{Dy}_{2} \mathrm{~N}_{6} \mathrm{O}_{13}$	$\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{Cl}_{4} \mathrm{Dy}_{2} \mathrm{~N}_{6} \mathrm{O}_{13}$
Formula weight	1254.62	1241.62	1162.50	1176.53
$T, \mathrm{~K}$	100.00(10)	100.00(10)	100.00(10)	100.00(10)
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	$P 2_{12} 2_{1} 2_{1}$			
a, \AA	13.47190(10)	13.47640(10)	13.06030(10)	13.07500(10)
b, \AA	14.86600(10)	14.86660(10)	17.6285(2)	17.6728(2)
c, \AA	24.0640(2)	24.0565(2)	17.9734(2)	18.0533(2)
$\alpha,{ }^{\circ}$	90	90	90	90
$\beta,{ }^{\circ}$	90	90	90	90
$\gamma,{ }^{\circ}$	90	90	90	90
V, \AA^{3}	4819.38(6)	4819.68(6)	4138.08(7)	4171.61(7)
Z	4	4	4	4
$D_{\mathrm{c}}, \mathrm{g} \mathrm{cm}^{-3}$	1.729	1.711	1.866	1.873
μ, mm^{-1}	19.018	19.002	22.046	21.880
$F(000)$	2480.0	2456.0	2276.0	2308.0
$\begin{aligned} & 2 \theta \text { range for } \\ & \quad \text { data } \\ & \text { collection } /{ }^{\circ} \end{aligned}$	6.992 to 151.706	6.99 to 151.672	7.024 to 133.202	7 to 133.168
Reflns coll.	32105	32245	26441	26211
Unique reflns	9709	9704	7307	7375
$R_{\text {int }}$	0.0449	0.0431	0.0516	0.0534
$R_{1}{ }^{\text {a }}(I>2 \sigma(I))$	0.0451	0.0431	0.0403	0.0390
$w R_{2}{ }^{\text {b }}$ (all data)	0.1248	0.1138	0.1046	0.1004
GOF	1.092	1.115	1.045	1.030
Flack parameter	0.016(3)	0.011(2)	0.008(3)	0.003(3)

$$
{ }^{\mathrm{a}} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| \mathrm{F}_{\mathrm{o}} \mid,{ }^{\mathrm{b}} \mathrm{w} R_{2}=\left[\Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}
$$

Figure S2. Powder diffraction pattern (PXRD) of $\boldsymbol{R} \mathbf{- 1 ,} \boldsymbol{S} \mathbf{- 1 , ~} \boldsymbol{R} \mathbf{- 2}$ and $\boldsymbol{S} \mathbf{- 2}$ (a-d).

Figure S3. TG curve of $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 1}, \boldsymbol{R} \mathbf{- 2}$ and $\boldsymbol{S} \mathbf{- 2}$ (a), DSC curve of $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 1 , \boldsymbol { R } - \mathbf { 2 }}$ and $\boldsymbol{S} \mathbf{- 2}$ (b).
In order to explore the thermal stability of $\boldsymbol{R} \mathbf{- 1} / \boldsymbol{S} \mathbf{- 1}$ and $\boldsymbol{R} \mathbf{- 2} / \boldsymbol{S} \mathbf{- 2}$, TG-DSC study was conducted. The thermal stability analysis of $\boldsymbol{R} \mathbf{- 1} / \boldsymbol{S} \mathbf{- 1}$ and $\boldsymbol{R} \mathbf{- 2} / \boldsymbol{S} \mathbf{- 2}$ was performed in a flowing N_{2} atmosphere while the temperature was slowly increased from $35^{\circ} \mathrm{C}$ to $1,000{ }^{\circ} \mathrm{C}$ at a rate of $5{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. The DSC test was also performed in a flowing N_{2} atmosphere, and the temperature was slowly increased from $35^{\circ} \mathrm{C}$ to $450^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$. It can be seen from the TG-DSC curve that complex $\boldsymbol{R} \mathbf{- 1}$ has three
weight loss processes. First, in the temperature range of $35-200{ }^{\circ} \mathrm{C}$, the weight loss rate of complex $\boldsymbol{R} \mathbf{- 1}$ is 16.37% (theoretical value is 16.33%), and a sharp exothermic peak is observed at $117.3^{\circ} \mathrm{C}$ in the DSC curve, corresponding to the loss of four free $\mathrm{CH}_{3} \mathrm{OH}$ molecules, one free $\mathrm{CH}_{3} \mathrm{CN}$ molecule and two free $\mathrm{H}_{2} \mathrm{O}$ molecules. Secondly, as the temperature increases from $200^{\circ} \mathrm{C}$ to $365^{\circ} \mathrm{C}$, the weight loss rate of complex $\boldsymbol{R} \mathbf{- 1}$ is 7.59% (theoretical value is 7.65%), and a weak exothermic peak is observed at $328.4{ }^{\circ} \mathrm{C}$ in the DSC curve, corresponding to the loss of three terminally coordinated $\mathrm{CH}_{3} \mathrm{OH}$ molecules. Finally, as the temperature increased from $365^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$, the sample mass decreased sharply, and an exothermic peak was observed at $394.1^{\circ} \mathrm{C}$ in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of $\boldsymbol{R} \mathbf{- 1}$ to produce dysprosium(III) oxide (Figure S3a and S3b). Similarly, there are also three weight loss processes for $\boldsymbol{S} \mathbf{- 1}$. First, in the temperature range of $35-270{ }^{\circ} \mathrm{C}$, the weight loss rate of $\boldsymbol{S} \mathbf{- 1}$ is 15.31% (theoretical value is 15.42%), and a sharp exothermic peak is observed at $127.8^{\circ} \mathrm{C}$ in the DSC curve, corresponding to the loss of six free $\mathrm{CH}_{3} \mathrm{OH}$ molecules. Secondly, as the temperature increases from $270{ }^{\circ} \mathrm{C}$ to 385 ${ }^{\circ} \mathrm{C}$, the weight loss rate of complex $\boldsymbol{S} \mathbf{- 1}$ is 7.53% (theoretical value is 7.71%), and a weak exothermic peak is observed at $317.5^{\circ} \mathrm{C}$ in the DSC curve, corresponding to the loss of three terminally coordinated $\mathrm{CH}_{3} \mathrm{OH}$ molecules. Finally, as the temperature increased from $385{ }^{\circ} \mathrm{C}$ to $600{ }^{\circ} \mathrm{C}$, the sample mass decreased sharply, and an exothermic peak was observed at $400.9^{\circ} \mathrm{C}$ in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of $\boldsymbol{S} \mathbf{- 1}$ to produce dysprosium(III) oxide (Figure S3a and S3b). Complex $\boldsymbol{R} \mathbf{- 2}$ has two weight loss processes. When the temperature gradually increases from $35^{\circ} \mathrm{C}$ to $330^{\circ} \mathrm{C}$, the weight loss rate of complex $\boldsymbol{R} \mathbf{- 2}$ is $\mathbf{1 8 . 0 1 \%}$ (theoretical value is 18.04%), and three obvious exothermic peaks were observed at $86.9^{\circ} \mathrm{C}, 113.6^{\circ} \mathrm{C}$ and $214.1^{\circ} \mathrm{C}$ in the DSC curve, respectively. This process corresponds to the loss of four free $\mathrm{CH}_{3} \mathrm{OH}$ molecules, two terminally coordinated $\mathrm{CH}_{3} \mathrm{OH}$ molecule and one free $\mathrm{H}_{2} \mathrm{O}$ molecule. When the temperature exceeds $330^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$, the sample mass decreases sharply, and an obvious endothermic peak is observed at $350^{\circ} \mathrm{C}$ in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of $\boldsymbol{R} \mathbf{- 2}$ to produce dysprosium(III) oxide (Figure S3a and S3b). Similarly, when the temperature gradually increases from $35^{\circ} \mathrm{C}$ to $340^{\circ} \mathrm{C}$, the weight loss rate of $\boldsymbol{S} \mathbf{- 2}$ is 18.53% (theoretical value is 19.03%), and three obvious exothermic peaks were observed at $89.7^{\circ} \mathrm{C}, 136.5^{\circ} \mathrm{C}$ and $223.5^{\circ} \mathrm{C}$ in the DSC curve, respectively. This process corresponds to the loss of two free $\mathrm{CH}_{3} \mathrm{OH}$ molecules and two
terminally coordinated $\mathrm{CH}_{3} \mathrm{OH}$ molecules. When the temperature exceeds $340{ }^{\circ} \mathrm{C}$ to $500{ }^{\circ} \mathrm{C}$, the sample mass decreases sharply, and an obvious endothermic peak is observed at $360^{\circ} \mathrm{C}$ in the DSC curve, which can be attributed to the degradation/combustion of the organic ligand part and the rapid decomposition of $\boldsymbol{S} \mathbf{- 2}$ to produce dysprosium(III) oxide (Figure S3a and S3b).

Figure S4. Temperature dependence of $\chi_{\mathrm{m}} T$ for $\boldsymbol{S} \mathbf{- 1}$ (a) and $\boldsymbol{S} \mathbf{- 2}$ (c); M vs. H / T plots of $\boldsymbol{S} \mathbf{- 1}$ (b) and $\boldsymbol{S} \mathbf{- 2}$ (d).

Figure S5. Loop curve graph of $\boldsymbol{R} \mathbf{- 1}$ (a), $\boldsymbol{S} \mathbf{- 1}$ (b), $\boldsymbol{R} \mathbf{- 2}$ (c) and $\boldsymbol{S} \mathbf{- 2}$ (d) at 2 K.

Figure S6. Temperature-dependent χ^{\prime} and $\chi^{\prime \prime}$ AC susceptibilities under 0 Oe DC fields for $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 1}$, $\boldsymbol{R - 2}$ and \boldsymbol{S}-2 (a-d).

Figure S7. Frequency-dependence of the in-of-phase (χ^{\prime}) and the out-of-phase ($\chi^{\prime \prime}$) components under 0 Oe DC fields for $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 1}, \boldsymbol{R}-\mathbf{2}$ and $\boldsymbol{S} \mathbf{- 2}$ (a-h).

Figure S8. Temperature-dependent χ^{\prime} and $\chi^{\prime \prime}$ AC susceptibilities under 1200 Oe DC fields for $\boldsymbol{R} \mathbf{- 1}$ (a), 800 Oe DC fields for $\boldsymbol{S} \mathbf{- 1}$ (b), 1000 Oe DC fields for $\boldsymbol{R} \mathbf{- 2}$ (c) and 800 Oe DC fields for \boldsymbol{S}-2 (d).

Figure S9. Frequency-dependence of the in-of-phase (χ^{\prime}) and the out-of-phase ($\chi^{\prime \prime}$) components under 1200 Oe DC fields for $\boldsymbol{R} \mathbf{- 1}$ (a and b), 800 Oe DC fields for $\boldsymbol{S} \mathbf{- 1}$ (c and d), 1000 Oe DC fields for $\boldsymbol{R} \mathbf{- 2}$ (e and f) and 800 Oe DC fields for $\boldsymbol{S} \mathbf{- 2}$ (g and h).

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\boldsymbol{R} \mathbf{- 1}$.

Bond lengths (\AA)					
Dy1-Cl2	2.671(2)	Dy1-N6	$2.486(8)$	Dy2-O1 ${ }^{\text {i }}$	2.352(6)
Dy1-Cl1	2.734(3)	Dy1-O7	2.427(7)	Dy2-N1 ${ }^{\text {i }}$	2.475(8)
Dy1-O6	2.333 (6)	Dy2-Cl3	2.671(2)	Dy2-O9	$2.339(8)$
Dy1-O5	2.421(6)	Dy2-O6	$2.346(6)$	Dy2-O8	2.396(7)
Dy1-O1 ${ }^{\text {i }}$	2.371(6)	Dy2-O2 ${ }^{\text {i }}$	$2.435(6)$	Dy2-N2 ${ }^{\text {i }}$	2.542(8)
Dy1-N5	$2.555(8)$				
Bond angles (${ }^{\circ}$)					
C12-Dy1-Cl1	150.31(8)	N5-Dy1-Cl2	74.6(2)	O1--Dy2-O2 ${ }^{\text {i }}$	164.6(2)
O6-Dy1-Cl2	96.43(18)	N5-Dy1-Cl1	80.2(2)	O1 ${ }^{\text {i}} \mathrm{-Dy} 2-\mathrm{N} 1^{\text {i }}$	66.5(2)
O6-Dy1-Cl1	86.89(17)	N6-Dy1-Cl2	81.15(19)	O1 ${ }^{\text {i}}$-Dy $2-08$	89.6(3)
O6-Dy1-O5	168.9(2)	N6-Dy1-Cl1	73.12(19)	O1 ${ }^{\text {i}}$-Dy $2-\mathrm{N} 2^{\text {i }}$	128.0(2)
O6-Dyl-O1 ${ }^{\text {i }}$	67.9(2)	N6-Dy1-N5	61.5(2)	N1 ${ }^{\text {i }}$ - ${ }^{\text {dy }} 2-\mathrm{Cl} 3$	87.8(2)
O6-Dy1-N5	128.1(2)	O7-Dy1-Cl2	133.07(18)	N1 $1^{\text {i-D }}$ - ${ }^{2} 2-\mathrm{N} 2^{\text {i }}$	61.7(2)
O6-Dy1-N6	66.6(2)	O7-Dy1-Cl1	73.60(18)	O9-Dy2-Cl3	143.9(2)
O6-Dy1-07	103.8(2)	O7-Dy1-N5	119.7(2)	O9-Dy2-O6	136.9(3)
O5-Dy1-Cl2	81.43(19)	O7-Dy1-N6	145.8(3)	O9-Dy2-O2 ${ }^{\text {i }}$	82.1(3)
O5-Dy1-Cl1	100.41(18)	O6-Dy2-Cl3	79.03(18)	O9-Dy2-O1 ${ }^{\text {i }}$	90.1(3)
O5-Dy1-N5	62.1(2)	O6-Dy2-O2 ${ }^{\text {i }}$	109.2(2)	O9-Dy2-N1 ${ }^{\text {i }}$	74.4(3)
O5-Dy1-N6	123.4(2)	O6-Dy2-O1 ${ }^{\text {i }}$	68.0(2)	O9-Dy2-O8	74.1(3)
O5-Dy1-O7	70.7(2)	O6-Dy2-N1 ${ }^{\text {i }}$	123.3(2)	O9-Dy2-N2 ${ }^{\text {i }}$	72.4(3)
O1i-Dy1-Cl2	76.82(18)	O6-Dy2-O8	69.3(3)	O8-Dy2-Cl3	131.7(2)
O1i-Dy1-Cl1	130.74(18)	O6-Dy2-N2 ${ }^{\text {i }}$	150.1(3)	O8-Dy2-O2 ${ }^{\text {i }}$	75.5(3)
O1--Dyl-O5	101.0(2)	O2i-Dy2-Cl3	81.99(19)	O8-Dy2-N1 ${ }^{\text {i }}$	140.1(3)
O1--Dy 1-N5	148.5(3)		123.2(2)	O8-Dy2-N2 ${ }^{\text {i }}$	128.5(3)
O1-Dyl-N6	126.2(2)	O2 ${ }^{\text {i }- \text { Dy } 2-N 2 ~}{ }^{\text {i }}$	62.1(2)	N2 $2^{\text {i-Dy }} 2-\mathrm{Cl} 3$	71.5(2)
O1--Dy1-O7	72.6(2)	O1-Dy2-Cl3	111.55(18)		

Table S3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\boldsymbol{S} \mathbf{- 1}$.

Bond lengths (\AA)					
Dy1-Cl1	2.674(2)	Dy1-N5	$2.555(7)$	Dy2-O1 ${ }^{\text {i }}$	$2.346(5)$
Dy1-Cl2	$2.735(3)$	Dy1-N6	2.486(7)	Dy2-09	2.351(7)
Dy1-O6	$2.337(5)$	Dy2-Cl3	2.671(2)	Dy2-N1 ${ }^{\text {i }}$	2.481(7)
Dy1-O5	2.428(5)	Dy2-O6	2.337(5)	Dy2-O8	2.391 (7)
Dyl-O1 ${ }^{\text {i }}$	2.380(5)	Dy2-O2 ${ }^{\text {i }}$	2.445(6)	Dy2-N2 ${ }^{\text {i }}$	$2.537(7)$
Dy1-O7	$2.426(6)$				
Bond angles $\left({ }^{\circ}\right)$					
Cl1-Dy1-Cl2	150.29(7)	O7-Dy1-Cl2	73.31(18)	$\mathrm{O} 1^{\text {i}} \mathrm{-Dy} 2-\mathrm{Cl} 3$	111.47(16)
O6-Dy1-Cl1	96.26(16)	O7-Dy1-O5	70.9(2)	O1 ${ }^{\text {i-Dy }} 2-\mathrm{O} 2^{\text {i }}$	164.7(2)
O6-Dy1-Cl2	87.18(15)	O7-Dy1-N5	119.6(2)	O1--Dy2-O9	90.0(2)
O6-Dy1-O5	168.82(19)	O7-Dy1-N6	145.5(2)	$\mathrm{O} 1^{\mathrm{i}}$-Dy $2-\mathrm{N} 1^{\text {i }}$	66.0(2)
O6-Dy1-O1 ${ }^{\text {i }}$	67.70(19)	N5-Dy1-Cl1	74.77(18)	O1--Dy2-O8	89.9(2)
O6-Dy1-O7	103.6(2)	N5-Dy1-Cl2	79.98(19)	$\mathrm{O} 1{ }^{\text {i-Dy }} 2-\mathrm{N} 2^{\text {i }}$	127.5(2)
O6-Dy1-N5	128.3(2)	N6-Dy1-Cl1	81.10(18)	O9-Dy2-Cl3	144.08(18)
O6-Dy1-N6	66.8(2)	N6-Dy1-Cl2	73.16(18)	O9-Dy2-O2 ${ }^{\text {i }}$	81.9(2)
O5-Dy1-Cl1	81.55(16)	N6-Dy1-N5	61.5(2)	O9-Dy2-N1 $1^{\text {i }}$	74.5(2)
O5-Dy1-Cl2	100.19(16)	O6-Dy2-Cl3	78.99(16)	O9-Dy2-08	73.9(3)
O5-Dy1-N5	61.9(2)	O6-Dy2-O2 ${ }^{\text {i }}$	109.32(19)	O9-Dy2-N2 ${ }^{\text {i }}$	72.6(2)
O5-Dy1-N6	123.3(2)	O6-Dy2-O1 ${ }^{\text {i }}$	68.26(19)	$\mathrm{N} 1{ }^{\text {i }} \mathrm{-Dy} 2-\mathrm{Cl} 3$	88.02(18)
O1--Dy1-Cl1	76.58(16)	O6-Dy2-09	136.8(2)	$\mathrm{N} 1^{\mathrm{i}}$-Dy $2-\mathrm{N} 2^{\mathrm{i}}$	61.7(2)
O1--Dy1-Cl2	131.01(16)	O6-Dy2-N1 ${ }^{\text {i }}$	123.2(2)	O8-Dy2-Cl3	131.72(19)
O1 ${ }^{\text {i-Dy }} 1-\mathrm{O} 5$	101.16(19)	O6-Dy2-O8	69.5(2)	O8-Dy2-O2 ${ }^{\text {i }}$	75.3(2)
O1 ${ }^{\text {i-Dy }} 1-\mathrm{O} 7$	73.0(2)	O6-Dy2-N2 ${ }^{\text {i }}$	150.1(2)	O8-Dy2-N1 ${ }^{\text {i }}$	139.9(3)
O1 ${ }^{\text {i-Dy }} 1-\mathrm{N} 5$	148.5(2)	O2 ${ }^{\text {i }}$ - ${ }^{\text {- }} 22-\mathrm{Cl} 3$	82.13(17)	O8-Dy2-N2 ${ }^{\text {i }}$	128.5(2)
O1 ${ }^{\text {i-Dy }} 1-\mathrm{N} 6$	126.1(2)	$\mathrm{O} 2{ }^{2}-\mathrm{Dy} 2-\mathrm{N1}{ }^{\text {i }}$	123.3(2)	$\mathrm{N} 2{ }^{\text {i }-\mathrm{Dy} 2-\mathrm{Cl}} 3$	71.50(17)
O7-Dy1-Cl1	133.40(18)	O2 ${ }^{\text {i }}$-Dy2- ${ }^{2}{ }^{\text {i }}$	62.3(2)		

Table S4. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of \boldsymbol{R}-2.

Bond lengths (\AA)					
Dy1-Cl1	2.607(2)	Dy1-N6ii	$2.446(7)$	Dy2-O7	$2.369(6)$
Dy1-Cl2	2.629(2)	Dy1-N5ii	$2.508(8)$	$\text { Dy2-N1 }{ }^{\text {i }}$	$2.496(7)$
Dy1-O1	2.291(6)	Dy2-Cl3	$2.687(2)$	Dy2-O8	2.383(8)
Dy1-O5ii	$2.411(7)$	Dy2-O1 ${ }^{\text {i }}$	2.363 (6)	Dy2-N2 ${ }^{\text {i }}$	$2.538(7)$
Dy1-O6ii	$2.338(6)$	Dy2-O2 ${ }^{\text {i }}$	2.428 (6)	Dy2-O6	2.341 (6)
Bond angles (${ }^{\circ}$)					
Cl1-Dy1-Cl2	171.04(8)	N6ii-Dy 1-Cl2	92.49(18)	N1 ${ }^{\text {i- }}$ - ${ }^{\text {dy }} 2-\mathrm{Cl} 3$	74.13(16)
O1-Dy1-Cl1	88.24(16)	$\text { N6ii-Dy1-N5 } 5 \text { ii }$	62.7(3)	N1 $1^{\text {i- }}$ Dy $2-\mathrm{N} 2^{\text {i }}$	61.6(2)
O1-Dy1-Cl2	92.32(16)	N5ii-Dyl-Cl1	82.6(2)	O8-Dy2-Cl3	76.5(2)
O1-Dy1-O5ii	97.8(2)	$\mathrm{N} 5 \mathrm{ii}^{\mathrm{i}-\mathrm{Dy} 1-\mathrm{Cl} 2}$	93.9(2)	O8-Dy2-O2 ${ }^{\text {i }}$	69.6(3)
$\text { O1-Dy1-O6 }{ }^{\mathrm{ii}}$	70.3(2)	O1--Dy2-Cl3	83.86(15)	O8-Dy2-N1 ${ }^{1}$	150.2(3)
O1-Dy1-N6ii	137.3(2)	O1 ${ }^{\text {i- }}$ - ${ }^{\text {dy2-O2 }}{ }^{\text {i }}$	167.5(2)	O8-Dy2-N2 ${ }^{\text {i }}$	$119.8(3)$
O1-Dy1-N5ii	158.7(2)	O1--Dy2-O7	94.2(2)	N2i-Dy2-Cl3	83.80(17)
O5ii-Dy1-Cl1	87.32(18)	O1 ${ }^{1}-\mathrm{Dy} 2-\mathrm{N} 1^{\text {i }}$	66.2(2)	O6-Dy2-07	75.3(2)
O5ii-Dy1-Cl2	83.74(18)	O1--Dy2-08	105.9(3)	O6-Dy2-N1 ${ }^{1}$	124.6(2)
O5ii-Dy1-N6 ${ }^{6 i}$	124.9(2)	O1 ${ }^{1}-\mathrm{Dy} 2-\mathrm{N} 2^{\text {i }}$	127.9(2)	O6-Dy2-08	$73.0(3)$
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Dy} 1-\mathrm{N} 5^{\mathrm{ii}}$	62.8(2)	O2 ${ }^{\text {i-Dy } 2-\mathrm{Cl} 3}$	105.82(16)	O6-Dy2-N2 ${ }^{\text {i }}$	145.0(2)
O6ii-Dy1-Cl1	100.38(18)	$\mathrm{O} 2^{\mathrm{i}-\mathrm{Dy}} 2-\mathrm{N} 1^{\mathrm{i}}$	123.5(2)	O7-Dy2-Cl3	149.33(18)
O6ii-Dy1-Cl2	88.21(18)	O2 $2^{\text {i-Dy }} 2-\mathrm{N} 2^{\text {i }}$	62.3(2)	O7-Dy2-O2 ${ }^{\text {i }}$	81.5(2)
O6ii-Dy1-O5ii	165.5(2)	O6-Dy2-Cl3	130.91(16)	O7-Dy2-N1 ${ }^{1}$	77.1(2)
O6 ${ }^{\text {iii-Dy1-N6 }}{ }^{\text {6ii }}$	67.4(2)	O6-Dy2-O1 ${ }^{\text {i }}$	69.1(2)	07-Dy2-08	132.7(3)
O6ii-Dy1-N5 ${ }^{\text {ii }}$	130.1(2)	O6-Dy2-O2 ${ }^{\text {i }}$	98.4(2)	O7-Dy2-N2 ${ }^{\text {i }}$	73.2(2)
N6ii-Dyl-Cl1	93.16(18)				

Table S5. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of $\boldsymbol{S} \mathbf{- 2}$.

Bond lengths ($\AA \mathbf{)}$					
Dy1-C12	$2.609(2)$	Dy1-N6 6^{ii}	$2.442(7)$	Dy2-O7	$2.371(7)$

Dy1-Cl1	2.630(2)	Dy1-N5 ${ }^{\text {ii }}$	2.517(8)	Dy2-O6	$2.347(6)$
Dy1-O5ii	$2.415(6)$	Dy2-Cl3	2.682(2)	Dy2-N1 ${ }^{\text {i }}$	2.499 (7)
Dy1-O1	2.292(5)	Dy2-O1 ${ }^{\text {i }}$	2.360(6)	Dy2-N2 ${ }^{\text {i }}$	$2.542(7)$
Dy1-O6 ${ }^{\text {ii }}$	2.347(6)	Dy2-O2 ${ }^{\text {i }}$	2.436(6)	Dy2-O8	2.391(7)
Bond angles (${ }^{\circ}$)					
C12-Dy1-Cl1	171.41(8)	N6ii-Dy1-Cl1	92.93(17)	O7-Dy2-N2 ${ }^{\text {i }}$	73.3(3)
O5ii-Dy1-Cl2	87.69(16)	N6ii-Dy1-N5 ${ }^{\text {ii }}$	62.6(2)	O7-Dy2-O8	132.6(2)
O5ii-Dy1-Cl1	83.76(16)	N5ii-Dy1-Cl2	82.90(18)	O6-Dy2-Cl3	130.85(16)
O5i-Dy1-N6 ${ }^{\text {ii }}$	125.1(2)	N5ii-Dy1-Cl1	93.93(19)	O6-Dy2-O1 ${ }^{\text {i }}$	69.17(19)
O5ii-Dy1-N5 ${ }^{\text {ii }}$	63.0(2)	O1--Dy2-Cl3	84.05(15)	O6-Dy2-O2 ${ }^{\text {i }}$	98.4(2)
O1-Dy 1-Cl2	88.21(15)	$\mathrm{O} 1^{\text {i-Dy }} 2-\mathrm{O} 2^{\text {i }}$	167.59(19)	O6-Dy2-O7	75.2(2)
O1-Dy1-Cl1	92.09(15)	O1-Dy2-O7	94.0(2)	O6-Dy2-N1 ${ }^{\text {i }}$	125.1(2)
O1-Dy1-O5 ${ }^{\text {ii }}$	97.8(2)	O1--Dy2-N1 ${ }^{\text {i }}$	66.6(2)	O6-Dy2-N2 ${ }^{\text {i }}$	145.0(2)
O1-Dy1-O6 ${ }^{\text {ii }}$	70.32(19)	$\mathrm{O} 1^{\text {i}}$-Dy $2-\mathrm{N} 2^{\text {i }}$	127.9(2)	O6-Dy2-O8	72.0 (2)
O1-Dy1-N6 $6^{\text {ii }}$	137.1(2)	O1--Dy2-O8	104.9(2)	N1 ${ }^{\text {i}}$-Dy2-Cl3	74.32(15)
O1-Dy1-N5ii	159.0(2)	O2 $2^{\text {i-Dy } 2-\mathrm{Cl} 3}$	105.46(15)	N1 ${ }^{\text {i }}$ - ${ }^{\text {dy }} 2-\mathrm{N} 2^{\text {i }}$	61.3(2)
O6ii-Dy1-Cl2	99.91(17)	$\mathrm{O} 2{ }^{\text {i }}$ - ${ }^{\text {d }} 2-\mathrm{N} 1^{\text {i }}$	123.1(2)	N2 ${ }^{\text {i }}$ - ${ }^{\text {dy2-Cl3 }}$	83.92(16)
O6ii-Dy1-Cl1	88.26(18)		62.2(2)	O8-Dy2-Cl3	76.55(18)
O6 ${ }^{\text {ii- }}$ - ${ }^{\text {dyl-O5 }}{ }^{\text {ii }}$	165.4(2)	O7-Dy2-Cl3	149.53(18)	O8-Dy2-O2 ${ }^{\text {i }}$	$70.5(2)$
O6ii-Dy1-N6 ${ }^{6 i}$	67.3(2)	07-Dy2-O2 ${ }^{\text {i }}$	81.8(2)	O8-Dy2-N1 ${ }^{\text {i }}$	150.3(2)
O6ii-Dy1-N5 ${ }^{\text {ii }}$	130.0(2)	O7-Dy2-N1 $1^{\text {i }}$	$77.0(2)$	O8-Dy2-N2 ${ }^{\text {i }}$	121.0(3)
N6ii-Dy1-Cl2	92.69(17)				

Table S6. SHAPE analysis of the Dy(III) in $\boldsymbol{R} \mathbf{- 1}$.

Label	Shape	Symmetry	Distortion $\left({ }^{\circ}\right)$ Dy1
OP-8	$D_{8 \mathrm{~h}}$	Octagon	34.487
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	22.988
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	8.288
CU-8	O_{h}	Cube	7.49
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	3.974
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	4.09
		16	

JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	8.617
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid (J14)	26.801
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism (J50)	4.886
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	3.962
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	6.342
TT-8	$T_{\text {d }}$	Triakis tetrahedron	8.314
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	22.458
Label	Shape	Symmetry	Distortion (${ }^{\circ}$)
			Dy2
OP-8	$D_{8 \mathrm{~h}}$	Octagon	34.129
HPY-8	$C_{7 v}$	Heptagonal pyramid	21.436
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	9.685
CU-8	$O_{\text {h }}$	Cube	9.303
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	4.745
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	3.779
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	8.679
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid (J14)	25.067
JBTP-8	$C_{2 v}$	Johnson-Biaugmented trigonal prism (J50)	3.561
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	2.850
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	5.831
TT-8	$T_{\text {d }}$	Triakis tetrahedron	9.698
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	21.770

Table S7. SHAPE analysis of the Dy(III) in $\boldsymbol{S} \mathbf{- 1}$.

Label	Shape	Symmetry	Distortion (${ }^{\circ}$) Dy1
OP-8	$D_{8 \mathrm{~h}}$	Octagon	34.592
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	23.059
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	8.351
CU-8	O_{h}	Cube	7.512
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	3.967
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	4.090
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	8.669
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid	26.819
		(J14)	4.877
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism	$($ J50)
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	3.966
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	6.330

TT-8	T_{d}	Triakis tetrahedron ETBPY-8	$D_{3 \mathrm{~h}}$

Table S8. SHAPE analysis of the Dy(III) in $\boldsymbol{R} \mathbf{- 2}$.

Label	Shape	Symmetry	Distortion (${ }^{\circ}$)
Dy1			
HP-7	$D_{7 \mathrm{~h}}$	Heptagon	33.271
HPY-7	$C_{6 \mathrm{v}}$	Hexagonal pyramid	21.157
PBPY-7	$D_{5 \mathrm{~h}}$	Pentagonal bipyramid	1.980
COC-7	$C_{3 \mathrm{v}}$	Capped octahedron	7.541
CTPR-7	$C_{2 \mathrm{v}}$	Capped trigonal prism	5.685
JPBPY-7	$D_{5 \mathrm{~h}}$	Johnson pentagonal bipyramid (J13)	7.191
JETPY-7	$C_{3 \mathrm{v}}$	Elongated triangular pyramid (J7)	18.338
Label	Shape	Symmetry	Distortion (${ }^{\circ}$)
			Dy2
OP-8	$D_{5 \mathrm{~h}}$	Octagon	34.143
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	21.865
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	8.394
CU-8	O_{h}	Cube	7.344
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	3.883
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	3.702
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	8.522
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid	27.074
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism	4.241

(J50)

BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	3.428
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	6.248
TT-8	T_{d}	Triakis tetrahedron	7.859
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	22.217

Table S9. SHAPE analysis of the Dy(III) in $\boldsymbol{S} \mathbf{- 2}$.

Label	Shape	Symmetry	Distortion $\left({ }^{\circ}\right)$ Dy1
			33.413
HP-7	$D_{7 \mathrm{~h}}$	Heptagon	21.230
HPY-7	$C_{6 \mathrm{v}}$	Hexagonal pyramid	1.969
PBPY-7	$D_{5 \mathrm{~h}}$	Pentagonal bipyramid	7.650
COC-7	$C_{3 \mathrm{v}}$	Capped octahedron	5.768
CTPR-7	$C_{2 \mathrm{v}}$	Capped trigonal prism	7.176
JPBPY-7	$D_{5 \mathrm{~h}}$	Johnson pentagonal bipyramid (J13)	18.301
JETPY-7	$C_{3 \mathrm{v}}$	Elongated triangular pyramid (J7)	Distortion $\left(^{\circ}\right)$
Label	Shape	Symmetry	Dy2
OP-8	$D_{8 \mathrm{~h}}$	Octagon	34.055
HPY-8	$C_{7 \mathrm{v}}$	Heptagonal pyramid	21.821
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid	8.266
CU-8	O_{h}	Cube	7.332
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism	3.953
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron	3.773
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson-Gyrobifastigium (J26)	8.379
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson-Elongated triangular bipyramid	26.975
		(J14)	
JBTP-8	$C_{2 \mathrm{v}}$	Johnson-Biaugmented trigonal prism	4.246
	(J50)		
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmen tedtrigonal prism	3.455
JSD-8	$D_{2 \mathrm{~d}}$	Snub disphenoid (J84)	6.167
TT-8	T_{d}	Triakis tetrahedron	7.843
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid	22.183

Note 1

SQUEEZE results for these four compounds are as follows:

(1) $R-1$

loop_
_platon_squeeze_void_nr

```
_platon_squeeze_void_average_x
platon_squeeze_void_average_y
_platon_squeeze_void_average_z
_platon_squeeze_void_volume
_platon_squeeze_void_count_electrons
_platon_squeeze_void_content
10.1760.126 0.764 188 43 "
2-0.179 0.626 0.735 184 43 "
30.3240.874 0.264 188 43 "
40.6790.3730.235184 43 "
That is, SQUEEZE gives 43 electrons/unit cell for the voids, and each formula unit has \(43 / 4\) \(=10.75\) electrons (since \(Z=4\) ). It is well known that \(1 \mathrm{H}_{2} \mathrm{O}\) molecule contains 10 electrons, \(1 \mathrm{CH}_{3} \mathrm{CN}\) molecule contains 22 electrons, and a \(\mathrm{CH}_{3} \mathrm{OH}\) molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of \(\boldsymbol{R} \mathbf{- 1}\) is calculated to be: \(\left[\mathrm{Dy}_{2}\left(R-\mathrm{L}^{1}\right)(\mathrm{Cl})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\right] \cdot \mathrm{Cl} \cdot 4 \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{CH}_{3} \mathrm{CN} \cdot 2 \mathrm{H}_{2} \mathrm{O}\).
```


(2) S-1

loop_
_platon_squeeze_void_nr
_platon_squeeze_void_average_x
_platon_squeeze_void_average_y
_platon_squeeze_void_average_z
_platon_squeeze_void_volume
_platon_squeeze_void_count_electrons
_platon_squeeze_void_content
$1-0.1810 .1250 .76718336$ "
20.1830 .6250 .73317936 "
30.3190 .3750 .23318236 "
40.6830 .8750 .26717936 "

That is, SQUEEZE gives 36 electrons/unit cell for the voids, and each formula unit has 36/4 =9
electrons (since $\mathrm{Z}=4$). It is well known that $1 \mathrm{H}_{2} \mathrm{O}$ molecule contains 10 electrons, $1 \mathrm{CH}_{3} \mathrm{CN}$ molecule contains 22 electrons, and a $\mathrm{CH}_{3} \mathrm{OH}$ molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of $\boldsymbol{R} \mathbf{- 1}$ is calculated to be: $\left[\mathrm{Dy}_{2}\left(S-\mathrm{L}^{1}\right)(\mathrm{Cl})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\right] \cdot \mathrm{Cl} \cdot 6 \mathrm{CH}_{3} \mathrm{OH}$.

(3) $R-2$

loop_
_platon_squeeze_void_nr
_platon_squeeze_void_average_x
_platon_squeeze_void_average_y
_platon_squeeze_void_average_z
_platon_squeeze_void_volume
_platon_squeeze_void_count_electrons
platon_squeeze_void_content
$1-0.0100 .2501 .00039894$ "
$2-0.0160 .7500 .50039894$ "
That is, SQUEEZE gives 94 electrons/unit cell for the voids, and each formula unit has $94 / 4=23.5$ electrons (since $\mathrm{Z}=4$). It is well known that $1 \mathrm{H}_{2} \mathrm{O}$ molecule contains 10 electrons, $1 \mathrm{CH}_{3} \mathrm{CN}$ molecule contains 22 electrons, and a $\mathrm{CH}_{3} \mathrm{OH}$ molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of $\boldsymbol{R} \mathbf{- 2}$ is calculated to be: $\left[\mathrm{Dy}_{2}\left(R-\mathrm{L}^{1}\right)\left(\mathrm{Cl}_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right] \cdot \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O} \cdot 4 \mathrm{CH}_{3} \mathrm{OH}\right.$.

(4) $S-2$

loop_
_platon_squeeze_void_nr
_platon_squeeze_void_average_x
_platon_squeeze_void_average_y
_platon_squeeze_void_average_z
_platon_squeeze_void_volume
_platon_squeeze_void_count_electrons
_platon_squeeze_void_content
$1-0.0280 .2500 .500376115$ "
$2-0.0050 .7500 .000376115$ "
That is, SQUEEZE gives 115 electrons/unit cell for the voids, and each formula unit has 115/4 $=28.75$ electrons (since $Z=4$). It is well known that $1 \mathrm{H}_{2} \mathrm{O}$ molecule contains 10 electrons, $1 \mathrm{CH}_{3} \mathrm{CN}$ molecule contains 22 electrons, and a $\mathrm{CH}_{3} \mathrm{OH}$ molecule contains 18 electrons. Furthercombined with elemental analysis and thermogravimetric analysis results (Figure S3), the molecular formula of $\boldsymbol{S} \mathbf{- 2}$ is calculated to be: $\left[\mathrm{Dy}_{2}\left(S-\mathrm{L}^{1}\right)(\mathrm{Cl})_{3}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right] \cdot \mathrm{Cl} \cdot 5 \mathrm{CH}_{3} \mathrm{OH}$.

