Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting information

Compound 1						
W(1)	6.27	W(7)	6.14			
W(2)	6.23	W(8)	5.74			
W(3)	6.78	W(9)	6.64			
W(4)	5.98	W(10)	6.59			
W(5)	6.48	W(11)	5.67			
W(6)	6.67	W(12)	6.43			
Compound 2						
W(1)	6.33	W(5)	6.66			
W(2)	6.58	W(6)	6.72			
W(3)	6.28	W(7)	6.93			
W(4)	6.08	W(8)	5.95			
Compound 4						
W(1)	5.96	W(7)	6.08			
W(2)	6.36	W(8)	6.11			
W(3)	5.84	W(9)	5.62			
W(4)	6.03	W(10)	6.07			
W(5)	5.98	W(11)	6.00			
W(6)	5.93	W(12)	5.49			
Compound 5						
W(1)	6.07	W(7)	6.23			
W(2)	6.11	W(8)	6.16			
W(3)	6.26	W(9)	6.05			
W(4)	6.17	W(10)	6.16			
W(5)	6.10	W(11)	6.17			
W(6)	6.14	W(12)	6.05			
For compound 1, 2 and 5, the equations used for the BVS of W are $s=exp[(1.917-r)/0.37]$, while for compound						
4 , the equations used for the BVS of V are $s=10^{(-0.5*(R-R_0)/R)}$, and $R_0=1.917$.						

Table S1. BVS results of the independent W atoms in compounds 1-2 and 4-5

	Compound 1	Compound 2	Compound 4
Empirical formula	$C_{50}H_{49}O_{52}N_{10}Cu_5Cl_2P_3W_{12}$	$C_{81}H_{104.5}O_{112.75}N_{15}Cu_{4.5}P_{2}W_{24}$	C ₇₂ H ₅₈ O ₄₅ N ₁₂ Zn ₂ PW ₁₂
Formula weight	4309.15	7852.56	4179.21
Crystal system	triclinic	trigonal	triclinic
Space group	P-1	R-3	P1
a (Å)	10.9802(5)	35.2928(4)	12.0386(11)
b (Å)	12.7843(5)	35.2928(4)	13.6743(12)
c (Å)	15.3506(7)	22.6516(7)	14.7316(13)
α (°)	88.0280(10)	90	105.088(3)
β (°)	84.1660(10)	90	90.564(3)
γ (°)	80.5840(10)	120	97.682(3)
Volume (Å ³)	2114.44(16)	24434.4(9)	2318.0(4)
Z	1	6	1
$Dc (Mg \cdot m^{-3})$	3.385	3.202	2.994
$\mu (mm^{-1})$	17.696	17.569	15.440
F(000)	1947.0	21204.0	1897.0
20 IOF data	4.832 to 50.758	4.616 to 50.734	4.776 to 50.834
Deflections			
collection	19273	24355	21389
Reflections unique	12131	9895	13403
R(int)	0 0599	0.0859	0.0539
Completeness to θ	0.986	0.993	0.990
norometers	1080	0.995	1210
GOF on F ²	1 0 4 5	1 034	1 0/8
$R^{a}[I > 2\sigma(I)]$	$R_{i} = 0.0556$	$R_{1}=0.0891$	$R_{*}=0.0664$
$R_{b}(all data)$	$\omega R_2 = 0.1564$	$\omega R_2 = 0.2724$	$mR_{2}=0.1940$
it (uii uuu)	Compound 5	Compound 6	
Empirical formula	C48H40O44N8Zn2SiW12	$C_{40}H_{32}O_{40}N_8Zn_2SiW_{12}$	
Formula weight	3797.91	3629.76	
Crystal system	triclinic	monoclinic	
Space group	P-1	$P2_1/n$	
a (Å)	12.2370(9)	13.6089(7)	
b (Å)	14.0325(10)	12.1703(5)	
c (Å)	22.9061(15)	18.8970(8)	
α (°)	83.241(2)	90	
β (°)	84.184(2)	93.463(2)	
γ (°)	65.508(2)	90	
Volume (Å ³)	3548.5(4)	3124.1(2)	
Z	2	2	
$Dc (Mg \cdot m^{-3})$	3.554	3.859	
μ (mm ⁻¹)	20.143	22.865	
F(000)	3396.0	3220.0	
2θ for data collection	4.604 to 50.858	4.906 to 50.812	
Reflections collection	33027	20771	
Reflections unique	12921	5632	
R(int)	0.0563	0.0630	
Completeness to θ	0.989	1.134	
parameters	1036	439	
GOF on F^2	1.058	1.134	
$R^{a}[I > 2\sigma(I)]$	$R_1 = 0.0502$	$R_1 = 0.1434$	
R ^o (all data)	$\omega R_{2} = 0.1432$	$MR_2 = 0.3402$	

Table S2. Crystal Data of Compounds

 ${}^{a}R_{1}\!\!=\!\!\Sigma||F_{0}|\!-\!|F_{c}||/\Sigma|F_{0}|, \quad {}^{b}\omega R_{2}\!\!=\!\!\{[w(F0_{2}\!-\!F_{c}{}^{2})^{2}]/\Sigma[w(F_{0}{}^{2})^{2}]\}^{1/2}$

Figure S1. (a) The Ball-stick representation of coordination environment in **3** (b) View of the 2D structure of compound **3**. (c) View of the 3D stacking structure of compound **3**.

Figure S2. (a) The Ball-stick representation of coordination environment in **6**. (b) View of the 2D structure of compound **6**. (c) View of the 3D stacking structure of compound **6**.

Figure S3. (a-f) FT-IR spectra of compounds 1-6.

Figure S4. (a-f) FT-IR spectra of compounds 1-6.

Figure S5. (a-f) the experimental and simulated XRD patterns of compounds 1-6.

	Electrolyte	$C_s (F \cdot g^-)$	current	references
electrode	(H_2SO_4)	¹)	density	
			$(A \cdot g^{-1})$	
$[Cu_5(2,2\text{'-bpy})_5(\mu_2\text{-}Cl)_2(PO_4)_2(H_2O)_2][HPW_{12}O_{40}]\cdot 2H_2O$	0.5 M	94.0	1.5	This work
$[Cu_{1.5}(2,2^{2}-bpy)_{1.5}(inic)_{2}(H_{2}O)_{1.5}]_{3}[H_{1.5}PW_{12}O_{40}]_{2} \cdot 16.25H_{2}O$	0.5 M	45.8	1.5	This work
$[Cu(2,2'-bpy)_2]_2[SiW_{12}O_{40}]\cdot \frac{10}{10}H_2O$	0.5 M	18.9	1.5	This work
$[Zn(phen)_3]_2 [PW^VW^{VI}_{11}O_{40}] \cdot 5H_2O$	0.5 M	24.4	1.5	This work
$[Zn(phen)_2(H_2O)]_2[SiW_{12}O_{40}] \cdot 2H_2O$	0.5 M	26.5	1.5	This work
$[Zn(2,2'-bpy)_2]_2[SiW_{12}O_{40}]$	0.5 M	58.9	1.5	This work
$[Ag_{10}(C_2H_2N_3)_8][HVW_{12}O_{40}]$	1 M	93.5	1.5	1
$[Ag_{10}(C_2H_2N_3)_6][SiW_{12}O_{40}]$	1 M	47.8	1.5	1
$[Ag(C_2H_2N_3)][Ag_{12}(C_2H_2N_3)_9][H_2BW_{12}O_{40}]$	1 M	42.9	1.5	1
$(H_2 bipy)[CuI_2(bipy)_2(H_3 PMo_{11}CuO_{40})]$	0.5 M	407.7	1.5	2
H[Cu ¹ ₂ (bipy) ₂ Cu ¹ (bipy)(β-Mo ₈ O ₂₆)]	0.5 M	373.8	1.5	2
$[Cu^{I}H_{2}(C_{12}H_{12}N_{6})(PMo_{12}O_{40})] \cdot [(C_{6}H_{15}N)(H_{2}O)_{2}]$	1 M	249.0	3	3
$[Cu^{II}_{2}(C_{12}H_{12}N_{6})_{4}(PMo^{VI}_{9}Mo^{V}_{3}O_{39})]$	1 M	154.5	3	3
$(H_2bpe)(Hbpe)_2\{[Cu(pzta)(H_2O)][P_2W_{18}O_{62}]\} \cdot 5H_2O$	1 M	168	5	4
$[{Ag(phen)_2}_4{Ag(phen)}_2(H_2BW_{12}O_{40})_2]$	1 M	1647	2.16	5
$H_3[Cu_2(4-dpye)_2(PMo_{12}O_{40})]$	0.1 M	260.0	0.5	6
$H_3[Cu_2(4-dpye)_2(PMo_{12}O_{40})]$	0.1 M	196.6	0.5	6
$[Co(phen)_3]_2[AsW_{12}O_{40}] \cdot 2H_2O$	0.5 M	643.3	3	7
(Hbipy) ₂ [Mn(bipy) ₃] ₂ [As ₂ W ₁₈ O ₆₂]	0.5 M	789.5	3	7
$(H_2 bib)_5 [Co_4 (H_2 O)_2 (As W_9 O_{34})_2] \cdot 2H_2 O$	0.5 M	819.4	3	7

Table S3. Summary of POM-based composite electrodes of three-electrode supercapacitors

References:

- 1 Y. Hou, H. Pang, C. J. Gómez-García, H. Ma, X. Wang and L. Tan, *Inorganic Chemistry*, 2019, **58**, 16028-16039.
- L. Ma, B. Lu, S. Li, J. Liang, L. Zhang, M. Liang and M. Pang, *Journal of Molecular Structure*, 2023, 1281.
- 3 D. Chai, J. Xin, B. Li, H. Pang, H. Ma, K. Li, B. Xiao, X. Wang and L. Tan, *Dalton Transactions*, 2019, 48, 13026-13033.
- 4 G. Wang, T. Chen, S. Li, H. Pang and H. Ma, *Dalton Trans.*, 2017, 46, 13897-13902.
- 5 Q.-L. Liang, N.-N. Du, L.-G. Gong, C.-X. Wang, C.-M. Wang, K. Yu and B.-B. Zhou, *New Journal of Chemistry*, 2021, **45**, 14444-14450.
- 6 Q.-Q. Liu, X.-L. Wang, H.-Y. Lin, Z.-H. Chang, Y.-C. Zhang, Y. Tian, J.-J. Lu and L. Yu, *Dalton Transactions*, 2021, **50**, 9450-9456.
- 7 R. Tian, L.-p. Cui, K. Yu, J.-h. Lv, Y.-j. Ma, L.-l. He and B.-b. Zhou, ACS Applied Nano Materials, 2022, 5, 14882-14892.