Facile synthesis of multi-phase (Si+SiO₂) @C anode materials for Lithium-ion batteries

Shuai Wang¹, Zhenfei Cai¹, Rui Cao¹, Ziyang Ma¹, Qinyu Wu¹, Muhmmad Moin¹, Zishan Ahsan¹, Yangzhou Ma^{1*}, Guangsheng Song^{1*}, Weidong Yang², Cuie Wen³

¹Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials,

Ministry of Education, School of Materials Science and Engineering, Anhui University of

Technology, Maanshan, 243000, China

² Future Manufacturing Flagship, Commonwealth Scientific and Industry Research Organization, Melbourne, Victoria 3168

³ School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia

The D_{Li^+} coefficient can be determined by the Warburg coefficient (S1)¹:

 $D_{Li+} = R^2 T^2 / (2A^2 n^4 F^4 C^2 \sigma_{\omega}^2 \text{ (S1)}$

Where R is the gas constant of 8.314J (mol/K), T is the temperature at which the sample was tested, A is the electrode area immersed in the electrolyte, n is the number of transferred electrons, F is the Faraday constant (96500 C/mol), and C is the molar concentration of Li+ in the electrode.

It is apparent that the D $_{Li^+}$ are only related to the Warburg coefficients (ω), which were determined from a linear fit to the low-frequency region:

$$Z' = R_e + R_{ct} + \sigma_\omega * \omega^{-0.5}$$
 (S2)

The current response at a certain scan rate is evaluated by Eq. S3²:

$$i = av^b$$
 (S3)

Where a is a constant. b could be obtained by linear fitting the logarithm of the peak current and the logarithm of the corresponding scanning rate. According to the Conway theoretical equations (S3),

^{*} Corresponding authors: E-mail addresses: yangzhou.ma@outlook.com (Y.Z. Ma), song_ahut@163.com (G.S. Song).

Values a and b are the regulation parameters, and the value of b is determined by a series of logarithmic fits of the peak currents, and when b = 0.5, the storage mechanism of lithium ions is the diffusion contribution, and when b = 1, it indicates that the storage mechanism of lithium ions is all capacity contribution

•

Si anode materials	Synthesis method	current density (mA/g)	N/capacity retention(%)	ICE(%)	Ref.
Si/SiO ₂ @C composites	ball milling+ magnesiothermic reduction+ C coating	50	50/59.6%	56.7	3
Si@SiO2@ amorphous-C	ball milling+ magnesiothermic reduction	1000	200/93.1%	54%	4
Si/SiO ₂ coated with lignin-derived carbon (Si/SiO2@ALC)	magnesiothermic reduction	200	150/87.1%	73.1	5
Si-SiO ₂ /carbon nanospheres composite	magnesiothermic reduction+template method + carbonthermal vapor deposition	150	200/96%	64%	6
Si@C@SiO ₂	template method+ liquid phase synthesis+coating	200	300/89.4%	73.2	7
Si@SiO ₂ /C composite	wet chemistry+liquid phase coating	420	200/70%	61%	8
Porous Si/SiO2/C	Dealloying+ solid state reaction	100	100/51.2%	53.4	9
SS50-900C	Ball milling+carbonthermal vapor deposition	100 200	130/96.6% 280/79.5%	62.5%	This work

Table 1. Comparison of electrochemical performance for various Si/SiO₂-based anode materials reported recently.

References

1S. Zhang, Q. Fan, Y. Liu, S. Xi, X. Liu, Z. Wu, J. Hao, W. K. Pang, T. Zhou and Z. Guo, Advanced Materials, 2020, 32, 2000380.

2D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S. V. Savilov, J. Lin and Z. X. Shen, ACS Nano, 2016, 10, 10211–10219.

3Y. Zhou, Z. Tian, R. Fan, S. Zhao, R. Zhou, H. Guo and Z. Wang, Powder Technology, 2015, 284, 365–370.

4C.-H. Zheng, G.-P. Zhang, S.-S. Wang, A.-Q. Mao and D.-L. Fang, Journal of Alloys and Compounds, 2021, 875, 159974.

5W. Wu, M. Wang, J. Wang, C. Wang and Y. Deng, ACS Appl. Energy Mater., 2020, 3, 3884–3892.

6Y. Du, M. Hou, D. Zhou, Y. Wang, C. Wang and Y. Xia, Journal of Energy Chemistry, 2014, 23, 315–323.

7T. Yang, X. Tian, X. Li, K. Wang, Z. Liu, Q. Guo and Y. Song, *Chemistry A European J*, 2017, 23, 2165–2170.

8D. Shen, C. Huang, L. Gan, J. Liu, Z. Gong and M. Long, ACS Appl. Mater. Interfaces, 2018, 10, 7946–7954.

9K. Wang, Y. Tan, P. Li, B. Xue and J. Sun, ACS Appl. Mater. Interfaces, 2019, 11, 37732–37740.