Supporting information

Development of a novel Eu²⁺ activated oxonitridosilicate cyan phosphor for enhancing

the color quality of violet-chip-based white LED

Langping Dong,^{a*} Jinqing Gao,^a Yijia Guo,^a Jingshan Hou,^{a*} Baiqi Shao,^b and Yongzheng

Fang^a*

^a School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai,

201418, China.

^b Joint Centre of Translation Medicine, Wenzhou Institute, University of Chinese Academy of

Sciences, Wenzhou, Zhejiang 325000, P.R. China.

* Corresponding author. *E-mail address:* <u>lpdong@sit.edu.cn</u> (L. D.); <u>houjingshan@hotmail.com</u> (J. H.); <u>fyz1003@sina.com</u> (Y. F.).

Figure S1 Excitation spectra monitored at 494 and 534 nm of LSANO:0.01Eu²⁺ sample.

Figure S2 (a) Diffuse reflectance spectra of Eu-doped and non-doped LSANO samples; (b) optical absorption edge of the LSANO.

Figure S3 Dependence of Log(I/x) versus Log(x) and the linear fitting (Here, the luminescence

intensity I is integral intensity).

Figure S4 PL decay curves of LSANO: xEu^{2+} (x = 0.002, 0.01, 0.04 and 0.08) phosphors.

Figure S5 Chromaticity coordinates of the white LEDs in the CIE chromaticity diagram.

Tables

Crystallographic data of LSANO:0.01Eu ²⁺	
2θ range/deg.	10 - 80
T/K	298
symmetry	monoclinic
space group	I2/a
a/Å	15.862
b/Å	4.914
$c/{ m \AA}$	18.074
$lpha/ ext{deg.}$	90°
eta/deg.	115.043°
γ/deg.	90°
Volume/Å ³	1276.391
R_p /%	4.32
$R_{\scriptscriptstyle wp}$ /%	5.26
χ^2	2.332

Table S1 Significant parameters of LSANO:0.01Eu²⁺

Measurements and characterization: The phases of samples were identified using powder X-ray diffraction (XRD) analysis (Bruker AXS D8), with graphite monochromatized Cu Ka radiation ($\lambda = 0.15405$ nm) operating at 40 kV and 40 mA. The scanning rate was 10° min⁻¹ with a step size of 0.02°. The morphology and chemical composition of the powders was investigated by field emission scanning electron microscopy (SEM) equipped with an energy-dispersive (EDS) spectrometer (S-4800, Hitachi, Japan). Transmission electron microscopy (TEM) was taken on a FEI Tecnai G2S-Twin with a field-emission gun operating at 200 kV. X-ray photoelectron spectroscopy (XPS) spectra were obtained from a VG ESCALABMK II electron spectrometer. PLE and PL spectra were measured at room temperature by a Hitachi F7000 spectrophotometer equipped with a 150 W xenon lamp under a working voltage of 400 V, with a spectral slit width of 2.5 nm. The diffuse-reflectance spectra were measured by a Hitachi U-4100 spectrophotometer. The PL decay curves were detected by a Lecroy Wave Runner 6100 digital oscilloscope (1 GHz) using a tunable laser (pulse width = 4 ns, gate = 50 ns) as the excitation source (Continuum Sunlite OPO). The temperature-dependent luminescence spectra were measured in the range of 7 - 475 K with a fluorescence spectrophotometer, using a 450 W Xe lamp as an excitation source (Edinburgh Instruments FLSP-920) with a temperature controller.