Supporting information—Methanol as anti-solvent to improve the low open-circuit voltage of CsPbBr$_3$ perovskite solar cells prepared with water

Figure S1. The Voc and PCE box chart of CsPbBr$_3$ device obtained by CsBr/H$_2$O solution.

Figure S2. The contact angle image of (a) PbBr$_2$ layer to CsBr/H$_2$O solution and (b) PbBr$_2$ layer added with 2-Hydroxyethylurea to CsBr/H$_2$O solution.
Figure S3. The CsPbBr$_3$ film prepared with CsBr/H$_2$O solution treated (a) without and with (b) MT, (c) IPA, and (d) ET.

Figure S4. The J-V curve of CsPbBr$_3$ PSCs treated with IPA and ET.
Figure S5. The J-V curve of CsPbBr$_3$ PSCs contained 2-Hydroxyethylurea treated with IPA and ET.

Figure S6. SEM spectra of (a) PbBr$_2$ layer and (b) PbBr$_2$ layer contained 2-Hydroxyethylurea; (c) XRD image of PbBr$_2$ layer and PbBr$_2$ layer contained 2-Hydroxyethylurea.
Figure S7. (a) UV-vis, (b) PL spectra of methanol anti-solvent treated CsPbBr$_3$ films obtained from the PbBr$_2$ layers with and without 2-Hydroxyethylurea.

Figure S8. The structural formula of 2-Hydroxyethylurea.

Table S1. The coefficient of TRPL double exponential function fitting curve.

<table>
<thead>
<tr>
<th>perovskite film</th>
<th>A_1 (%)</th>
<th>A_2 (%)</th>
<th>τ_1 (ns)</th>
<th>τ_2 (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>89.47</td>
<td>10.53</td>
<td>0.66856</td>
<td>7.3879</td>
</tr>
<tr>
<td>With MT</td>
<td>67.17</td>
<td>32.83</td>
<td>0.59518</td>
<td>8.64355</td>
</tr>
</tbody>
</table>