Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Dalton Transactions 2024

Electronic Supplementary Information (ESI)

"Highly energetic *N*-cyano-substituted CL-20 analogues: challenging the stability limits of polynitro hexaazaisowurtzitanes"

Vladimir V. Parakhin,*^a Galina V. Pokhvisneva, ^a Nina I. Shlykova, ^a Sergei V. Nikitin, ^a Aida I. Samigullina, ^a Gennady A. Smirnov, ^a Pavel B. Gordeev, ^a Tat'yana S. Kon'kova, ^b David B. Lempert ^c and A. N. Pivkina ^b

^a N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, 119991, Russian Federation. E-mail: parakhin@ioc.ac.ru.

^b N. N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, 119991, Russian Federation.

^c Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Ac. Semenov avenue 1, Chernogolovka, Moscow Region, 142432, Russian Federation.

<u>Contents</u>

Experimental Section	S6–S14
General methods	S6–S8
Synthesis of polynitro hexaazaisowurtzitanes 4, 5, 6, 8, 10, 12, 14, 15, 20–23	S9–S17
Spectra of polynitro hexaazaisowurtzitanes 4, 5, 6, 8, 10, 12, 14, 15, 20–23	S18–S93
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of 4	S18
¹ H NMR (300.1 MHz, [D ₆]DMSO) spectrum of 4	S19
¹³ C NMR (75.5 MHz, [D ₆]DMSO) spectrum of 4	S20
¹⁴ N NMR (21.7 MHz, [D ₆]DMSO) spectrum of 4	S21
IR (KBr) spectrum of 4	S22
HRMS (ESI) of 4	S23
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of 5	S24
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of 5	S25
{ ¹ H– ¹³ C} COSY NMR (600.13 MHz, [D ₆]acetone) spectrum of 5	S26
{ ¹ H– ¹³ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of 5	S27
{ ¹ H– ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of 5	S28
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of 5	S29
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of 5	S30
{ ¹ H– ¹⁵ N} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of 5	S31
IR (KBr) spectrum of 5	S32
HRMS (ESI) of 5	S33
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of 6	S34
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of 6	S35
{ ¹ H– ¹³ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of 6	S36
{ ¹ H– ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of 6	S37
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of 6	S38

¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of 6	S39
IR (KBr) spectrum of 6	S40
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of 8	S41
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of 8	S42
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of 8	S43
IR (KBr) spectrum of 8	S44
HRMS (ESI) of 8	S45
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of 10	S46
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of 10	S47
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of 10	S48
IR (KBr) spectrum of 10	S49
HRMS (ESI) of 10	S50
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of 12	S51
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of 12	S52
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of 12	S53
IR (KBr) spectrum of 12	S54
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of 14	S55
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of 14	S56
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of 14	S57
IR (KBr) spectrum of 14	S58
HRMS (ESI) of 14	S59
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of 15	S60
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of 15	S61
{ ¹ H– ¹³ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of 15	S62
{ ¹ H– ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of 15	S63
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of 15	S64

¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of 15	S65
{ ¹ H– ¹⁵ N} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of 15	S66
IR (KBr) spectrum of 15	S67
HRMS (ESI) of 15	S68
¹ H NMR (300.1 MHz, [D ₆]DMSO) spectrum of 20	S69
¹³ C NMR (75.5 MHz, [D ₆]DMSO) spectrum of 20	S70
¹⁴ N NMR (21.7 MHz, [D ₆]DMSO) spectrum of 20	S71
IR (KBr) spectrum of 20	S72
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of 22	S73
¹ H NMR (300.1 MHz, [D ₆]DMSO) spectrum of 22	S74
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of 22	S75
{ ¹ H– ¹³ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of 22	S76
{ ¹ H– ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of 22	S77
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of 22	S78
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of 22	S79
IR (KBr) spectrum of 22	S80
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of 21	S81
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of 21	S82
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of 21	S83
IR (KBr) spectrum of 21	S84
HRMS (ESI) of 21	S85
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of 23	S86
¹ H NMR (600.13 MHz, [D ₆]DMSO) spectrum of 23	S87
¹³ C NMR (150.9 MHz, [D ₆]DMSO) spectrum of 23	S88
{ ¹ H– ¹³ C} HSQC NMR (600.13 MHz, [D ₆]DMSO) spectrum of 23	S89
{ ¹ H– ¹³ C} HMBC NMR (600.13 MHz, [D ₆]DMSO) spectrum of 23	S90

¹⁴ N NMR (43.37 MHz, [D ₆]DMSO) spectrum of 23	S91
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]DMSO) spectrum of 23	S92
IR (KBr) spectrum of 23	S93
Analysis of spectral characteristics of polynitro hexaazaisowurtzitanes 4, 5, 6, 8, 10, 12, 14, 15, 20–23	S94–S98
Table of assigned ¹ H, ¹³ C{ ¹ H}, ¹⁴ N NMR shifts [ppm] of 4-carbomoyl-2,6,8,12-tetranitroisowutzitanes 4, 10, 14, 20, 21	S94
Table of assigned ¹ H, ¹³ C{ ¹ H}, ¹⁴ N NMR shifts [ppm] of 4-cyano-2,6,8,12-tetranitroisowutzitanes 5 , 6 , 15 , 22 , 23	S95
Table of assigned ¹⁵ N NMR shifts [ppm] of 4-cyano-2,6,8,12-tetranitroisowutzitanes 5 , 6 , 15 , 22 , 23	S96
Table of assigned IR vibrations [cm ⁻¹] of polynitro hexaazaisowurtzitanes 4, 5, 6, 8, 10, 12, 14, 15, 20–23 in KBr	S96
Table of assigned ¹ H, ¹³ C{ ¹ H}, ¹⁴ N NMR shifts [ppm] of 2,6,8,12-tetranitroisowutzitanes 8 and 12	S97
Description of the spectra of 4- carbomoyl- and 4-cyano- hexaazaisowurtzitanes 4, 10, 14, 20, 21 and 5, 6, 15, 22, 23	S98
X-ray crystal structure determination of 5, 15, 22 and 23	S99-S112
Single crystal X-ray diffraction of cyano derivative of tetranitrohexaazaisowurtzitane 5	S99
Single crystal X-ray diffraction of cyano derivative tetranitrohexaazaisowurtzitane containing 2,2,2-trinitroethyl moiety 15	S103
Single crystal X-ray diffraction of cyano derivative of pentanitrohexaazaisowurtzitane 22	S106
Single crystal X-ray diffraction of dicyano derivative tetranitrohexaazaisowurtzitane 23	S110
Molecular electrostatic surface potentials (ESPs) for cyano derivatives 5, 15, 22, 23 and CL-20	S113–117
Differential scanning calorimetric (DSC) and thermogravimetric (TG) analysis for cyano derivatives 5, 6, 15, 22, 23	S118–120
Combustion calorimetry measurements of cyano derivatives of polynitro hexaazaisowurtzitanes 5, 6, 15, 22, 23	S121-123
High-temperature chemical equilibria thermodynamic calculations for cyano derivatives 5, 6, 15, 22, 23 and CL-20	S124–126
Explosive performance of cyano derivatives of polynitro hexaazaisowurtzitanes 5, 6, 15, 22, 23	S127
References	S128

Experimental Section

General methods

Analytical thin-layer chromatography (TLC) was carried out on Silufol UV-254 silica gel and Merck 60 F254 silica gel aluminum sheets. Merck 60 (15–40 µm) silica gel was used for preparative column and thin-layer chromatography. Melting points were determined with a Boethius Kofler melting point apparatus (heat rate 5 °C·min⁻¹). ¹H, ¹³C and ¹⁴N NMR spectra of compounds 4, 8, 10, 12, 14, 20, 21 were recorded using a 300 MHz (Bruker AM300) nuclear magnetic resonance spectrometer operating at 300.1, 75.5 and 30.4, respectively. ¹H, ¹³C{¹H}, ¹⁴N and ¹⁵N{¹H} NMR spectra of compounds 5, 6, 15, 22, 23 were recorded using a 600 MHz (Bruker AV600) nuclear magnetic resonance spectrometer operating at 600.13, 564,69, 150.9, 43.37 and 60.8 MHz, respectively. DMSO-d₆ and acetone-d₆ were employed as NMR solvent. Chemical shifts /in the ¹H, ¹³C, ¹⁹F, ¹⁴N and ¹⁵N spectra are reported in delta (δ) units, parts per million (ppm), relative to the internal standard Me₄Si (TMS) (¹H, ¹³C – positive values correspond to downfield chemical shifts) and external standard MeNO₂ (¹⁴N, ¹⁵N – negative values correspond to upfield shifts). The values of the spectral parameters J and $\Delta v_{1/2}$ are given in Hz. The signals in the NMR spectra were assigned based on the values of a resonance peaks in similar compounds.^{8,27} IR spectra were recorded on a Bruker ALPHA-T spectrometer in the range from 4000 to 400 cm⁻¹ (resolution 2 cm⁻¹) using KBr pellets. The IR spectral frequencies were assigned according to commonly observed values reported in the literature.²⁸ Highresolution mass spectra (HRMS) were recorded by electrospray ionization (ESI) with a Bruker micrOTOF II instrument. Elemental analyses were carried out on Perkin Elmer 2400 elemental analyzer. X-ray diffraction data were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using graphite monochromatized Cu K_{α}-radiation (λ =1.54184 Å). Electron microscopy characterization was performed using Hitachi Regulus8230 field-emission scanning electron microscope (FE-SEM). Target-oriented approach was utilized for the optimization of the analytic measurements.²⁹ Before measurements the sample was mounted on a 25 mm aluminum specimen stub, fixed by conductive carbon tape and coated with a 30 nm film of carbon. Images were acquired in secondary electron mode at a 4 kV accelerating voltage. Electrostatic potentials (ESP) of

the 0.001 electrons per bohr³ isosurfaces for the electron density were computed on the basis of XRD results using quantum chemical calculations employing the GAUSSIAN 09 program package¹⁷ and consist of the evaluation of the electron density and electrostatic potential of the optimized molecular structures for the gas phase using the DFT/B3LYP method at the 6-31G(d,p) level. The powders densities were measured at ~30 °C using a Micromeritics AccuPyc 1340 V2.01 helium pycnometer. Thermochemical measurements were carried out on a precision automatic combustion calorimeter with an isothermal coating specifically developed for combustion of energetic compounds.¹⁸ Thermal behavior was studied with simultaneous thermal analysis STA 449 F1 Jupiter (Netzsch). A sample with a mass of ~1.5 mg was placed into capped aluminum crucibles with cracked lids and heated at a linear rate of 5 °C·min⁻¹ to 600 °C in argon flow under atmospheric pressure. Sensitivity toward impact and friction was measured on a BAM devices using STANAG²² standards in sets of 30 experiments. Solvents were purified before use according to the standard procedures.³⁰ All other reagents were used without further purification. The starting materials were obtained according to previously reported procedures.^{12,15,8b}

4-Trifluoroacetyl-2,6,8,12-tetranitrohexaazaisowurtzitane (**1**) was prepared according to method of *Bellamy et al.*^{12,15} by di-*N*-trifluoroacetylation of 2,6,8,12tetraacetylhexaazaisowurtzitane (TADA) with TFAA, followed by nitrolysis of the *N*-acetyl groups using HNO₃/30% oleum and removal of the *N*-trifluoroacetyl protecting group with EtOH in ~90% total yield per three steps, dec. >185 °C, ¹H NMR (300.1 MHz, acetone-d₆): δ 5.99 (brs, 1H, NH), 6.65 (s, 2H, CH), 7.29 (m, 1H, CH), 7.60 (m, 1H, CH), 7.85 (s, 2H, CH) ppm.

4-Methoxymethyl-2,6,8,10,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (**11**) was obtained based on our method^{8b} by *N*-chloromethylation of **1** with CH₂O/HCl_(g), followed by methanolysis and deprotection amino the with group AcONa/EtOH in ~75% total yield per three steps, mp 180–182 °C (dec.). ¹H NMR (300.1 MHz, acetone-d₆): δ 3.39 (s, 3 H, Me), 4.76 (s, 2 H, CH₂), 5.50 (brs, 1 H, NH), 6.35 (d, $J_{H,H}$ = 8 Hz, 2 H, CH^{4,5}), 6.47 (d, $J_{H,H}$ = 8 Hz, 2 H, CH^{2,3}), 7.69 (s, 2 H, CH^{1,6}) ppm.

2,6,8,10,12-Pentanitro-2,4,6,8,10,12-hexaazaisowurtzitane (**16**) was prepared according to previously reported procedures of *Bellamy et al.*¹² was prepared by mono-*N*-trifluoroacetylation of TADA with TFAA/TFA, followed by nitrolysis of the *N*-acetyl groups using HNO3/30% oleum and removal of the *N*-trifluoroacetyl protecting group by

solvolysis with EtOH in ~40% total yield per three steps, dec >165 °C; ¹H NMR (300.1 MHz, acetone-d₆): δ 6.00 (broad s, 1H, NH), 6.70–6.73 (m, 2 H, 2 CH), 7.91 (s, 2 H, 2 CH), 7.97 (d, $J_{H,H} = 8$ Hz, 2H, 2CH) ppm.

2,6,8,12-Tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (**17**) was obtained according to previously reported procedures of *Bellamy et al.*^{12,15} by di-*N*trifuoroacetylation of TADA with TFAA, followed by nitrolysis of the *N*-acetyl groups using HNO₃/30% oleum and removal the *N*-trifluoroacetyl groups with AcONa/EtOH in ~50% total yield per three steps, dec >185 °C; ¹H NMR (300.1 MHz, acetone-d₆): 5.44 ppm (s, 2 H, NH), 6.28 ppm (s, 4 H, 4 CH), 7.57 (s, 2 H, 2 CH) ppm.

All physicochemical parameters of starting materials are in agreement with the data given in the literature.

Used trichloroacetyl isocyanate was prepared according to the corresponding reported procedures.³¹

Syntheses

Caution! Although there is no danger in treating these substances, manipulations with such high-energy materials must be carried out by using standard safety precautions. All compounds should be handled with extreme care.

4-Carbomoyl-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (4).

To a solution of **1** (0.500 g, 1.13 mmol) in dry acetonitrile (5 mL), a solution of trichloroacetyl isocyanate (1.30 g, 6.90 mmol) in dry acetonitrile (4 mL) was added dropwise. The reaction mixture was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. To the residue, MeOH (7 mL) and 92% H_2SO_4 (0.2 mL) was added, the

resulting solution was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. The residue was dissolved in ethyl acetate (15 mL), washed with distilled water (3x5 mL) to neutral pH of washings, followed by the solution drying over MgSO₄, and the solvent was evaporated *in vacuo*. To the residue, a mixture of Et₂O and hexane, 1:1 (2 mL), was added, the precipitate formed was filtered off and air-dried to give trifluoroacetyl derivative **3** (0.460 g, yield: 84%) as a colorless powder, which was directly used in the next step without further purification. To a solution of the resulting compound **3** (0.460 g, 0.945 mmol) in EtOH (4 mL), a solution of NaOAc (0.890 g, 10.9 mmol) in EtOH (8 mL) was added. The reaction mixture was stirred at 20 °C for 1 h, the precipitate formed was filtered off, washed with water (20 mL) and air-dried. Compound **4** (0.218 g, yield: 59% or 50% per two steps) was isolated as a colorless powder, dec. (observed on Kofler's table, 5 °C·min⁻¹): 210 °C.

¹H NMR (300.1 MHz, acetone-d₆): δ 5.71 (br s, 1 H, NH), 6.32 (br s, 2 H, NH₂), 6.42 (d, $J_{H,H} =$ 7 Hz, 2 H, CH^{4,5}), 7.33 (d, $J_{H,H} =$ 8 Hz, 2 H, CH^{2,3}), 7.68 (s, 2 H, CH^{1,6}) ppm. ¹H NMR (300.1 MHz, DMSO-d₆): δ 6.30 (br s, 1 H, NH), 7.10 (br s, 2 H, NH₂), 6.16 (br s, 2 H, CH^{4,5}), 6.93 (br s, 2 H, CH^{2,3}), 7.65 (s, 2 H, CH^{1,6}) ppm. ¹³C NMR (75.5 MHz, DMSO-d₆): δ 68.0 (CH^{2,3}), 71.4 (CH^{4,5}), 72.3 (CH^{1,6}), 154.7 (C=O) ppm. ¹⁴N NMR (21.7 MHz, DMSO-d₆): δ -36 ($\Delta v_{1/2} =$ 365 Hz) (4 NO₂) ppm. IR (KBr): v^{\sim} 3460 (m) and 3310 (m) (NH₂), 3210 (m) (NH), 3044 (m) (CH), 1708 (s) (C=O), 1587 (vs) and 1548 (s) (*as* NNO₂), 1324 (s), 1288 (vs) and 1265 (vs) (*sym* NNO₂) cm⁻¹. HRMS (ESI): m/z calcd for [C₇H₉N₁₁O₉ + NH₄⁺]: 409.0923; found [*M* + NH₄] +: 409.0922.

4-Cyano-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (5).

To a solution of $(CF_3SO_2)_2O$ (Tf_2O) (0.34 mL, 2.00 mmol) in dry acetonitrile (4 mL), pyridine (0.17 mL, 2.10 mmol) was added dropwise. The resulting mixture was stirred at 20 °C for 10 min and was added dropwise to a solution of **4** (0.200 g, 0.510 mmol) in dry

acetonitrile (4 mL). The reaction mixture was stirred at 20 °C for 4.5 h until **4** disappeared by TLC (eluent, ethyl acetate–hexane, 1:1), then diluted with water (20 mL). The product was extracted with ethyl acetate (2×15 mL), the extract was washed with water (3×5 mL). After drying the extract over MgSO₄, and evaporating of the solvent *in vacuo*, compound **5** was isolated from the residue by flash column chromatography (elution with ethyl acetate). To the crude product, Et₂O (1 mL) was added, the precipitate formed was filtered off and airdried. The resulting product can be further purified by recrystallisation from ethyl acetate in CCl₄ vapor atmosphere. Compound **5** (0.169 g, yield: 88%) was obtained as a colorless powder, DSC (5 °C·min⁻¹): onset 173 °C, max 210 °C. Density (pycnometer, 26 °C): 1.902 g·cm⁻³.

¹H NMR (600.13 MHz, acetone-d₆): δ 5.96 (br s, 1 H, NH), 6.56 (br s, 2 H, CH^{4,5}), 6.88 (d, $J_{H,H}$ = 7 Hz, 2 H, CH^{2,3}), 7.81 (s, 2 H, CH^{1,6}) ppm. ¹³C{¹H} NMR (150.9 MHz, acetone-d₆): δ 71.6 (CH^{4,5}), 72.5 (CH^{2,3}), 72.7 (CH^{1,6}), 111.1 (CN) ppm. ¹⁴N NMR (43.37 MHz, acetone-d₆): δ -40 ($\Delta v_{1/2}$ = 72 Hz) (2 N^{9,10}O₂), -38 ($\Delta v_{1/2}$ = 75 Hz) (2 N^{7,8}O₂) ppm. ¹⁵N{¹H} NMR ([INVGATED], 60.8 MHz, acetone-d₆): δ -336.3 (N²), -182.6 (N^{1,3}), -177.6 (N^{4,5}), -172.0 (CN¹¹), -39.9, (N^{7,8}), -37.1, (N^{9,10}) ppm. IR (KBr): v^{\sim} 3388 (m) (NH), 3038 (m) (CH), 2243 (s) (CN), 1595 (vs) and 1555 (s) (*as* NNO₂), 1328 (vs), 1292 (vs) and 1269 (vs) (*sym* NNO₂) cm⁻¹. HRMS (ESI): *m/z* calcd for [C₇H₇N₁₁O₈ – H⁺]: 372.0406; found [*M* – H]⁺: 372.0398.

4-Nitroso-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (8).

To a solution of **1** (0.50 g, 1.13 mmol) in AcOH (5 mL), NaNO₂ (0.35 g, 5 mmol) was added portionwise. The reaction mixture was stirred at 20 °C for 4 h until **1** disappeared by TLC (eluent, ethyl acetate–hexane, 1:1) and then diluted with water (30 mL). The precipitate formed was filtered

off, washed with water and air-dried to give trifluoroacetyl derivative **7** (0.450 g, yield: 85%) as a colorless powder, which was directly used in the next step without further purification. The resulting compound **7** (0.450 g, 0.85 mmol) was dissolved in EtOH (8 mL), the reaction mixture was stirred at 20 °C for 45 min, the precipitate formed was filtered off, washed with mixture of EtOH and water, 1:1 (4 mL), and air-dried. Compound **8** (0.311 g, yield: 87%) was isolated as a colorless powder, dec. (observed on Kofler's table, 5 °C·min⁻¹): 190 °C.

¹H NMR (300.1 MHz, acetone-d₆): δ 5.92 (br s, 1 H, NH), 6.49 and 6.80 (2d, $J_{H,H} = 8$ Hz, 2 H, CH^{2,3}), 7.84 (dd, $J_{H,H1} = 16$ Hz, $J_{H,H2} = 2$ Hz, 2 H, CH^{4,5}) and 7.96 (dd, $J_{H,H} = 8$ Hz, $J_{H,H} = 2$ Hz, 2 H, CH^{4,5}), 7.85 (d, $J_{H,H} = 6$ Hz, 2 H, CH^{1,6}) ppm. ¹³C NMR (75.5 MHz, acetone-d₆): δ 68.0 (CH^{2,3}), 71.4 (CH^{4,5}), 72.3 (CH^{1,6}), 154.7 (C=O) ppm. ¹⁴N NMR (21.7 MHz, acetone-d₆): δ -40 ($\Delta v_{1/2} = 61$ Hz) (2 N^{7,8}O₂) and -37 ($\Delta v_{1/2} = 59$ Hz) (2 N^{9,10}O₂) ppm. IR (KBr): v^{\sim} 3466 (m) and 3401 (m) (NH), 3037 (m) (CH), 1604 (vs) and 1558 (vs) (*as* NNO₂), 1330 (vs), 1289 (vs) and 1266 (vs) (*sym* NNO₂) cm⁻¹. Elemental analysis for C₆H₇N₁₁O₉ (377.19): calcd C, 19.10; H, 1.86; N, 40.85 %; found C, 19.43; H, 1.99; N, 40.60 %.

4-Carbomoyl-10-nitroso-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (10).

To a solution of **8** (0.440 g, 1.17 mmol) in dry acetonitrile (5 mL), a solution of trichloroacetyl isocyanate (1.50 g, 8.00 mmol) in dry acetonitrile (4 mL) was added dropwise. The reaction mixture was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. To the

residue, MeOH (7 mL) and 92% H_2SO_4 (0.3 mL) was added, the resulting solution was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. The residue was dissolved in ethyl acetate (20 mL), washed with distilled water (3x5 mL) to neutral pH of washings, followed by the solution drying over MgSO₄, and the solvent was evaporated *in vacuo*. The product was isolated from the residue by preparative TLC (elution with ethyl acetate–hexane, 1:1). Compound **10** (0.299 g, yield: 61%) was obtained as a colorless powder, mp 130–132 °C (dec.).

¹H NMR (300.1 MHz, acetone-d₆): δ 6.51 (br s, 1 H, NH₂), 7.47 and 7.83 (2 dd, $J_{H,H1} = 8$ Hz, $J_{H,H2} = 2$ Hz, 2 H, CH^{2,3}), 7.92 and 8.12 (2 dd, $J_{H,H1} = 8$ Hz, $J_{H,H2} = 2$ Hz, 2 H, CH^{4,5}), 7.95 (s, 2 H, CH^{1,6}) ppm. ¹³C NMR (75.5 MHz, acetone-d₆): δ 61.1 and 71.5 (CH^{4,5}), 70.6 and 73.2 (CH^{2,3}), 74.9 and 75.1 (CH^{1,6}), 155.3 (C=O) ppm. ¹⁴N NMR (21.7 MHz, acetone-d₆): δ –40 ($\Delta v_{1/2} = 100$ Hz) (4 NO₂) ppm. IR (KBr): v^{\sim} 3468 (s) and 3324 (s) (NH₂), 3039 (w) (CH), 1708 (vs) (C=O), 1604 (vs) and 1555 (s) (*as* NNO₂), 1325 (s), 1290 (vs) and 1266 (vs) (*sym* NNO₂) cm⁻¹. HRMS (ESI): m/z calcd for [C₇H₈N₁₂O₁₀ + Na⁺]: 443.0379; found [*M* + Na] ⁺: 443.0386.

4-Cyano-10-nitroso-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (6).

A. To a solution of **5** (0.055 g, 0.147 mmol) in dry acetonitrile (4 mL), NOBF₄ (0.034 g, 0.290 mmol) was added. The reaction mixture was stirred at 20 °C for 35 min until **5** disappeared by TLC (eluent, ethyl acetate–hexane, 1:1) and then poured into water (10 mL). The

product was extracted with ethyl acetate (2×10 mL), the extract was washed with water (2×2 mL). After drying the extract over MgSO₄, and evaporating of the solvent *in vacuo*, compound

6 was isolated from the residue by preparative TLC (elution with ethyl acetate–hexane, 1:2). Compound **6** (0.030 g, yield: 51%) was obtained as a colorless powder, DSC. (5 °C·min⁻¹): onset 209 °C, max 229 °C. Density (pycnometer, 26 °C): 1.899 g·cm⁻³.

¹H NMR (600.13 MHz, acetone-d₆): δ 7.14 and 7.43 (br s, 2 H, CH^{2,3}), 8.02 and 8.24 (br s, 2 H, CH^{4,5}), 8.10 (s, 2 H, CH^{1,6}) ppm. ¹³C{¹H} NMR (150.9 MHz, acetone-d₆): δ 60.3 and 72.6 (CH^{4,5}), 73.9 and 74.6 (CH^{2,3}), 72.6 (CH^{1,6}), 110.2 (CN) ppm. ¹⁴N NMR (43.37 MHz, acetone-d₆): δ –42 $(\Delta v_{1/2} = 79 \text{ Hz})$ (4 NO₂^{cage}) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz, acetone-d₆): δ –185.8, – 182.8, -182.2, -181.9 (N^{1,3} and N^{4,6}), -170.5 (CN¹¹), -172.8 (N¹²O), -144.6 (N⁵), -41.6, -41.4, -41.3, -41.0 (N^{7,8} and N^{9,10}) ppm. IR (KBr): 3035 (m) (CH), 2247 (m) (CN), 1606 (vs) and 1565 (s) (as NNO₂), 1326 (s), 1289 (vs) and 1267 (vs) (sym NNO₂) cm⁻¹. Elemental analysis for C₇H₆N₁₂O₉ (402.20): calcd C, 20.90; H, 1.50; N, 41.79 %; found C, 20.89; H, 1.37; N, 41.45 %. **B.** To an emulsion of Tf₂O (0.300 mL, 1.80 mmol) in dry dichloroethane (5 mL), pyridine (0.15 mL, 1.86 mmol) was added dropwise. The resulting mixture was stirred at 20 °C for 10 min, and then was added dropwise to a suspension of 10 (0.108 g, 0.257 mmol) in dry dichloroethane (5 mL) at 0-5 °C. The reaction mixture was stirred at 20 °C for 20 min until 10 disappeared by TLC (eluent, ethyl acetate-hexane, 1:1), then the solvent was removed in vacuo. The residue was dissolved in ethyl acetate (15 mL), washed with water (3×5 mL). After drying the solution over MgSO₄, and evaporating of the solvent *in vacuo*, compound **6** was isolated from the residue by flash column chromatography (elution with ethyl acetatehexane, 1:1). To the crude product, Et₂O (1 mL) was added, the precipitate formed was filtered off and air-dried. Compound 6 (0.043 g, yield: 42%) was obtained as a colorless powder. The physicochemical parameters of the sample are in agreement with those of compound 6 obtained by method A.

4-(2,2,2-Trinitroethyl)-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (12).

To a suspension of **11** (0.360 g, 0.900 mmol) in dry acetonitrile (8 mL) trinitromethane (0.277 g, 1.80 mmol) was added dropwise. The reaction mixture was stirred at 20 °C for 0.5 h, then diluted with water (40 mL). The product was extracted

with ethyl acetate (3×20 mL), the extract was washed with water (3×10 mL). After drying the extract over MgSO₄, and evaporating of the solvent *in vacuo*, compound **15** was isolated from the residue by flash column chromatography (elution with ethyl acetate–hexane, 1:1). To the crude product, a mixture of Et₂O and hexane, 1:1 (2 mL), was added, the precipitate formed was filtered off and air-dried. Compound **12** (0.270 g, yield: 58%) was obtained as a colorless powder, mp 202–204 °C (dec.).

¹H NMR (300.1 MHz, acetone-d₆): δ 5.46 (s, 2H, CH₂), 5.69 (br s, 1 H, NH), 6.34 and 6.36 (2 d, $J_{H,H} = 3$ Hz, 2 H, CH^{2,3}), 6.60 (d, $J_{H,H} = 7$ Hz, 2 H, CH^{4,5}), 7.71 (s, 2 H, CH^{1,6}) ppm. ¹³C NMR (75.5 MHz, acetone-d₆): δ 55.7 (CH₂), 72.9 and 73.0 (CH^{2,3}), 73.5 (CH^{1,6}), 77.7 (CH^{4,5}), 128.0 (C(NO₂)₃) ppm. ¹⁴N NMR (21.7 MHz, acetone-d₆): δ -37 ($\Delta v_{1/2} = 80$ Hz) (4 NNO₂), -37 ($\Delta v_{1/2} = 80$ Hz) (3 CNO₂) ppm. IR (KBr): v^{\sim} 3042 (m) (CH), 1609 (vs) (*as* CNO₂), 1596 (vs) and 1561 (s) (*as* NNO₂), 1327 (vs), 1286 (vs) and 1270 (vs) (*sym* CNO₂ and NNO₂) cm⁻¹. HRMS (ESI): *m/z* calcd for [C₈H₉N₁₃O₁₄ + Cl⁻]: 546.0075; found [*M* + NH₄]⁻: 546.0077. Elemental analysis for C₈H₉N₁₃O₁₄ (377.19): calcd C, 18.79; H, 1.76; N, 35.62 %; found C, 19.25; H, 1.50; N, 35.37 %.

4-Carbomoyl-10-(2,2,2-trinitroethyl)-2,6,8,12-tetranitro-2,4,6,8,10,12-

hexaazaisowurtzitane (14).

To a solution of **12** (0.600 g, 1.18 mmol) in dry acetonitrile (5 mL), a solution of trichloroacetyl isocyanate (1.33 g, 7.00 mmol) in dry acetonitrile (7 mL) was added dropwise. The reaction mixture was stirred at 20 $^{\circ}$ C for 6 h, and the solvent was

removed *in vacuo*. To the residue, MeOH (8 mL) and 92% H₂SO₄ (0.4 mL) was added, the resulting solution was stirred at 20 °C for 15 h, and the solvent was removed *in vacuo*. The residue was dissolved in ethyl acetate (20 mL), washed with distilled water (3x5 mL) to neutral pH of washings, followed by the solution drying over MgSO₄ and the solvent was evaporated *in vacuo*. To the residue, a mixture of Et₂O and hexane, 1:1 (2 mL), was added, the precipitate formed was filtered off and air-dried. Compound **14** (0.63 g, yield: 97%) was isolated as a colorless powder, mp 118–120 °C.

¹H NMR (300.1 MHz, acetone-d₆): δ 5.51 (s, 1 H, CH₂), 6.42 (br s, 2 H, NH₂), 6.72 (d, *J*_{H,H} = 8 Hz, 2 H, CH^{4,5}), 7.44 (d, *J*_{H,H} = 8 Hz, 2 H, CH^{2,3}), 7.84 (s, 2 H, CH^{1,6}) ppm. ¹³C NMR (75.5 MHz, acetone-d₆): δ 55.4 (CH₂), 70.2 (CH^{1,6}), 74.2 (CH^{2,3}), 78.0 (CH^{4,5}), 127.9 (C(NO₂)₃), 155.0 (C=O) ppm. ¹⁴N NMR (21.7 MHz, acetone-d₆): δ –38 ($\Delta v_{1/2}$ = 113 Hz) (4 N*NO*₂), –38 ($\Delta v_{1/2}$ = 33 Hz) (3 C*NO*₂) ppm. IR (KBr): v^{\sim} 3486 (vs) and 3419 (vs) (NH₂), 3042 (w) (CH), 1707 (vs) (C=O), 1596 (br vs) (*as* C*NO*₂ and N*NO*₂), 1292 (br s) and 1266 (s) (*sym* C*NO*₂ and N*NO*₂) cm⁻¹. HRMS (ESI): *m/z* calcd for [C₉H₁₀N₁₄O₁₅ + H⁺]: 555.0523; found [*M* + H] ⁺: 555.0511.

4-Cyano-10-(2,2,2-trinitroethyl)-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (15).

To a solution of Tf_2O (0.60 mL, 3.64 mmol) in dry acetonitrile (5 mL), pyridine (0.30 mL, 3.70 mmol) was added dropwise. The resulting mixture was stirred at 20 °C for 10 min, and was added dropwise to a solution of **14** (0300 g, 0.540 mmol) in dry

acetonitrile (5 mL). The reaction mixture was stirred at 20 °C for 2.5 h, then diluted with water (40 mL). The product was extracted with ethyl acetate (2×20 mL), the extract was washed with water (3×5 mL). After drying the extract over MgSO₄, and evaporating of the solvent *in vacuo*, compound **15** was isolated from the residue by flash column chromatography (elution with ethyl acetate–hexane, 1:2). To the crude product, Et₂O (1 mL), was added, the precipitate formed was filtered off and air-dried. Compound **15** (0.255 g, yield: 88%) was obtained as a colorless powder, DSC. (5 °C·min⁻¹): onset 203 °C, max 220 °C. Density (pycnometer, 26 °C): 1.868 g·cm⁻³.

¹H NMR (600.13 MHz, acetone-d₆): δ 5.49 (s, 2 H, CH₂), 6.87 (d, *J*_{H,H} = 8 Hz, 2 H, CH^{4,5}), 7.07 (d, *J*_{H,H} = 7 Hz, 2 H, CH^{2,3}), 8.05 (s, 2 H, CH^{1,6}) ppm. ¹³C{¹H} NMR (150.9 MHz, acetone-d₆): δ 53.2 (CH₂), 72.9 (CH^{1,6}), 73.2 (CH^{2,3}), 77.2 (CH^{4,5}), 110.4 (CN), 126.3 (C(NO₂)₃) ppm. ¹⁴N NMR (43.37 MHz, acetone-d₆): δ -41 ($\Delta v_{1/2}$ = 126 Hz) (2 N^{7,8}O₂), -39 ($\Delta v_{1/2}$ = 130 Hz) (2 N^{9,10}O₂) ppm. ¹⁵N{¹H} NMR ([INVGATED], 60.8 MHz, acetone-d₆): δ -335.7 (N²), -181.4 (N^{4,6}), -178.3 (N^{1,3}), -170.5 (CN¹¹), -144.6 (N⁵), -40.7 (N^{7,8}), -38.5 (N^{9,10}), -30.7 (C(N¹²O₂)₃) ppm. IR (KBr): v^{\sim} 3040 (w) (CH), 2247 (m) (CN), 1597 (br vs) (*as* CNO₂ and NNO₂), 1293 (br s) and 1268 (s) (*sym* CNO₂ and NNO₂) cm⁻¹. HRMS (ESI): *m*/*z* calcd for [C₉H₈N₁₄O₁₄ + NH₄⁺]: 559.0237; found [*M* + NH₄]⁺: 559.0235.

4-Carbomoyl-2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitane (20).

To a solution of **16** (0.500 g, 1.27 mmol) in dry acetonitrile (6 mL), a solution of trichloroacetyl isocyanate (1.05 g, 5.60 mmol) in dry acetonitrile (3 mL) was added dropwise. The reaction mixture was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. To

the residue, MeOH (10 mL) and 92% H₂SO₄ (0.2 mL) was added, the resulting solution was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. The residue was dissolved in ethyl acetate (15 mL), washed with distilled water (3x5 mL) to neutral pH of washings, followed by the solution drying over MgSO₄ and the solvent was evaporated *in vacuo*. To the residue, Et₂O (1 mL) was added, the precipitate formed was filtered off and air-dried. Compound **20** (0.443 g, yield: 80%) was isolated as a colorless powder, mp 202–204 °C (dec.) (from EtOH–H₂O).

¹H NMR (300.1 MHz, DMSO-d₆): δ 7.09 (br s, 2 H, NH₂), 7.39 (d, $J_{H,H} = 7$ Hz, 2 H, CH^{2,3}), 7.79 (d, $J_{H,H} = 7$ Hz, 2 H, CH^{4,5}), 7.93 (s, 2 H, CH^{1,6}) ppm. ¹³C NMR (75.5 MHz, DMSO-d₆): δ 70.0 (CH^{2,3}), 70.2 (CH^{4,5}), 73.4 (CH^{1,6}), 154.2 (C=O) ppm. ¹⁴N NMR (21.7 MHz, DMSO-d₆): δ –39 ($\Delta v_{1/2} = 431$ Hz) (4 NO₂) ppm. IR (KBr): v^{\sim} 3487 (vs), 3449 (s), 3400 (s) and 3355 (m) (NH₂), 3041 (vs) (CH), 1714 (vs) and 1687 (vs) (C=O), 1615 (vs), 1594 (vs) and 1571 (vs) (*as* NNO₂), 1332 (vs), 1295 (vs) and 1269 (vs) (*sym* NNO₂) cm⁻¹. Elemental analysis for C₈H₁₀N₁₂O₁₀ (434.24): calcd C, 19.27; H, 1.85; N, 38.53 %; found C, 19.37; H, 1.85; N, 38.21 %.

4-Cyano-2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitane (22).

A. To a solution of Tf₂O (0.60 mL, 3.64 mmol) in dry acetonitrile (5 mL), pyridine (0.30 mL, 3.90 mmol) was added dropwise. The resulting mixture was stirred at 20 °C for 10 min, and was added dropwise to a solution of **20** (0.200 g, 0.870 mmol) in dry acetonitrile

(3 mL). The reaction mixture was stirred at 20 °C for 5 h, then diluted with water (20 mL). The product was extracted with ethyl acetate (2×15 mL), the extract was washed with water (3×5 mL). After drying the extract over MgSO₄, and evaporating of the solvent *in vacuo*, compound **22** was isolated from the residue by flash column chromatography (elution with ethyl acetate –hexane, 1:2). To the crude product, Et₂O (1 mL) was added, the precipitate formed was filtered off and air-dried. Compound **22** (0.112 g, yield: 58%) was obtained as a colorless powder. The product was further purified by reprecipitation from MeCN with water. DSC. (5 °C·min⁻¹): onset 223 °C, max 241 °C. Density (pycnometer, 26 °C): 1.924 g·cm⁻³.

¹H NMR (600.13 MHz, acetone-d₆): 7.30 (d, $J_{H,H} = 8$ Hz, 2 H, CH^{2,3}), 8.17 (s, 2 H, CH^{1,6}), 8.25 (d, $J_{H,H} = 8$ Hz, 2 H, CH^{4,5}) ppm. ¹H NMR (300.1 MHz, DMSO-d₆): 7.03 (d, $J_{H,H} = 8$ Hz, 2 H, CH^{2,3}), 7.81 (d, 2 H, CH^{4,5}), 8.01 (s, 2 H, CH^{1,6}) ppm. ¹³C{¹H} NMR (150.9 MHz, acetone-d₆): δ 72.2 (CH^{4,5}), 74.9 (CH^{1,6}), 75.2 (CH^{2,3}), 111.4 (CN) ppm. ¹⁴N NMR (43.37 MHz, acetone-d₆): δ -42 ($\Delta v_{1/2} = 156$ Hz) (5 NNO₂) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz, acetone-d₆): δ -328.6 (N²), -199.3 (N⁵), -182.4 (N^{1,3}), -180.1 (N^{4,6}), -171.1 (CN¹¹), -43.3 (N¹²), -41.3 (N^{9,10}), -41.0 (N^{7,8}) ppm. IR (KBr): v^{\sim} 3042 (s) (CH), 2248 (s) (CN), 1633 (vs), 1593 (vs) and 1571 (vs) (*as* NNO₂), 1329 (vs), 1292 (vs) and 1258 (vs) (*sym* NNO₂) cm⁻¹. Elemental analysis for C₇H₆N₁₂O₁₀ (418.20): calcd C, 20.10; H, 1.45; N, 40.19; found C, 20.48; H, 1.32; N, 39.85 %.

B. To a solution of **5** (0.060 g, 0.160 mmol) in dry acetonitrile (4 mL), NO₂BF₄ (0.040 g, 0.300 mmol) was added. The reaction mixture was stirred at 20 °C for 1.5 until **5** disappeared by TLC (eluent, ethyl acetate–hexane, 1:1) and then poured into water (10 mL). The product was extracted with ethyl acetate (2×10 mL), the extract was washed with water (2×2 mL). After drying the extract over MgSO₄, and evaporating of the solvent *in vacuo*, compound **15**

was isolated from the residue by preparative TLC (elution with ethyl acetate-hexane, 1:2), Compound **22** (0.037 g, yield: 55%) was obtained as a colorless powder. The physicochemical parameters of the sample are in agreement with those of compound **22** obtained by method A.

4,10-Dicarbomoyl-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (21).

To a suspension of **17** (0.560 g, 1.61 mmol) in dry acetonitrile (15 mL), a solution of trichloroacetyl isocyanate (3.00 g, 15.9 mmol) in dry acetonitrile (10 mL) was added dropwise. The reaction mixture was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. To the residue, MeOH (25 mL) and 92% H_2SO_4 (0.3 mL) was added,

the resulting solution was stirred at 20 °C for 24 h, and the solvent was removed *in vacuo*. The residue was dissolved in ethyl acetate (50 mL), washed with distilled water (2x20 mL) to neutral pH of washings, followed by the solution drying over MgSO₄ and the solvent was evaporated *in vacuo*. To the residue, Et₂O (50 mL) was added, the precipitate formed was filtered off, washed with Et₂O (2x20 mL) and air-dried. Compound **21** (0.650 g, yield: 93%) was isolated as a colorless powder, dec. (observed on Kofler's table, 5 °C·min⁻¹): 245 °C.

¹H NMR (300.1 MHz, acetone-d₆): δ 6.51 (br s, 2 H, NH₂), 7.43 (d, $J_{H,H} = 7$ Hz, 2 H, CH^{2,3} and CH^{4,5}), 7.79 (s, 2 H, CH^{1,6}) ppm. ¹³C NMR (75.5 MHz, acetone-d₆): δ 68.7 (CH^{2,3} and CH^{4,5}), 73.4 (CH^{1,6}), 154.4 (C=O) ppm. ¹⁴N NMR (21.7 MHz, acetone-d₆): δ –38 ($\Delta v_{1/2} = 130$ Hz) (4 NO₂) ppm. IR (KBr): v^{\sim} 3426 (vs), 3320 (vs) (NH₂), 3268 (s) and 3205 (s) (NH₂), 3040 (s) (CH), 1678 (br vs) (C=O), 1611 (vs) and 1557 (vs) (*as* NNO₂), 1323 (vs), 1288 (vs) and 1263 (vs) (*sym* NNO₂) cm⁻¹. HRMS (ESI): *m*/*z* calcd for [C₈H₁₀N₁₂O₁₀ + H⁺]: 435.0716; found [*M* + H] ⁺: 435.0707.

4,10-Dicyano-2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (23).

To a solution of Tf₂O (0.58 mL, 1.22 mmol) in dry acetonitrile (9 mL), pyridine (0.28 mL, 3.60 mmol) was added dropwise. The resulting mixture was stirred at 20 °C for 5 min, and was added dropwise to a suspension of **21** (0.191 g, 0.440 mmol) in dry acetonitrile (9 mL). The reaction mixture was stirred at 20 °C for 24 h, and the solvent

was removed *in vacuo*. The residue was dissolved in ethyl acetate (50 mL), the solution was washed with water (2×20 mL). After drying the solution over MgSO₄, and evaporating of the solvent *in vacuo*, compound **23** was isolated from the residue by flash column chromatography (elution with ethyl acetate). To the crude product, Et₂O (50 mL) was added, the precipitate was filtered off and air-dried. Compound **23** (0.160 g, yield: 91%) was

obtained as a colorless powder. The product was further purified by recrystallization from MeCN–H₂O. DSC. (5 °C·min⁻¹): onset 238 °C, max 249 °C (from MeCN–H₂O). Density (pycnometer, 26 °C): $1.858 \text{ g}\cdot\text{cm}^{-3}$.

¹H NMR (300.1 MHz, acetone-d₆): δ 7.13 (s, 2 H, CH^{2,3} and CH^{4,5}), 8.10 (s, 2 H, CH^{1,6}) ppm. ¹H NMR (600.13 MHz, DMSO-d₆): δ 6.82 (s, 2 H, CH^{2,3} and CH^{4,5}), 7.93 (s, 2 H, CH^{1,6}) ppm. ¹³C{¹H} NMR (150.9 MHz, DMSO-d₆): δ 73.6 (CH^{2,3}, CH^{4,5} and CH^{1,6}), 111.2 (2 CN) ppm. ¹⁴N NMR (43.37 MHz, DMSO-d₆): δ –24 ($\Delta v_{1/2}$ = 416 Hz) (4 NNO₂) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz, DMSO-d₆): δ –328.6 (N^{2,5}), –182.7 (N^{1,3} and N^{4,6}), – 171.6 (CN¹¹), –40.8 (N^{7,8} and N^{9,10}) ppm. IR (KBr): v^{\sim} 3031 (vs) (CH), 2246 (vs) (CN), 1616 (vs), 1599 (s) and 1565 (vs) (*as* NNO₂), 1349 (vs), 1330 (vs), 1298 (vs) and 1264 (vs) (*sym* NNO₂) cm⁻¹. Elemental analysis for C₈H₆N₁₂O₈ (398.21): calcd C, 24.13; H, 1.52; N, 42.21%; found C, 24.12; H, 1.51; N, 42.21 %.

¹H NMR (300.1 MHz, [D₆]acetone) spectrum of compound 4

¹H NMR (300.1 MHz, [D₆]DMSO) spectrum of compound 4

¹⁴N NMR (22 MHz, [D₆]DMSO) spectrum of compound 4

IR (KBr) spectrum of compound 4

HRMS (ESI) for compound 4

{¹H-¹³C} HMBC NMR (600.13 MHz,[D₆]acetone) spectrum of compound 5

¹⁴N NMR (43.37 MHz,[D₆]acetone) spectrum of compound 5

{¹H-¹⁵N} HMBC NMR (600.13 MHz,[D₆]acetone) spectrum of compound 5

IR (KBr) spectrum of compound 5

HRMS (ESI) for compound 5

¹⁴N NMR (43.37 MHz,[D₆]acetone) spectrum of compound 6

¹H NMR (300.1 MHz, [D₆]acetone) spectrum of compound 8

S41

¹³C NMR (75.5 MHz, [D₆]acetone) spectrum of compound 8

¹⁴N NMR (21.7 MHz, [D₆]acetone) spectrum of compound 8

S43

HRMS (ESI) for compound 8

¹⁴N NMR (21.7 MHz, [D₆]acetone) spectrum of compound 10

Wavenumber cm-1

HRMS (ESI) for compound 10

2

S50

¹⁴N NMR (21.7 MHz, [D₆]acetone) spectrum of compound 12

¹⁴N NMR (21.7 MHz, [D₆]acetone) spectrum of compound 14

Wavenumber cm-1

HRMS (ESI) for compound 14

¹H NMR (600.13 MHz,[D₆]acetone) spectrum of compound 15

¹⁴N NMR (43.37 MHz,[D₆]acetone) spectrum of compound 15

S66

Wavenumber cm-1

HRMS (ESI) for compound 15

¹⁴N NMR (22 MHz, [D₆]DMSO) spectrum of compound 20

S73

¹H NMR (300.1 MHz, [D₆]DMSO) spectrum of compound 22

¹³C NMR (150.9 MHz,[D₆]acetone) spectrum of compound 22

{¹H-¹³C} HSQC NMR (600.13 MHz, [D₆]acetone) spectrum of compound 22

{¹H⁻¹³C} HMBC NMR (600.13 MHz,[D₆]acetone) spectrum of compound 22

¹⁴N NMR (43.37 MHz,[D₆]acetone) spectrum of compound 22

IR (KBr) spectrum of compound 22

¹H NMR (300.1 MHz, [D₆]acetone) spectrum of compound 21

¹³C NMR (75.5 MHz, [D₆]acetone) spectrum of compound 21

¹⁴N NMR (21.7 MHz, [D₆]acetone) spectrum of compound 21

IR (KBr) spectrum of compound 21

Wavenumber cm-1

HRMS (ESI) for compound 21

{¹H-¹³C} HSQC NMR (600.13 MHz, [D₆]DMSO) spectrum of compound 23

{¹H-¹³C} HMBC NMR (600.13 MHz, [D₆]DMSO) spectrum of compound 23

¹⁴N NMR (43.37 MHz,[D₆]DMSO) spectrum of compound 23

IR (KBr) spectrum of compound 23

Analysis of spectral characteristics of the new isowurtzitanes 4, 5, 6, 8, 10, 12, 14, 15, 20–23

General formula of 4-carbomoyl-2,6,8,12-tetranitroisowutzitanes 4, 10, 14, 20 and 21

4: R = H; 10: R = NO; 14: R = ⁸CH₂⁹C(¹¹NO₂)₃; 20: R = ¹¹NO₂; 21: R = ⁸CN.

Table [•]	1 Assianed ¹ H.	. ¹³ C{ ¹ H}, and	14N NMR shifts	[ppm] of 4, 10	. 14. 20 an	d 21 in DMSO	-de or Acetone-de.
abio	i / looigiilou i i,	, O [i i], uiiu			, 1 - , -------------		

		Assignment	Compounds							
Nucleus		Kongrinnerik								
	Part	Groups	4	10	14	20	21			
	Solv	ent	DMSO-d ₆ [Acetone-d ₆]	Acetone-d ₆	Acetone-d ₆	DMSO-d ₆	Acetone-d ₆			
		CH ^{1,6}	7.65 s [7.68 s]	7.95 s	7.84 s	7.93 s	7.79 s			
	Cage	CH ^{2,3}	6.93 bs [7.33 d (8)]	7.47 dd (8, 2) 7.83 dd (8, 2)	7.44 d (8)	7.44 d (8) 7.39 d (7)				
¹ H		CH ^{4,5}	6.16 bs [6.42 d (7)]	7.92 dd (8, 2) 8.12 dd (8, 3)	6.72 d (8)	7.79 d (7)	7.43 5			
(<i>J</i> _{н,н} , Нz)		NH ₂	7.10 bs [6.32 bs]	6.51 bs	6.42 bs	7.09 bs	6.51 bs			
	Units	N⁵–H	6.30 bs [5.71 bs]			-				
		N ⁵ –CH ₂	-	-	5.51 s		-			
		C ^{1,6}	72.3	74.9 75.1	70.2	73.4	73.4			
	Cage	C ^{2,3}	68.0	70.6 73.2	74.2	70.0	69.7			
¹³ C{ ¹ H}		C ^{4,5}	71.4	61.1 71.5	78.0	70.2	00.7			
(<i>J</i> _{C,F} , Hz)		C=O	154.7	155.3	155.0	154.2	154.4			
	Units	N ⁵ –CH ₂			55.4					
		C(NO ₂) ₃	-	-	127.9		-			
¹⁴ N	Cage	NNO ₂ 7–10 (and 11)	-36 (365)	-40 (100)	-38 (113)	-39 (431)	-38 (130)			
(Δv _{1/2} , Hz)	Units	CNO ₂	-	-	-31 (33)		-			

Table 2 Assigned ¹H, ¹³C{¹H}, and ¹⁴N NMR shifts [ppm] of 5, 6, 15, 22 and 23 in acetone-d₆ or DMSO-d₆.

		Assignment			Compounds						
Nucleus		Assignment		Chemical shifts δ, ppm							
	Part	Groups	5	6	15	22	23				
	Solvent			Acetone-d ₆	Acetone-d ₆	Acetone-d ₆ [DMSO-d ₆]	DMSO-d ₆ [Acetone-d ₆]				
		CH ^{1,6}	7.81 s	8.10 s	8.05 s	8.17 s [8.01 s]	7.93 s [8.10 s]				
	Cage	CH ^{2,3}	6.88 d (7)	7.14 bs 7.43 bs	7.07 d (7)	7.30 d (8) [7.03 (8)]	6.82 s				
¹ Н (<i>J</i> _{Н,Н} , Hz)		CH ^{4,5}	6.56 bs	8.02 bs 8.24 bs	6.87 d (8)	8.25 d (8) [7.81 d (8)]	[7.13 s]				
	Units	N⁵–H	5.96 bs			-					
		N⁵–CH₂	_	-	5.49 s		-				
	Cage	C ^{1,6}	72.7	72.6	72.9	74.9					
		C ^{2,3}	72.5	73.9 74.6	73.2	75.2	73.6				
¹³ C{ ¹ H}		C ^{4,5}	71.6	60.3 72.6	77.2	72.2					
(<i>J</i> _{C,F} , Hz)		CN	111.1	110.2	110.4	111.4	111.2				
	Units	N⁵–CH₂			53.2						
		C(NO ₂) ₃	-	-	126.3		-				
¹⁴ N	Cage	NNO ₂ 7–10,11	7,8 –38 (75) 9,10 –40 (72)	-42 (79)	7,8 –41 (126) 9,10 –39 (130)	-42 (156)	-24 (416)				
(∆v _{1/2} , Hz)	Units	CNO ₂	-		-31 (43)		-				

Assignment			Che			
Part	Groups 5		6	15	22	23
Cage	N ^{1,3}	-182.6	-185.8 -182.8	-178.3	-182.4	
	N ^{4,6}	-177.6	-182.2 -181.9	-181.4	-180.1	-182.7
	N ⁵	n.o.*	-144.6	n.o.*	-199.3	000.0
	N ²	-336.3	n.o.*	-335.7	-328.6	-328.6
	7,8	-37.1	-41.6 -41.4	-40.7	-43.3	40.0
	N– N O ₂ 9,10	-39.9	-41.3 -41.0	-38.5	-41.3	-40.8
	12		-		-41.0	-
Units	C N ¹¹	-172.0	-170.5	-170.5	-171.1	-171.6
	CH ₂ C(N¹²O ₂) ₃		-	-30.7		-
	N ⁵ – <u>N¹²</u> O	-	172.8		-	

Table 3 Assigned ¹⁵N{¹H} NMR shifts [ppm] of 5, 6, 15, 22 and 23 in acetone-d₆ or DMSO-d₆.

* Probably, due to the splitting on ¹H and ¹⁴N, the signal of this ¹⁵N are very broadened, its intensity is highly reduced, the signal did not observed between a "noise" although the measurements were performed in different modes with elongated pulse delays throughout the night.

Table 4 Assigned IR vibrations [cm ⁻¹] of isowurtzitanes 4, 5, 6, 8, 10, 12, 14, 15, 20–23 in KB
--

	Vibration frequencies v, cm ⁻¹												
Assignment	Subs	Substrates		Amides				Nitriles					
	7	12	4	10	14	20	21	5	6	15	22	23	
as N−NO₂	1604 vs	1596 vs	1587 vs	1604 vs		1615 vs 1594 vs	1611 vs	1595 vs	1606 vs		1633 vs 1593 vs	1616 vs 1599 s	
	1558 vs	1561 s	1548 vs	1555 s	1596 b vs	1571 vs	1557 vs	1555 s	1565 vs	1597 b vs	1571 vs	1565 vs	
as C–NO ₂	-	1609 vs	-	-		_		-				_	
	1330 vs	1327 vs	1324 vs	1325 s	1292 b s	1332 vs	1323 vs	1328 vs	1326 s	1293 b s	1329 vs	1349 s 1330 vs	
s N–NO2	1289 vs	1286 vs	1288 vs	1290 vs		1295 vs	1288 vs	1292 vs	1289 vs		1292 vs	1298 vs	
	1266 vs	1270 vs	1265 vs	1266 vs	1266 s	1269 vs	1263 vs	1269 vs	1267 vs	1268 s	1258 vs	1264 vs	
СН	3037 m	3042 m	3044 m	3039 w	3042 w	3041 vs	3040 s	3038 m	3035 w	3040 w	3042 s	3031 vs	
CN	-				-			2243 s	2247 m	2247 m	2248 s	2246 vs	
C=O	-	-	1708 s	1708 vs	1707 vs	1714 vs 1687 vs	1678 b vs						
NH_2	-	-	3460 m 3310 m	3468 s 3324 s	3486 vs 3419 vs	3487 vs 3449 s 3400 s 3355 m	3426 vs 3320 vs 3268 s 3205 s			-			
NH	3366 m 3401 m	_	3218 m			-		3388 m		_			

Table 5 Assigned ¹ H, ¹³ C{ ¹ H}, and ¹⁴ N N	NMR shifts [ppm] of 8 and 12 in acetone-d ₆ .
--	--

	Assignment			Compounds			
Nucleus		Assignmen	it.	Chemical shifts δ, ppm			
	Part	Groups		8	12		
	Solv	ent		Acetone-d ₆	Acetone-d ₆		
		CH ^{1,6}		7.85 d (6)	7.71 s		
	Cage	CH ^{2,3}		6.49 d (8) 6.80 d (8)	6.34 d (3) 6.36 d (3)		
¹ Н (<i>J</i> _{н,н} , Hz)		CH ^{4,5}		7.84 dd (16, 2) 7.96 dd (8, 2)	6.60 d (7)		
	Linita	N⁵–H		5.92 bs	5.69 bs		
	Units	N ⁵ –CH ₂		-	5.46 s		
		C ^{1,6}		74.3 74.5	73.5		
13 Cr1 U		С	2,3	72.7 72.8 73.9 74.0	73.0 72.9		
$(J_{C,F}, Hz)$	Cage	C ^{4,5}		60.9 73.0	77.7		
		N ⁵ –CH ₂		_	55.7		
		C(N	IO ₂) ₃	_	128.0		
	Care		7,8	-40 (61)	_37 (80)		
¹⁴ Ν (Δv _{1/2} , Hz)	Caye		9,10	-37 (59)	-37 (80)		
(Units	CNO ₂		-	-30 (33)		

Description of the spectra of 4-carbomoyl-polynitro hexaazaisowutzitanes 4, 10, 14, 20, 21

and 4-cyano-polynitro hexaazaisowutzitanes 5, 6, 15, 22, 23

As can be seen in table 4 the IR spectra of the carboxamides and the nitriles show the characteristic absorption bands of the C=O at v^{\sim} 1714 to 1678 cm⁻¹ and the band of the CN at v^{\sim} 2248 to 2243 cm⁻¹, respectively. The bands corresponding to the asymmetrical vibrations of the NO₂ for the carboxamides are located at v^{\sim} 1615 to 1548 cm⁻¹, and for the nitriles are located at v^{\sim} 1633 to 1555 cm⁻¹, whereas the bands of the symmetrical vibrations of the NO₂ for the carboxamides are located at v^{\sim} 1332 to 1263 cm⁻¹, and for the nitriles are located at v^{\sim} 1349 to 1258 cm⁻¹, respectively. The band of the CH units of the hexaazaisowurtzitane cage for the carboxamides appears at v^{\sim} 3044 to 3039 cm⁻¹ and for the nitriles appears at v^{\sim} 3042 to 3031 cm⁻¹, respectively. Additionally, in the IR spectra of the carboxamides there are pairs of bands of the NH₂ at v^{\sim} 3487–3320 and 3400–3205 cm⁻¹, while in the IR spectra of amines **4** and **5**, the band of the NH is observed at v^{\sim} 3218–3388 cm⁻¹, respectively.

According to tables 1 and 2 the resonance peaks of the CH units of the carboxamides and of the nitriles are observed in the range $\delta_{\rm H}$ 6.2–8.0 ppm and $\delta_{\rm H}$ 6.6–8.3 ppm in the ¹H NMR, as well as in the range $\delta_{\rm c}$ 61.1–78.0 ppm and $\delta_{\rm c}$ 60.3–77.2 ppm in the ¹³C NMR, respectively. The spectra of the carboxamides contain the signals of the carbamoyl group, namely, the broadened peak of the NH₂ protons at high field with $\delta_{\rm H}$ 6.5 and 7.1 ppm in the ¹H NMR, the peak from the carbon atom of the C=O at $\delta_{\rm c}$ 154.2–155.3 ppm in the ¹³C NMR. In the ¹³C NMR spectra of the nitriles there is the signal of the CN group at $\delta_{\rm c}$ 110.2–111.4 ppm. The signals of the protons of the cage secondary amino groups in the ¹H NMR of amide **4** and cyanide **5** are broadened and observed at high field with $\delta_{\rm H}$ 5.71 and 5.96 ppm, respectively. In addition, in the spectra of **14** and **15** there are the signals of the trinitroethyl moiety, namely, the peak from CH₂ unit at $\delta_{\rm H} \sim 5.5$ ppm in the ¹H NMR and at $\delta_{\rm c} 55.4$ and 53.2 ppm, respectively, in the ¹³C NMR, as well as a strongly broadened peak from C(NO₂)₃ at $\delta_{\rm c}$ 126.8 ppm. It should be noted that in the ¹H, ¹³C NMR spectra of compounds **6** and **10** there are some splitting due to synperiplanar (*s*p_ts) or anti-periplanar (*a*p_ts) conformation of NO bond with respect to the nitrogen lone pair.

The ¹⁴N NMR spectra of the new compounds show the signals from the *N*-nitro groups of the polynitro hexaazaisowurtzitane cage at δ_N –40 to –36 ppm ($\Delta v_{1/2}$ 100–365 Hz) and at δ_N –42 to –24 ppm ($\Delta v_{1/2}$ 72–416 Hz) for the carboxamides and the nitriles, respectively. The ¹⁴N NMR spectra of **14** and **15** containing the C(NO₂)₃ unit shows the additional sharp peak of the *C*-nitro group at δ_N –31 ppm ($\Delta v_{1/2}$ ~40 Hz).

The ¹⁵N NMR spectra of the target *N*-cyano HAIWs **5**, **6**, **15**, **22**, **23** were recorded in acetone-d₆ (or DMSO-d₆) and the results are summarized in Table 3 for comparison. The signals of the nitro (niroso) groups are observed at the lowest field in the range δ_N –43 to –30 ppm (173 ppm). The signal for the nitrogen atom of the cyano group appear in the middle field of the spectra at δ_N –172 to –170 ppm. The signals of the nitrogen atoms of the five-membered cage rings are also found in the middle area at the range between δ_N –186 and –177 ppm. The peak of the nitrogen atom of the six-membered cage ring, which is linked to the CN group, appears in the highest field at δ_N –336 to –329 ppm, while the opposite nitrogen atom of the six-membered cage ring, appears in various fields depending on the substituent over a wide range δ_N –329 to –145 ppm. In the ¹⁵N NMR spectra of **5**, **6** and **15**, some low-intensity peaks from the nitrogen atoms of the six-membered cage ring did not appear, which is not uncommon, and is probably due to the fact that these ¹⁵N are split and very broadened, their intensity is highly reduced, these signals are not observed among the "noise", although the measurements were performed in different modes with elongated pulse delays throughout the night.

S98

1) Single crystal X-ray diffraction of compound 5

X-ray diffraction data **5** were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using graphite monochromatized Cu K_a-radiation (λ =1.54184 Å). The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.³² The structure was solved by direct methods using SHELXT³³ and refined on *F*² using SHELXL-2018³⁴ in the OLEX2 program.³⁵ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. The location of hydrogen atom H6 was found from the electron density-difference map; this hydrogen atom was refined with individual isotropic displacement parameters. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The Mercury program suite^{36]} was used for molecular graphics. Detailed crystallographic information is provided in Tables 5–8, and structure are presented in Figures 1 and 2. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2308196. Copies of the data can be obtained free of charge *via* https://www.ccdc.cam.ac.uk/structures/

Table 6. Detail Ci	rystallographic	data of	compounds	5 according	to single	crystal	X-ray	diffraction
analysis.								

Formula	C7H7N11O8
Formula weight [g·mol⁻¹]	373.24
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /n
Unit cell dimensions	$a = 7.67654(7) \text{ Å}, a = 90^{\circ}$ $b = 15.58666(16) \text{ Å}, \beta = 96.3532(9)^{\circ}$ $c = 10.82025(11) \text{ Å}, \gamma = 90^{\circ}$
<i>V</i> [Å ³]	1286.71(2)
Z/Z	4 / 1
$ ho_{ m calc} \left[{ m g} \cdot { m cm}^{-3} ight]$	1.927
μ [mm ⁻¹]	1.545
<i>F</i> (000)	760
crystal colour	colorless
crystal size [mm ³]	0.15 × 0.09 × 0.04
θ range [°]	4.996 to 79.670
Index ranges	$-8 \le h \le 9, -19 \le k \le 19, -13 \le l \le 13$
Reflections measured	17390
Independent reflections	2779 [R(int) = 0.0220]
Restraints applied/parameters refined	0 / 239
Goodness-of-fit on <i>F</i> ²	1.031
Reflections with $l > 2\sigma(l)$	2660
Final R indeces $[l \ge 2\sigma(l)]$	$R_1 = 0.0303, wR_2 = 0.0769$
Final <i>R</i> indeces [all data]	$R_1 = 0.0315, wR_2 = 0.0779$
Residual electron density ($ ho_{max}/ ho_{min}$) [e Å ⁻³ / e Å ⁻³]	0.330 / -0.250
CCDC number	2308196

Figure 1. General view of molecule **5** in crystal. Anisotropic displacement parameters are drawn at 50% probability level.

Figure 2. Supramolecular structure in the crystal **5** formed by the classical H-bond interactions, (a) and general view along axis *a* to the crystal packing (b) formed by the classical H-bond interactions, $N \cdots O$ and $O \cdots O$ interactions.

Bond lengths	
Cage nitro groups	
N(1)–N(7)	1.4301(13)
N(2)–N(8)	1.3669(14)
N(3)–N(9)	1.3756(14)
N(4)–N(10)	1.3950(14)
<i>Cyano group</i> N(5)–C(7) N(11)–C(7)	1.3397(15) 1.1499(17)

Table 7 (continued)

Cage nitro groups $N(7)-N(1)-C(1)$ 114.68(9) $N(7)-N(1)-C(3)$ 115.70(9) $N(8)-N(2)-C(1)$ 119.04(9) $N(8)-N(2)-C(4)$ 119.36(10) $N(9)-N(3)-C(2)$ 119.83(10) $N(9)-N(3)-C(5)$ 120.79(10) $N(10)-N(4)-C(2)$ 117.60(10) $N(10)-N(4)-C(6)$ 120.10(9)	Bond angles	
N(7)-N(1)-C(1)114.68(9) $N(7)-N(1)-C(3)$ 115.70(9) $N(8)-N(2)-C(1)$ 119.04(9) $N(8)-N(2)-C(4)$ 119.36(10) $N(9)-N(3)-C(2)$ 119.83(10) $N(9)-N(3)-C(5)$ 120.79(10) $N(10)-N(4)-C(2)$ 117.60(10) $N(10)-N(4)-C(6)$ 120.10(9)	Cage nitro groups	
N(7)-N(1)-C(3)115.70(9) $N(8)-N(2)-C(1)$ 119.04(9) $N(8)-N(2)-C(4)$ 119.36(10) $N(9)-N(3)-C(2)$ 119.83(10) $N(9)-N(3)-C(5)$ 120.79(10) $N(10)-N(4)-C(2)$ 117.60(10) $N(10)-N(4)-C(6)$ 120.10(9)Cyano group	N(7)–N(1)–C(1)	114.68(9)
N(8)-N(2)-C(1)119.04(9) $N(8)-N(2)-C(4)$ 119.36(10) $N(9)-N(3)-C(2)$ 119.83(10) $N(9)-N(3)-C(5)$ 120.79(10) $N(10)-N(4)-C(2)$ 117.60(10) $N(10)-N(4)-C(6)$ 120.10(9)Cyano group	N(7)–N(1)–C(3)	115.70(9)
N(8)-N(2)-C(4)119.36(10) $N(9)-N(3)-C(2)$ 119.83(10) $N(9)-N(3)-C(5)$ 120.79(10) $N(10)-N(4)-C(2)$ 117.60(10) $N(10)-N(4)-C(6)$ 120.10(9)Cyano group	N(8)–N(2)–C(1)	119.04(9)
N(9)–N(3)–C(2) 119.83(10) N(9)–N(3)–C(5) 120.79(10) N(10)–N(4)–C(2) 117.60(10) N(10)–N(4)–C(6) 120.10(9) Cyano group Cyano group	N(8)–N(2)–C(4)	119.36(10)
N(9)-N(3)-C(5) 120.79(10) N(10)-N(4)-C(2) 117.60(10) N(10)-N(4)-C(6) 120.10(9) Cyano group Cyano group	N(9)–N(3)–C(2)	119.83(10)
N(10)-N(4)-C(2)117.60(10)N(10)-N(4)-C(6)120.10(9)Cyano group120.10(9)	N(9)–N(3)–C(5)	120.79(10)
N(10)–N(4)–C(6) 120.10(9) Cyano group	N(10)–N(4)–C(2)	117.60(10)
Cyano group	N(10)–N(4)–C(6)	120.10(9)
Oyano gioup	Cvano group	
C(7) = N(5) = C(3) 117 75(10)	C(7) = N(5) = C(3)	117 75(10)
C(7) - N(5) - C(5) 121.32(10)	C(7) - N(5) - C(5)	121.32(10)
Torsion angles	Torsion angles	
Cage nitro groups	Cage nitro groups	
N(7)–N(1)–C(3)–C(4) (<i>axial</i>) -110.83(10)	N(7)–N(1)–C(3)–C(4) (axial)	-110.83(10)
N(8)–N(2)–C(4)–C(3) (equatorial) -173.10(9)	N(8)–N(2)–C(4)–C(3) (equatorial)	-173.10(9)
N(9)–N(3)–C(5)–C(6) (equatorial) -176.54(9)	N(9)–N(3)–C(5)–C(6) (equatorial)	-176.54(9)
N(10)–N(4)–C(6)–C(5) (axial) -119.03(11)	N(10)–N(4)–C(6)–C(5) (axial)	-119.03(11)
Cvano group	Cvano group	
C(7) = N(5) = C(3) = (C4) (middle) 149.10(10)	C(7) - N(5) - C(3) - (C4) (middle)	149,10(10)
C(7) - N(5) - C(5) - C(6) (middle) -152.34(10)	C(7) - N(5) - C(5) - C(6) (middle)	-152.34(10)

Table 8 Intermolecular hydrogen bonds for 5 [Å and °].

D—H…A	D–H, Å	H…A, Å	D…A, Å	\angle DHA, °	symmetry operation
N(6)-H(6)…O(6)	0.870(18)	2.312(18)	2.8605(14)	121.1(13)	-x+1/2,y-1/2,-z+3/2
N(6)-H(6)…N(11)	0.870(18)	2.254(18)	3.0351(15)	149.4(15)	x+1/2,-y+1/2,z+1/2

2) Single crystal X-ray diffraction of compound 15

X-ray diffraction data **15** were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using graphite monochromatized Cu K_a-radiation (λ =1.54184 Å). The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.³² The structure was solved by direct methods using SHELXT³³ and refined on *F*² using SHELXL-2018³⁴ in the OLEX2 program.³⁵ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The Mercury program suite³⁶ was used for molecular graphics. Detailed crystallographic information is provided in Tables 9 and 10, and structure are presented in Figures 3 and 4. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2308197. Copies of the data can be obtained free of charge *via* <u>https://www.ccdc.cam.ac.uk/structures/</u>

allalysis.	
Formula	C ₉ H ₈ N ₁₄ O ₁₄
Formula weight [g·mol ^{−1}]	536.29
Crystal system	monoclinic
Space group	<i>P</i> 21/n
Unit cell dimensions	$a = 13.5629(4)$ Å, $\alpha = 90^{\circ}$ $b = 8.4701(3)$ Å, $\beta = 109.891(3)^{\circ}$ $c = 17.2484(5)$ Å, $\gamma = 90^{\circ}$
V [Å ³]	1863.27(11)
Z/Z	4 / 1
ρ _{calc} [g⋅cm ⁻³]	1.912
μ [mm ⁻¹]	1.608
<i>F</i> (000)	1088
crystal colour	colorless
crystal size [mm ³]	0.11 × 0.06 × 0.02
θ range [°]	3.465 to 83.954
Index ranges	$-17 \le h \le 16, -10 \le k \le 10, -21 \le l \le 21$
Reflections measured	23475
Independent reflections	4051 [R(int) = 0.0416]
Restraints applied/parameters refined	0 / 334
Goodness-of-fit on <i>F</i> ²	1.077
Reflections with $l > 2\sigma(l)$	3523
Final R indeces $[I \ge 2\sigma(I)]$	$R_1 = 0.0374, \ wR_2 = 0.0902$
Final <i>R</i> indeces [all data]	$R_1 = 0.0446, \ wR_2 = 0.1002$
Residual electron density ($ ho_{max}/ ho_{min}$) [e Å ⁻³ / e Å ⁻³]	0.353 / -0.363
CCDC number	2308197

Table 9. Detail Crystallographic data of compounds **15** according to single crystal X-ray diffraction analysis.

Figures 3. General view of molecule **15** in crystal. Anisotropic displacement parameters are drawn at 50% probability level.

Figures 4. General view along axis *b* to the crystal packing for **15**, formed mainly by $N \cdots O$ and $O \cdots O$ interactions.

Bond lengths	
Cage nitro groups	
N(1)–N(7)	1.428(2)
N(2) - N(8)	1.4078(19)
N(3) - N(9)	1.381(2)
N(4) - N(10)	1.389(2)
Cvano group	
N(5) - C(7)	1.345(2)
N(1) - C(7)	1 145(3)
Trinitroethyl moiety	
N(6) - C(8)	1 456(2)
C(8) - C(9)	1 537(3)
C(9) = N(12)	1 528(2)
C(9) = N(12)	1 526(2)
C(9) = N(13)	1.525(2)
C(9) = N(14)	1.525(2)
Bond angles	
Cage nitro groups	
N(7) = N(1) = C(1)	116 81(14
N(7) - N(1) - C(3)	116 73(14)
N(7) - N(7) - O(3) N(8) - N(2) - O(1)	116.26(14)
N(3) = N(2) = O(1) N(3) = N(2) = O(4)	117.38(14)
N(0) = N(2) = O(4) N(0) = N(3) = O(2)	117.50(14) 110.52(14)
N(9) = N(3) = O(2) N(0) = N(2) = O(5)	130.33(14)
N(9) - N(3) - C(3)	120.40(14)
N(10) = N(4) = C(2) N(40) = N(4) = C(6)	110.12(14)
N(10) - N(4) - C(0)	116.54(13)
Cyano group	
C(7) N(5) C(3)	113 80(17)
C(7) = N(5) = C(5)	115.09(14) 116.00(14)
C(7)-N(5)-C(5) Trinitroothyl moioty	110.99(14)
	112 10(14)
N(0) = C(0) = C(3) C(0) = C(0) = N(12)	112.19(14)
C(0) = C(9) = N(12)	114.00(14)
C(8) = C(9) = N(13)	113.62(14)
C(8) - C(9) - N(14)	110.06(15)
Torsion angles	
Cage nitro groups	
N(7) = N(1) = C(3) = C(4) (avial)	-115 10(15)
N(3) = N(3) = O(3) = O(3) (axia) N(3) = N(3) = O(3) (axia)	111 /7(15)
N(0) = N(2) = O(4) = O(3) (alian) N(0) = N(3) = O(5) = O(6) (acuatoria)	-17/ 05/13)
N(3) - N(3) - C(3) - C(0) (EQUALONIAL)	-1/4.90(10) 117 70(15)
N(10)-N(4)-C(0)-C(3) (axial)	-117.70(15)
	06 02(10)
U(7) = IV(5) = U(3) = (U4) (axial)	δ0.23(1δ)
U(7) = N(5) = U(5) = U(6) (axial)	-86.40(18)
I rinitroethyl molety	
C(3)-C(4)-N(6)-C(8) (equatorial)	-162.42(14)
C(5)–C(6)–N(6)–C(8) (equatorial)	160.98(14)

Table 10. Selected bond lengths (Å), bond angles (°) and torsion angles (°) of compound 15

3) Single crystal X-ray diffraction of compound 22

X-ray diffraction data **22** as solvate **22**·MeCN were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using graphite monochromatized Cu K_{α}-radiation (λ =1.54184 Å). The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.³² The structure was solved by direct methods using SHELXT³³ and refined on *F*² using SHELXL-2018³⁴ in the OLEX2 program.³⁵ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The Mercury program suite³⁶ was used for molecular graphics. Detailed crystallographic information is provided in Tables 11 and 12, and structure are presented in Figures 5 and 6. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2308198. Copies of the data can be obtained free of charge *via* <u>https://www.ccdc.cam.ac.uk/structures/</u>

Formula	C7H6N12O10·CH3CN
Formula weight [g·mol⁻¹]	459.29
Crystal system	monoclinic
Space group	Pna2₁
Unit cell dimensions	$a = 13.5373(3)$ Å, $\alpha = 90^{\circ}$ $b = 7.8765(2)$ Å, $\beta = 90^{\circ}$ $c = 32.0668(8)$ Å, $\gamma = 90^{\circ}$
V [Å ³]	3419.17(14)
Z/Z	8 / 2
ρ _{calc} [g⋅cm ⁻³]	1.784
μ [mm ⁻¹]	1.428
<i>F</i> (000)	1872
crystal colour	colorless
crystal size [mm ³]	0.17 × 0.09 × 0.04
θ range [°]	2.756 to 79.984
Index ranges	$-13 \le h \le 16, -10 \le k \le 9, -40 \le l \le 40$
Reflections measured	41607
Independent reflections	7144 [R(int) = 0.0357]
Restraints applied/parameters refined	3 / 592
Goodness-of-fit on F ²	1.091
Reflections with $l > 2\sigma(l)$	7081
Final R indeces $[l \ge 2\sigma(l)]$	$R_1 = 0.0554, wR_2 = 0.1509$
Final <i>R</i> indeces [all data]	$R_1 = 0.0557, wR_2 = 0.1511$
Residual electron density (ρ_{max}/ρ_{min}) [e Å ⁻³ / e Å ⁻³]	0.758 / -0.335
CCDC number	2308198

Table 11. Detail Crystallographic data of compounds **22** according to single crystal X-ray diffraction analysis.

Figure 5. General view of molecule 22 in crystal. Anisotropic displacement parameters are drawn at 50% probability level.

Figure 6. General view to the crystal packing for compound **22**·MeCN along the axis *b*, formed mainly by N···O and O···O interactions.

Table 12. Selected bond lengths (Å), bond angles (°) and torsion angles (°) of compound 22

Bond lengths	
Cage nitro groups	
N(1A)–N(7A) / N(1B)–N(7B)	1.383(6) / 1.428(6)
N(2A)–N(8A) / N(2B)–N(8B)	1.445(6) / 1.391(6)
N(3A)–N(9A) / N(3B)–N(9B)	1.442(5) / 1.385(6)
N(4A)–N(10A) / N(4B)–N(10B)	1.376(6) / 1.437(6)
N(6A)–N(12A) / N(6B)–N(12B)	1.393(6) / 1.393(6)
Cyano group	
N(5A)–C(7A) / N(5B)–C(7B)	1.339(6) / 1.337(7)
N(11A) - C(7A) / N(11B) - C(7B)	1.159(7) / 1.152(7)
Rond angles	
Cogo pitro groups	
V(7A) = V(1A) = C(1A) / V(7B) = V(1B) = C(1B)	118 6(1) / 111 9(1)
N(7A) = N(1A) = C(1A) / N(7B) = N(1B) = C(1B) N(7A) = N(1A) = C(3A) / N(7B) = N(1B) = C(3B)	110.0(4) / 114.9(4) 110.1(A) / 114.5(A)
N(8A) - N(2A) - C(1A) / N(8B) - N(2B) - C(1B)	114.0(4) / 118.3(4)
N(8A) = N(2A) = C(7A) / N(8B) = N(2B) = C(7B)	113.6(A) / 120.5(A)
N(9A) = N(3A) = C(2A) / N(9B) = N(3B) = C(2B)	114 0(4) / 120 4(4)
N(9A) - N(3A) - C(5A) / N(9B) - N(3B) - C(5B)	115 9(4) / 119 6(4)
N(10A) - N(4A) - C(2A) / N(10B) - N(4B) - C(2B)	121.0(4) / 114.1(4)
N(10A) - N(4A) - C(6A) / N(10B) - N(4B) - C(6B)	119.7(4) / 115.8(4)
N(12A) - N(6A) - C(4A) / N(12B) - N(6B) - C(4B)	118.9(4) / 120.3(4)
N(12A) - N(6A) - C(6A) / N(12B) - N(6B) - C(6B)	121.2(4) / 117.9(4)
Cyano group	
C(7A)–N(5A)–C(3A) / C(7B)–N(5B)–C(3B)	118.5(4) / 121.1(4)
C(7A)–N(5A)–C(5A) / C(7B)–N(5B)–C(5B)	121.4(4) / 121.3(4)
Table 12 (continued)

Torsion angles

Cage millo groups	
N(7A)–N(1A)–C(3A)–C(4A) / N(7B)–N(1B)–C(3B)–C(4B) (equatorial) / (axial)	171.1(4) / 106.9(4)
N(8A)-N(2A)-C(4A)-C(3A) / N(8B)-N(2B)-C(4B)-C(3B) (axial) / (equatorial)	106.6(4) / -171.3(4)
N(9A)–N(3A)–C(5A)–C(6A) / N(9B)–N(3B)–C(5B)–C(6B) (axial) / (equatorial)	110.1(4) / -177.8(4)
N(10A)–N(4A)–C(6A)–C(5A) / N(10A)–N(4A)–C(6B)–C(5B) (equatorial) / (axial)	175.6(4) / 110.7(4)
N(12A)–N(6A)–C(4A)–C(3A) / N(12B)–N(6B)–C(4B)–C(3B) (middle) / (middle)	-138.0(4) / -148.6(4)
N(12A)–N(6A)–C(6A)–C(5A) / N(12B)–N(6B)–C(6B)–C(5B) (middle) / (middle)	140.3(4) / 145.9(4)
Cyano group	
C(7A)–N(5A)–C(3A)–(C4A) / C(7B)–N(5B)–C(3B)–(C4B) (middle) / (middle)	145.7(4) / 138.4(5)
C(7A)–N(5A)–C(5A)–C(6A) / C(7B)–N(5B)–C(5B)–C(6B) (middle) / (middle)	-144.2(4) / -140.7(5)

4) Single crystal X-ray diffraction of compound 23

X-ray diffraction data **23** were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using graphite monochromatized Cu K_{\alpha}-radiation (λ =1.54184 Å). The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.³² The structure was solved by direct methods using SHELXT³³ and refined on *F*² using SHELXL-2018 ³⁴ in the OLEX2 program.³⁵ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The Mercury program suite³⁶ was used for molecular graphics. Detailed crystallographic information is provided in Tables 13 and 14, and structure are presented in Figures 7 and 8. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2308199. Copies of the data can be obtained free of charge *via* <u>https://www.ccdc.cam.ac.uk/structures/</u>

Formula	C8H6N12O8
Formula weight [g·mol⁻¹]	398.25
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /c
Unit cell dimensions	$a = 7.78897(7)$ Å, $\alpha = 90^{\circ}$ $b = 13.33467(14)$ Å, $\beta = 93.7723(8)^{\circ}$ $c = 13.43040(12)$ Å, $\gamma = 90^{\circ}$
V [Å ³]	1391.90(2)
Z / Z	4 / 1
ρ _{calc} [g⋅cm ⁻³]	1.900
μ [mm ⁻¹]	1.503
<i>F</i> (000)	808
crystal colour	colorless
crystal size [mm ³]	0.24 × 0.05 × 0.04
θ range [°]	4.678 to 77.708
Index ranges	$-9 \le h \le 7, -16 \le k \le 16, -17 \le l \le 16$
Reflections measured	18672
Independent reflections	2957 [R(int) = 0.0277]
Restraints applied/parameters refined	0 / 253
Goodness-of-fit on F ²	1.042
Reflections with $l > 2\sigma(l)$	2852
Final R indeces $[l \ge 2\sigma(l)]$	$R_1 = 0.0310, wR_2 = 0.0784$
Final <i>R</i> indeces [all data]	$R_1 = 0.0317, wR_2 = 0.0789$
Residual electron density (ρ_{max}/ρ_{min}) [e Å ⁻³ / e Å ⁻³]	0.302 / -0.314
CCDC number	2308199

Table 13. Detail Crystallographic data of compounds **23** according to single crystal X-ray diffraction analysis.

Figure 7. General view of molecule **23** in crystal. Anisotropic displacement parameters are drawn at 50% probability level.

Figure 8. General view to the crystal packing for compound **23** along the axis *a*, formed by the $O \cdots O$ interactions and $C \cdots N$ interactions between acetonitrile fragments.

Bond lengths	
Cage nitro groups	
N(1) - N(7)	1.3742(13)
N(2) - N(8)	1.4245(13)
N(3) - N(9)	1.4311(13)
N(4) - N(10)	1.3682(13)
Cyano groups	
N(5)–C(7)	1.3388(15)
N(11)–C(7)	1.1506(16)
N(6)–C(8)	1.3440(15)
N(12)–C(8)	1.1506(16)
Bond angles	
Cage nitro groups	
N(7)-N(1)-C(1)	119.97(9)
N(7)–N(1)–C(3)	120.33(9)
N(8)-N(2)-C(1)	116.71(9)
N(8)-N(2)-C(4)	115.06(9)
N(9)–N(3)–C(2)	115.07(9)
N(9)–N(3)–C(5)	114.25(9)
N(10)–N(4)–C(2)	121.15(9)
N(10)–N(4)–C(6)	120.59(9)
Cyano groups	
C(7) - N(5) - C(3)	121.52(10)
C(7) - N(5) - C(5)	120.39(10)
C(8) - N(6) - C(4)	118.34(9)
C(8) - N(6) - C(6)	120.65(9)
I orsion angles	
Cage nitro groups	175.00(0)
N(7) - N(1) - C(3) - C(4) (equatorial)	175.29(9)
N(8) - N(2) - C(4) - C(3) (axial)	112.11(10)
N(9) - N(3) - C(5) - C(6) (axial)	108.43(10)
N(10)-N(4)-C(6)-C(5) (equatorial)	178.57(9)
Cyano groups	1.10 (0)(10)
U(1) = N(5) = U(3) = (U4) (midale)	140.69(10)
C(1) = N(5) = C(5) = C(6) (midale)	-137.80(10)
C(8) - N(6) - C(4) - C(3) (<i>middle</i>)	-147.62(10)
C(8) - N(6) - C(6) - C(5) (<i>middle</i>)	151.06(10)

 Table 14. Selected bond lengths (Å), bond angles (°) and torsion angles (°) of compound 23

Molecular surface electrostatic potentials (ESPs) of 0.001 electrons per bohr³ isosurfaces for 5, 15, 22, 23 and CL-20 calculated for optimized molecular structures in the gas phase using the DFT/B3LYP method at the 6-31G(d,p) level

-15 kcal·mol⁻¹

Figure 9. Molecular surface electrostatic potentials (ESPs) for **5**. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

-15 kcal·mol⁻¹

+40 kcal⋅mol⁻¹

Figure 10. Molecular surface electrostatic potentials (ESPs) for **15**. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

−15 kcal·mol⁻¹

+40 kcal·mol⁻¹

Figure 11. Molecular surface electrostatic potentials (ESPs) for 22. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

–15 kcal⋅mol⁻¹

Figure 12. Molecular surface electrostatic potentials (ESPs) for **23**. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

–15 kcal⋅mol⁻¹

+40 kcal·mol⁻¹

Figure 13. Molecular surface electrostatic potentials (ESPs) for **CL-20**. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

Differential scanning calorimetric (DSC) and thermogravimetric (TG) analysis for cyano derivatives of polynitro HAIWs 5, 6, 15, 22 and 23

Figure 14. DSC and TG curves of amino derivative 5 (heating rate of 5 °C min⁻¹).

Figure 15. DSC and TG curves of nitroso derivative 6 (heating rate of 5 °C min⁻¹).

Figure 16. DSC and TG curves of 2,2,2-trinitroethyl derivative 15 (heating rate of 5 °C min⁻¹).

Figure 17. DSC and TG curves of pentanitro HAIW 22 (heating rate of 5 °C min⁻¹).

Figure 18. DSC and TG curves of dicyano derivative 23 (heating rate of 5 °C min⁻¹).

Measurements and calculations of enthalpies of combustion and formation for cyano-substituted HAIWs 5, 6, 15, 22, 23

The combustion reactions of bis-cage derivatives **5**, **6**, **15**, **22** and **23** occurs
according to Eq. (1) – Eq. (5)

$$C_7H_7N_{11}O_{8(cr)} + 4.75 O_{2(g)} \rightarrow 7 CO_{2(g)} + 3.5 H_2O_{(l)} + 5.5 N_{2(g)},$$
 [Eq. (1)]
5
 $C_7H_6N_{12}O_{9(cr)} + 4 O_{2(g)} \rightarrow 7 CO_{2(g)} + 3 H_2O_{(l)} + 6 N_{2(g)},$ [Eq. (2)]
6
 $C_9H_8N_{14}O_{14(cr)} + 4 O_{2(g)} \rightarrow 9 CO_{2(g)} + 4 H_2O_{(l)} + 7 N_{2(g)},$ [Eq. (3)]
15
 $C_7H_6N_{12}O_{10(cr)} + 3.5 O_{2(g)} \rightarrow 7 CO_{2(g)} + 3 H_2O_{(l)} + 6 N_{2(g)},$ [Eq. (4)]
22
 $C_8H_6N_{12}O_{8 (cr)} + 5.5 O_{2(g)} \rightarrow 8 CO_{2(g)} + 3 H_2O_{(l)} + 6 N_{2(g)},$ [Eq. (5)]
23

where the subscripts cr, g, and I refer to crystalline, gaseous, and liquid states of the compounds, respectively.

The relationship between the enthalpies of formation and enthalpies of combustion of these compounds are presented by Eq. (6) – Eq. (10) taking into account the stoichiometry of reactions (1) - (5)

$$\Delta H_{\rm f} \, [C_7 H_7 N_{11} O_8]_{\rm (cr)} = 7 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 3.5 \, \Delta H_{\rm f} \, [H_2 O]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{5}), \qquad [Eq. (6)]$$
5

$$\Delta H_{\rm f} \, [C_7 H_6 N_{12} O_9]_{\rm (cr)} = 7 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 3 \, \Delta H_{\rm f} \, [H_2 O]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{10}), \qquad [Eq. (7)]$$
6

$$\Delta H_{\rm f} \, [C_9 H_8 N_{14} O_{14}]_{\rm (cr)} = 9 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 4 \, \Delta H_{\rm f} \, [H_2 O]_{\rm (l)} - \Delta H_{\rm comb}(15), \qquad [Eq. (8)]$$
15

$$\Delta H_{\rm f} \, [C_7 H_6 N_{12} O_{10}]_{\rm (cr)} = 7 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 3 \, \Delta H_{\rm f} \, [H_2 O]_{\rm (l)} - \Delta H_{\rm com}(\mathbf{22}), \qquad [Eq. (9)]$$

$$\Delta H_{\rm f} [C_8 H_6 N_{12} O_8]_{\rm (cr)} = 8 \Delta H_{\rm f} [CO_2]_{\rm (g)} + 3 \Delta H_{\rm f} [H_2 O]_{\rm (l)} - \Delta H_{\rm comb}(23), \qquad [Eq. (10)]$$
23

where $\Delta H_{\text{f}}[\text{CO}_2]_{(g)} = -94.051 \pm 0.031 \text{ kcal·mol}^{-1}$ and $\Delta H_{\text{f}}[\text{H}_2\text{O}]_{(l)} = -68.315 \pm 0.009 \text{ kcal·mol}^{-1}$.³⁷

Measurements of the enthalpies of combustion for **22** and **23** were carried out on a precision automatic combustion calorimeter with an isothermal coating specifically developed for combustion of energetic compounds and are presented in Tables 15 and 16. The mean square error of the measurements was 0.025%.

#	m² [g]	∆ <i>T⁵</i> [deg]	Q _{meas} c [cal]	<i>q</i> ₄ ^d [cal]	q _i ^e [cal]	<i>q</i> ℕ ^f [cal]	q _{cot} g [cal]	–∆ <i>U'</i> _B ^h [cal·g ^{−1}]		
1	0.058363	2.12627	1143.17	984.01	7.32	1.31	9.66	2413.6		
2	0.080126	2.17049	1166.94	954.87	7.24	1.80	9.52	2415.1		
3	0.079681	2.15514	1158.69	947.55	7.28	1.80	9.40	2417.9		
4	0.078429	2.13695	1148.91	941.47	7.30	1.75	9.28	2411.2		
5	0.081207	2.15929	1160.92	946.01	7.26	1.93	9.47	2416.7		
	$-\Delta U'_{\rm B}{}^{h} = 2414.9 \pm 3.0 {\rm cal} \cdot {\rm g}^{-1}$									
	$-\Delta H_{\rm comb}^{i} = 1002.7 \pm 1.3 \ \rm kcal \cdot mol^{-1}$									
	Δ <i>H</i> _f ^j = 139.4 ± 1.3 kcal·mol ^{−1}									

 Table 15. Measurements of combustion energy of compound 22.

 Table 16. Measurements of combustion energy of compound 23.

#	m² [g]	∆7 ^b [deg]	Q _{meas} c [cal]	qa ^d [cal]	q _i e [cal]	<i>q</i> ℕ [†] [cal]	q _{cot} g [cal]	<i>–</i> ∆Ư' _В ^h [cal⋅g ⁻¹]	
1	0.047206	2.01840	1085.17	930.50	7.20	1.35	9.53	2893.5	
2	0.074831	2.16654	1164.82	929.64	7.31	2.16	9.30	2892.0	
3	0.073209	2.12884	1144.55	913.77	7.28	2.11	9.35	2896.4	
4	0.075014	2.17738	1170.66	934.82	7.30	2.16	9.41	2892.2	
5	0.078312	2.21650	1191.68	946.07	7.18	2.24	9.55	2894.1	
	$-\Delta U'_{\rm B}{}^{h} = 2893.6 \pm 2.1 {\rm cal} \cdot {\rm g}^{-1}$								
	$-\Delta H_{\rm comb}^{i} = 1145.6 \pm 0.8 \ \rm kcal \cdot mol^{-1}$								
	Δ <i>H</i> _r ^j = 188.2 ± 0.8 kcal⋅mol ⁻¹								

Note for the tables: ^a Sample mass of the test substance (measurement error $2 \cdot 10^{-6}$ g); ^b Corrected temperature rise in the calorimeter; ^c The amount of heat measured in experiment (see formula 1); ^d Heat release from the combustion of the auxiliary substance (benzoic acid, the value on a unit of mass 6322.6 ± 1.2 cal·g⁻¹); ^e Ignition energy; ^f Heat release from the nitric acid solution formation (the value on a unit of mass 1.38 cal·g^{-1}); ^g Heat release from the combustion of cotton thread (the value on a unit of mass measured in a series of seven experiments was $3968.9 \pm 1.6 \text{ cal·g}^{-1}$); ^h Combustion energy of compound in a bomb is; ⁱ The standard enthalpy of combustion of the compound; ^j The standard enthalpy of formation of a compound.

The measured values were used to determine $\Delta H_{\rm f}$ of compounds **22** and **23** according to the standard scheme developed by S. M. Skuratov and V. P. Kolesov (M. V. Lomonosov Moscow State University).³⁸

The amount of heat measured in experiment is obtained by the formula (1):

$$Q_{\text{meas}} = W \times \Delta T, \tag{1}$$

where *W* is the energy equivalent, which was measured in a series of six experiments and amounted to 537.59 ± 0.14 cal·deg⁻¹.

The combustion energy of compound in a bomb is:

$$-\Delta U'_{\rm B} = (Q_{\rm meas} - q_{\rm a} - q_{\rm i} - q_{\rm N} - q_{\rm cot}) \times {\rm m}^{-1}. \tag{2}$$

And the enthalpy of combustion of the compound is:

$$-\Delta H_{\text{comb}} = -\Delta U'_{\text{B}} \times M + \pi \times \Delta U'_{\text{B}} + (n - n') \times \mathbf{R} \times T, \quad (3)$$

where **M** is the molar mass of the test substance, **n'** and **n** are the number of moles of gases, respectively, in the right and left sides of the chemical equation of combustion of one mole of a substance, **R** is the molar gas constant, **T** is the standard temperature (298 K) and **π** is the Washburn correction, which for compound $C_aH_bO_cN_d$ is calculated by the formula:

$$\pi = 0.3 \times P \times (-\Delta U_B / a)^{-1} \times \left[-1 + 1.1 \times \left(\frac{b - 2(c + d)}{4a} \right) - \frac{2}{P} \right]$$
(4),

where **P** is the initial pressure of oxygen in the bomb (30 atm); $-\Delta U_B I a$ is the heat of combustion of carbon contained in a combusted compound, kcal·(g·atom)⁻¹.

Based on these thermochemical and literature data,^[8b–g] the determination of ΔH_{comb} and ΔH_{t} for **5**, **6** and **15** was carried out by the additive method for calculating thermodynamic properties to S. W. Benson¹⁹ using the contributions of molecular fragments as well as Eq. (6) – Eq. (8), respectively.

High-temperature chemical equilibria thermodynamic calculations for cyano-substituted HAIWs 5, 6, 15, 22, 23

Metal-free formulations of SCP with an "active" binder, a mixture of polyvinyl methyl tetrazole with nitroglycerin and a phlegmatizer (Act-bnd, C_{18.96}H_{34.64}N_{19.16}O_{29.32}; $\Delta H_{\rm F}$ –757 kJ·kg⁻¹; *d* 1.49 g·cm⁻³)²⁴ in an amount corresponding to 19% by volume and the rest is a mixture of AP with the material under study (CL-20 or **5**, **6**, **15**, **22** and **23**) by varying the ratio of these HEDMs to AP were considered. The specific impulse *I*_{sp} (at pressures of 4.0 and 0.1 MPa in the combustion chamber and at the nozzle exit, respectively) and the combustion temperature *T*_{comb} were determined using the standard code TERRA²⁶ for high-temperature chemical equilibria calculation. The results of calculation with varying of the content of the organic energetic component are presented in Table 17 and Figures 19, 20.

Figure 19. The dependence of I_{sp} on the kind of HEDM (5, 6, 15, 22, 23 and CL-20) and its percentage in the SCP formulations containing 19 vol% (15–16 wt%) Active binder, organic energetic component, and AP.

Table 17. The I_{sp} values and other energetic parameters that can be achieved using SCP containing 19 vol% (15.0–15.8 wt%) Active binder, 34.4–39.8 wt% AP and HEDM **5**, **6**, **15**, **22**, **23** or CL-20.

organic c	organic component		AP ^b	ď	${\mathcal{T}_{comb}}^d$	l _{sp} ^e
type	[wt%]	[wt%]	[wt%]	[g∙cm ⁻³]	[K]	[s]
	15.48	10	74.52	1.828	3100	244.6
	15.46	15	69.54	1.831	3160	245.9
	15.44	20	64.56	1.833	3200	247.1
	15.42	25	59.58	1.835	3240	248.0
-	15.4	30	54.6	1.837	3260	248.7
5	15.38	35	49.62	1.840	3265	249.0
	15.36	40	44.64	1.842	3260	249.0
	15.34	45	39.66	1.844	3240	248.5
	15.32	50	34.68	1.847	3210	247.1
	15.3	55	29.7	1.849	3160	244.2
	15.5	10	74.5	1.827	3260	247.3
	15.46	20	64.54	1.831	3300	248.7
	15.42	30	54.58	1.836	3300	249.2
-	15.4	35	49.6	1.839	3290	249.0
6	15.38	40	44.62	1.841	3260	248.4
	15.36	45	39.64	1.843	3230	247.0
	15.34	50	34.66	1.846	3190	244.6
	15.32	55	29.68	1.848	3120	240.6
	15.75	0	84.25	1.798	3370	251.9
	15.7	10	74.3	1.805	3370	252.2
	15.65	20	64.35	1.813	3360	251.9
	15.58	30	54.42	1.820	3320	250.8
15	15.55	35	49.45	1.824	3290	249.7
10	15.5	40	44.5	1.828	3260	248.1
	15.45	45	39.55	1.832	3215	245.7
	15.42	50	34.58	1.835	3160	242.4
	15.4	55	29.6	1.839	3090	238.0
	15.3	10	74.7	1.848	3360	251.3
	15.29	20	64.71	1.850	3355	251.6
	15 28	30	54 72	1 852	3330	250.9
	15 27	35	49 73	1 853	3300	250.0
22	15.26	40	43.73	1 854	3270	248 7
	15.20	45	39 75	1.855	3230	246.7
	15 24	50	34 76	1.856	3180	243.5
	15.23	55	29.77	1.857	3110	239.2
	15 76	10	74 24	1 798	3120	243.2
	15.68	20	64 32	1,806	3220	246.1
	15.00	20	59.36	1 811	3250	240.1
	15.6	20	54.4	1.011	3250	247.2
22	15.0	25	J4.4	1.010	3270	240.0
25	15.50	35	49.44	1.019	3203	240.0
	15.52	40	44.40	1.025	3260	240.7
	15.40	45	39.52	1.020	2220	240.4
	15.44	50	34.50 20 E9	1.052	2190	247.3
	1/ 0	10	29.30	1 012	3100	277.0
	14.0 14.95	10	75.2	1 000	3380	253.0
	14.03	20	70.13 6F 1	1.500	3300	252.3
	14.5	20	60 1	1 000	2220	251.7
CI-20	14.3 1/ OC	20	55 05	1 202	2200	230.2
CL-20	14.33	30 25 AE	55.05	1 205	3200	240.3
	14.33	33.05	50	1 201	3240	240.2
	15	+0 ⊿⊑	45 40	1 888	3200	243.0
	15.05		29.95	1.882	3000	231.7
	10.00			1.002	3000	291./

^{*a*} Active binder. ^{*b*} Ammonium perchlorate. ^{*c*} Density of composition. ^{*d*} Temperature in the combustion chamber. ^{*e*} Specific impulse

Figure 20. A series of the relative efficiency of the studied energetic components at the maximum I_{sp} values of the SCP compositions containing 19 vol% Active binder, AP, and HEDM **5**, **6**, **15**, **22**, **23** or CL-20 at 55 (A), 50 (B), 45 (C) and 40 (D) wt%.

Explosive performance of compounds 5, 6, 15, 22 and 23

Table 18. Physicochemical and explosive properties of **5**, **6**, **15**, **22** and **23** in comparison with RDX, HMX, and CL-20 (<u>all density measured using a gas pycnometer at room temperature</u>).

Compd	Formula	Qa	H% [♭]	T _{dec} ^c [°C]	<i>d^d</i> [g cm ^{−3}]	∆ <i>H</i> f ^e [kJ/kg (kJ mol ^{–1})]	IS ^f [J]	FS ^f [N]	<i>D</i> √ ^g [km s ^{−1}]	P _{C-J} ^g [GPa]	Q _v ^g [MJ kg⁻¹]
5	$C_7H_7N_{11}O_8$	0.46	1.89	173	1.902	+1590 (+593)	_	-	9.14	39.2	6.22
6	$C_7H_6N_{12}O_9$	0.53	1.50	209	1.899	+1479 (+594)	_	-	9.06	38.8	6.21
15	C9H8N14O14	0.64	1.50	203	1.868	+1035 (+555)	_	-	8.96	37.4	6.47
22	$C_7H_6N_{12}O_{10}$	0.59	1.45	223	1.924	+1397 (+584)	3.9	220	9.19	40.9	6.44
23	$C_8H_6N_{12}O_8$	0.42	1.52	238	1.858	+1980 (+788)	5.2	210	8.95	36.7	6.30
RDX	$C_3H_6N_6O_6$	0.67	2.72	204 ^h	1.799	+301 (+67) ⁱ	8.0 ^h	130 ^h	8.96	36.2	6.17
HMX	$C_4H_8N_8O_8$	0.67	2.70	280 ^h	1.897	+255 (+76) ⁱ	7.0 ^h	130 ^h	9.21	40.3	6.15
CL-20	$C_6H_6N_{12}O_{12}$	0.80	1.37	229 ^h	2.021	+857 (+375) ^j	4.0 ^h	80 ^h	9.43	45.6	6.53

^{*a*} Oxygen coefficient. For a compound with the molecular formula $C_xH_yN_wO_z$, $\alpha = z/(2x+y/2)$. ^{*b*} Hydrogen content. ^{*c*} Extrapolated decomposition onset temperature at a heating rate of 5 °C min⁻¹ (DSC). ^{*d*} Density measured using a gas pycnometer at room temperature. ^{*e*} Standard enthalpy of formation determined by the method of combustion calorimetry. ^{*f*} The impact and friction sensitivity determined by BAM method using the STANAG standards.²² ^{*g*} Detonation parameters: velocity, pressure and heat calculated with S&DV4.5 code.²³ ^{*h*} Ref.21 ^{*i*} Ref.8d

References

- (a) K. Karaghiosoff, T. M. Klapötke, P. Mayer, H. Piotrowski, K. Polborn, R. L. Willer and J. J. Weigand, J. Org. Chem., 2006, 71, 1295–1305; (b) A. R. Farminer and G. A Webb, Tetrahedron, 1975, 31, 1521–1526; (c) H. Bandmann, P. Heymanns, C. Siem and P. Rademacher, Angew. Chem., 1984, 96, 354–355; (d) T. Lenz, T.M. Klapötke, M. Mühlemann and J. Stierstorfer, Propellants Explos. Pyrotech., 2021, 46, 723–73; (e) D. M. Kanjia, J. Mason, I. A. Stenhouse, R. E. Banks and N. D. Venayak, J. Chem. Soc. Perkin Trans. 2, 1981, 975–979.
- 28 (a) E. Pretsch, P. Buhlmann and M. Badertscher, Structure determination of organic compounds, tables of spectral data, fourth ed., Springer-Verlag, Berlin, Heidelberg, 2009; (b) G. Socrates, Infrared and raman characteristic group frequencies: Tables and charts, third ed., John Wiley & Sons, Chichester, 2004.
- 29 V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov, A. A. Grachev, S. S. Zalesskiy and V. P. Ananikov, *Russ. Chem. Rev.*, 2013, **82**, 648.
- 30 M. C. Pirrung, *The synthetic organic chemist's companion*, John Wiley & Sons, New Jersey, 2007.
- 31 A. J. Speziale and L. R. Smith, J. Org. Chem, 1962, 27, 3742–3743.
- 32 CrysAlisPro Version 1.171.41.106a, Rigaku Oxford Diffraction, 2021.
- 33 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3–8.
- 34 G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3–8
- 35 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, 42, 339–341.
- 36 C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Cryst.*, 2020, **53**, 226–235
- 37 J. D. Cox, D. D. Wagman and V. A. Medvedev, *CODATA key values for thermodynamics*, Hemisphere Publ. Corp., New York, 1989.
- a) S. M. Skuratov, V. P. Kolesov and A. F. Vorobiev, *Thermochemistry*, Moscow University, Moscow, 1966, b) D. R. Stull, E. F. Westrum and G. C. Sinke, *Chemical thermodynamics of organic compounds*, John Wiley & Sons, New York, 1969.
- (a) R. Meyer, J. Kohler and A. Homburg, Explosives, Wiley-VCH, Weinheim, 7th edn, 2016;
 (b) Energy Condensed Systems. A Concise Encyclopedic Dictionary, ed. B. P. Zhukov, Yanus-K, Moscow, 2nd edn, 2000.