Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Obtaining excellent density fused-ring energetic materials via

combination carbonyl, o-NH2-NO2 and nitroamino groups

Xiaoyu Guo^{#,a}, Yizhen Feng^{#,a}, Shengjie Zhi^a, Yajie Fu^a, Yingle Liu^{a,c,*}, Qiangqiang Liu^a, Haixiang Gao^{b,*}

^aSchool of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China.

^bDepartment of Applied Chemistry, China Agricultural University, Beijing 100193, China.

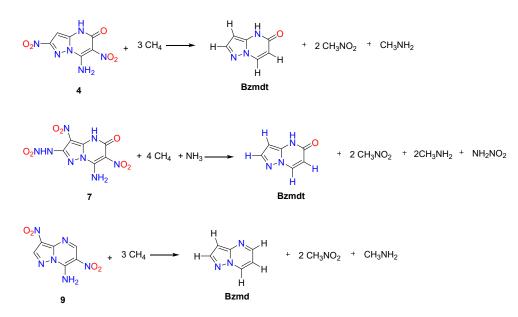
^cBeijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China.

[#] These authors contributed equally to this work.

* Corresponding authors. Email addresses: liuyingleyou@163.com (Y. Liu), liuqq87@163.com (Q. Liu), hxgao@cau.edu.cn (H. Gao)

Table of Contents

1. General Methods	S2
2. Theoretical Calculations	S2
3. Experimental Section	S3
4. X-ray Crystallography of $4 \cdot H_2O$, $7 \cdot H_2O$ and $9 \cdot H_2O$	S5
5. 2D fingerprint plots for 4, 7 and 9	S9
6. ¹ H NMR and ¹³ C NMR of new compounds 3 , 4 , 6 , 7 , 9	.S11
7. DSC of new compounds 4, 7 and 9	S14
8. References	S19


1. General Methods

Density was determined at room temperature by employing a Micromeritics AccuPyc II 1340 gas pycnometer. Decomposition temperatures (onset) were recorded using a dry nitrogen gas purge and a heating rate of 5 °C min⁻¹ on a differential scanning calorimeter (DSC, TA Instruments Q2000). Elemental analyses (C, H, N) were performed with a Vario Micro cube Elementar Analyzer. Impact sensitivity measurements were made using a standard BAM Fallhammer equipment (HWP18-30S) purchasing from Young Instruments with the error ranges \pm 1mm, and Friction sensitivity measurements were made using a standard BAM Fallhammer equipment (HWP17-10S) purchasing from Young Instruments with the error ranges \pm 0.49 N in the test of 40 N.

2. Theoretical Calculations

The gas phase enthalpies of formation were calculated based on isodesmic reactions (Scheme S1, ESI†). The enthalpy of reaction was obtained by combining the MP2/6-311++G** energy difference for the reactions, the scaled zero point energies (ZPE), values of thermal correction (HT), and other thermal factors. The solid state heats of formation of **5**, **7**, and **8** were calculated with Trouton's rule according to eqn (1) (*T* represents either the melting point or the decomposition temperature when no melting occurs prior to decomposition).¹

$$\Delta H_{sub} = 188/J \text{ mol}^{-1} \text{ K}^{-1} \times T \qquad (1)$$

Scheme S1. Isodesmic reactions

Table S1. Calculated zero point energy (*ZPE*), values of the correction (Hr), total energy (*E*0) and heats of formation (*HOF*)

Species	ZPE ^[a]	Hr ^[a]	E0 ^[b]	corrected E0 ^[b]	HOF (kJ mol ⁻¹) ^[b]
4	0.133171	0.147732	-933.3945656	-933.2521604	-32.00191095
7	0.15074	0.168914	-1192.697706	-1192.534822	53.60901834

9	0.15074	0.106898	-909.5873962	-909.4842636	-140.9158998
Bzmdt	0.110224	0.118201	-469.9499957	-469.8362037	114.9189707
Bzmd ²	0.105716	0.112431	-394.8529222	-394.7447198	325.39
CH_4	0.044793	0.048605	-40.3796224	-40.33281	-74.6
NH ₃	0.034384	0.038203	-56.4154647	-56.37864	-45.9
CH_3NH_2	0.06403	0.06840	-95.59384	-95.52800	-23.0
NH ₂ NO ₂	0.039257	0.043903	-260.4931748	-260.45084	-6.11

[a] Data obtained from G2. [b] Data are from Ref. [D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), CRC Press/Taylor and Francis, Boca Rotan, Florida].

2. Experimental Section

3.1. Safety Precaution!

Although no explosions were observed during the syntheses and handling of these compounds in this study, all manipulations should be carried out in a hood and behind a safety shield. Actions involving scratching or scraping should be avoided. Eye protection and leather gloves should be worn. All of the energetic compounds should be synthesized on a small scale.

3.2. Sample preparation

7-amino-5-oxo-4,5-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile (3)

2 mL of ethyl cyanoacetate, compound **1** (10 mmol, 1.08 g) and triethylamine (20 mmol, 2.02 g) were successively added into a reaction tube with stirring. After sealing the tube, the reaction temperature was raised to 150 °C and held for 8 hours. Then the solution was cooled to room temperature and 10 mL of water was poured into the tube. The yellow precipitate was collected by filtration and washed with Et₂O (15 mL) and water (15 mL). **3** (1.43 g, 82%) was obtained as a yellow solid. ¹H NMR (600 MHz, DMSO) δ 12.07 (s, 1H), 8.38 (s, 1H), 7.73 (s, 2H), 5.31 (s, 1H) ppm. ¹³C NMR (151 MHz, DMSO) δ 164.14, 150.31, 148.35, 145.58, 114.23, 77.49, 75.39 ppm. IR (KBr): \tilde{v} 3315, 3128, 2930, 1655, 1432, 1414, 1252, 1108, 689 cm⁻¹. Elemental analysis for C₇H₅N₅O₁ (175.1): Calcd C 48.00, H 2.88, N 39.99 %. Found: C 47.78, H 2.95, N 39.02 %.

7-amino-3,6-dinitropyrazolo[1,5-a]pyrimidin-5(4H)-one (4)

To a mixture of 9 mL conc. H_2SO_4 and 3 mL fuming HNO₃ at -5 °C, compound **3** (10 mmol, 1.75 g) was slowly added in small portions with continuous stirring. The temperature was allowed to warm slowly to 65 °C and held for 4 hours. Then the solution was poured into ice with stirring. The formed solid was filtered and washed with small amount of water to obtain compound **4** in 85% yield. ¹H NMR (600 MHz, DMSO) δ 9.63 (s, 1H), 9.54 (s, 1H), 8.78 (s, 1H) ppm. ¹³C NMR (151 MHz, DMSO) δ 154.23, 149.16, 140.98, 138.71, 118.91, 111.59 ppm. IR (KBr): \tilde{v} 3312, 2887,

1675, 1443, 1399, 1274, 1165, 758 cm⁻¹. Elemental analysis for C₆H₄N₆O₅ (240.1): Calcd C 30.01, H 1.68, N 35.00 %. Found: C 30.14, H 1.83, N 35.82 %.

2,7-diamino-3-nitropyrazolo[1,5-a]pyrimidin-5(4H)-one (6)

2 mL of ethyl cyanoacetate, compound **5** (10 mmol, 1.43 g) and triethylamine (20 mmol, 2.02 g) were successively added into a reaction tube with stirring. After sealing the tube, the reaction temperature was raised to 150 °C and held for 8 hours. Then the solution was cooled to room temperature and 10 mL of water was poured into the tube. The yellow precipitate was collected by filtration and washed with Et₂O (15 mL) and water (15 mL). **6** (1.68 g, 80%) was obtained as a green solid. ¹H NMR (600 MHz, DMSO) δ 11.64 (s, 1H), 7.41 (s, 2H), 6.66 (s, 2H), 5.34 (s, 1H) ppm. ¹³C NMR (151 MHz, DMSO) δ 153.37, 149.53, 142.71, 108.59, 100.00, 78.69 ppm. IR (KBr): \tilde{v} 3302, 3108, 2920, 1643, 1433, 1420, 1277, 1118, 758 cm⁻¹. Elemental analysis for C₆H₆N₆O₃ (210.1): Calcd C 34.29, H 2.88, N 39.99 %. Found: C 34.48, H 2.95, N 39.02 %.

N-(7-amino-3,6-dinitro-5-oxo-4,5-dihydropyrazolo[1,5-a]pyrimidin-2-yl)nitramide (7)

To a mixture of 9 mL conc. H₂SO₄ and 3 mL fuming HNO₃ at -5 °C, compound **6** (10 mmol, 2.10 g) was slowly added in small portions with continuous stirring. The temperature was allowed to warm slowly to 65 °C and held for 4 hours. Then the solution was poured into ice with stirring. The formed solid was filtered and washed with small amount of water to obtain compound **7** in 78% yield. ¹H NMR (600 MHz, DMSO) δ 9.60 (s, 2H), 5.41 (s, 2H) ppm. ¹³C NMR (151 MHz, DMSO) δ 154.09, 148.98, 142.89, 140.27, 112.56, 112.21 ppm. IR (KBr): \tilde{v} 3408, 2950, 2843, 1655, 1448, 1404, 1298, 1113, 1016 cm⁻¹. Elemental analysis for C₆H₄N₈O₇ (300.1): Calcd C 24.01, H 1.34, N 37.33 %. Found: C 24.12, H 1.55, N 38.01 %.

3,6-dinitropyrazolo[1,5-a]pyrimidin-7-amine (8)

To a suspension of 1 (1.08 g, 5.0 mmol) in EtOH (20 mL) was added 3,3-diethoxy propionitrile (0.86 g, 6.0 mmol) and concentrated hydrochloric acid (0.6 mL). The reaction mixture was heated to reflux for 2 h. Then the precipitate was collected by filtration and washed with EtOH (12 mL) and water (12 mL). **8** (1.54 g, 97 %) was obtained as a white solid. The data of ¹H NMR is the same as the literature.³

3,6-dinitropyrazolo[1,5-a]pyrimidin-7-amine (9)

To a mixture of 9 mL conc. H_2SO_4 and 3 mL fuming HNO₃ at -5 °C, compound 8 (10 mmol, 1.59 g) was slowly added in small portions with continuous stirring. The temperature was allowed towarm slowly to 65 °C and held for 4 hours. Then the solution was poured into ice with stirring.

The formed solid was filtered and washed with small amount of water to obtain compound **9** in 72% yield. ¹H NMR (600 MHz, DMSO-*d*6): $\delta = 10.08$ (s, 1H), 9.74 (s, 1H), 9.29 (s, 1H), 9.09 (s, 1H) ppm. ¹³C NMR (151 MHz, DMSO-*d*6): δ 152.44, 146.11, 144.29, 143.81, 124.22, 120.17 ppm. IR (KBr): \tilde{v} 3396, 3267, 1643, 1589, 1469, 1272, 813, 617 cm⁻¹. Elemental analysis for C₆H₄N₆O₄ (224.1): Calcd C 32.15, H 1.80, N 37.50 %. Found: C 32.17, H 1.59, N 36.98 %.

3. X-ray Crystallography of 4·H₂O, 7·H₂O, and 9·H₂O

Chemical formula	4• H ₂ O	7•H₂O	9•H ₂ O
CCDC number	2306222	2306224	2306223
Formula mass	258.17	318.19	242.17
Crystal system	monoclinic	monoclinic	monoclinic
a/Å	9.1700(2)	6.7948(4)	6.2158(4)
b/Å	6.5296(2)	9.4387(5)	17.8398(10)
c/Å	15.4974(4)	16.5829(12)	16.5515(10)
α/o	90	90	90
β/º	97.747(2)	92.635(6)	97.761(6)
$\gamma^{/o}$	90	90	90
Volume/Å ³	919.46(4)	1062.40(11)	1819.35(19)
Temperature/K	170.00(10)	100.00(10)	169.99(10)
Space group	$P2_1/n$	$P2_1/n$	<i>P2</i> ₁ /n
Ζ	4	4	8
Radiation type	Cu Kα (λ = 1.54184)	Cu Kα (λ = 1.54184)	ΜοΚα (λ = 0.71073)
μ/mm^{-1}	1.481	1.641	0.155
Density calcd/g cm ⁻³	1.865	1.989	1.768
F(000)	528.0	648.0	992.0
2⊖ range for data collection/°	10.624 to 146.092	10.682 to 142.808	4.566 to 49.998
Index ranges	$-11 \le h \le 7, -7 \le k \le 7, -18 \le 1 \le 17$	$-5 \le h \le 8, -11 \le k \le 11, -16 \le 1 \le 20$	$-6 \le h \le 7, -21 \le k$ 20, -15 \le 1 \le 19

Table S2. Crystallographic data for 4·H₂O, 7·H₂O, and 9·H₂O

Reflections collected	3074	4736	8087
Independent reflections	1769 [$R_{int} = 0.0208$, $R_{sigma} = 0.0234$]	2027 [$R_{int} = 0.0359$, $R_{sigma} = 0.0471$]	$\begin{array}{l} 3207[R_{int}=0.0213,\\ R_{sigma}=0.0327] \end{array}$
Data/restraints/parameters	1769/0/175	2027/0/206	3207/0/324
R1 / wR2 [all data]	0.0383/0.0952	0.0535/ 0.1141	0.0509/ 0.1000
R1 / wR2 [I > $2\sigma(I)$]	0.0351/0.0921	0.0437/ 0.1091	0.0401/0.0929
Goodness-of-fit on F ²	1.042	1.047	1.034

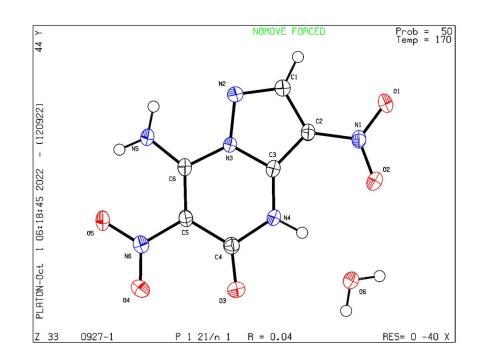


Figure S1. Single crystal of **4.H₂O** was obtained by slow evaporation of a solution of ethyl acetate for X-ray diffraction measurements.

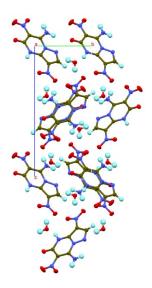


Figure S2. Unit cell view for $4.H_2O$ along a axis.

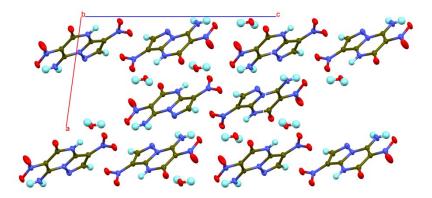


Figure S3. Unit cell view for 4.H₂O along b axis.

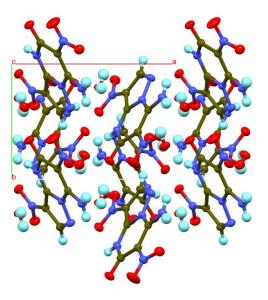


Figure S4. Unit cell view for $4.H_2O$ along c axis.

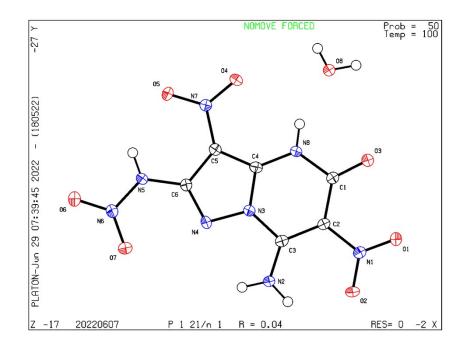


Figure S5. Single crystal of $7 \cdot H_2O$ was obtained by slow evaporation of a solution of ethyl acetate for X-ray diffraction measurements.

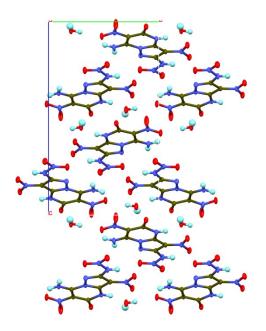


Figure S6. Unit cell view for $7.H_2O$ along a axis.

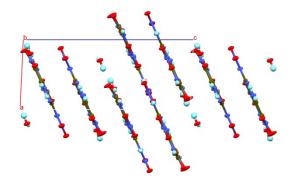


Figure S7. Unit cell view for 7.H₂O along b axis.

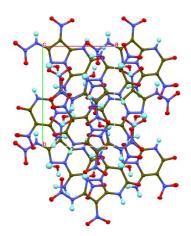


Figure S8. Unit cell view for 7.H₂O along c axis.

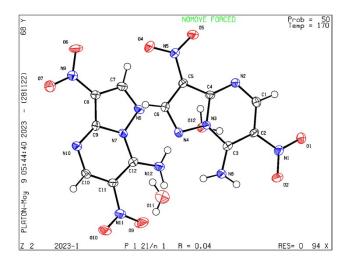


Figure S9. Single crystal of $9.H_2O$ was obtained by slow evaporation of a solution of ethyl acetate for X-ray diffraction measurements.

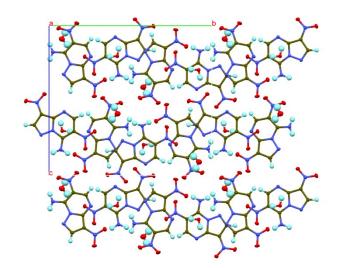


Figure S10. Unit cell view for $9.H_2O$ along a axis.

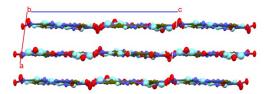


Figure S11. Unit cell view for $9.H_2O$ along b axis.

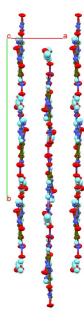


Figure S12. Unit cell view for $9.H_2O$ along c axis.

4. 2D fingerprint plots for 4, 7 and 9

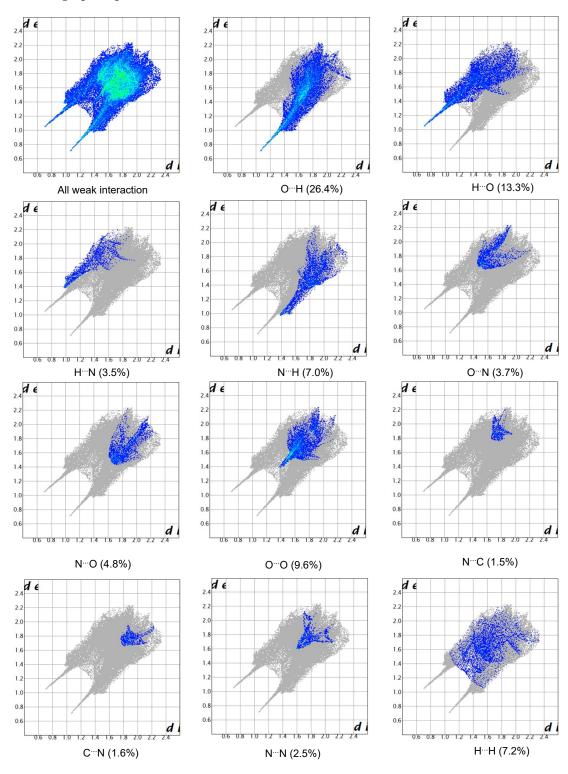


Figure S13. 2D fingerprint plots for 4

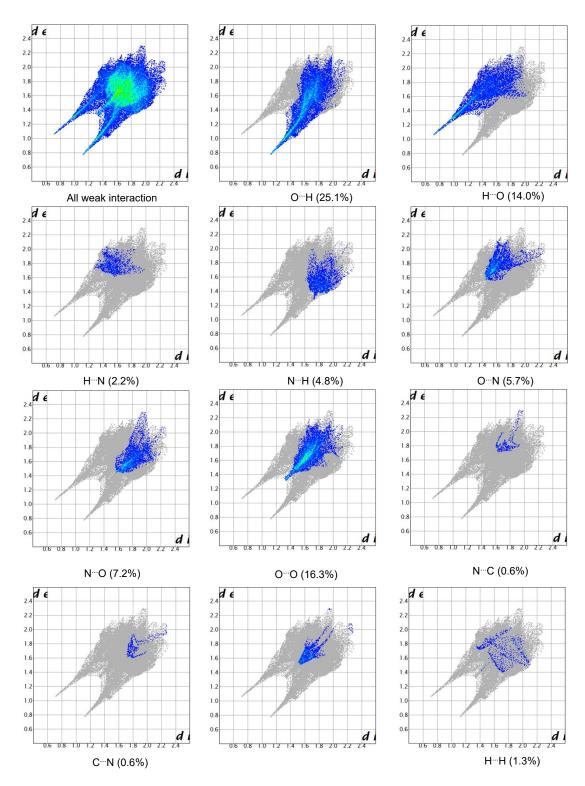


Figure S14. 2D fingerprint plots for 7

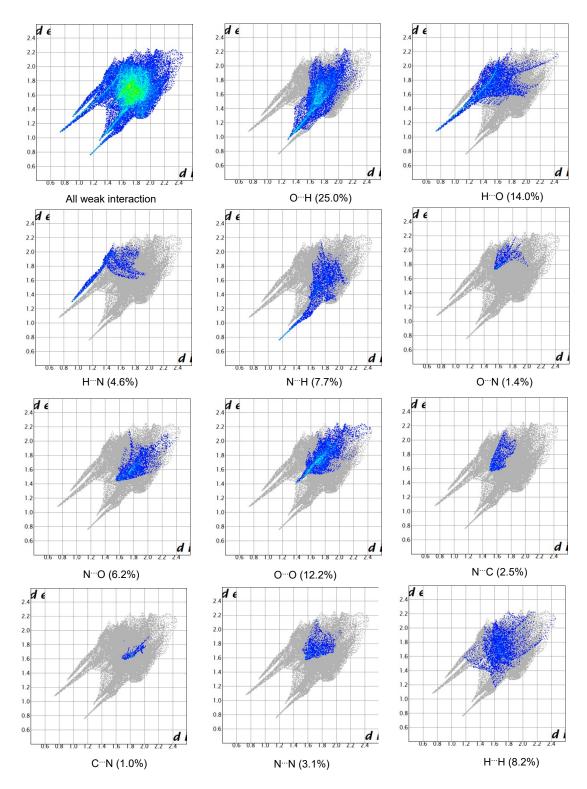


Figure S15. 2D fingerprint plots for 9

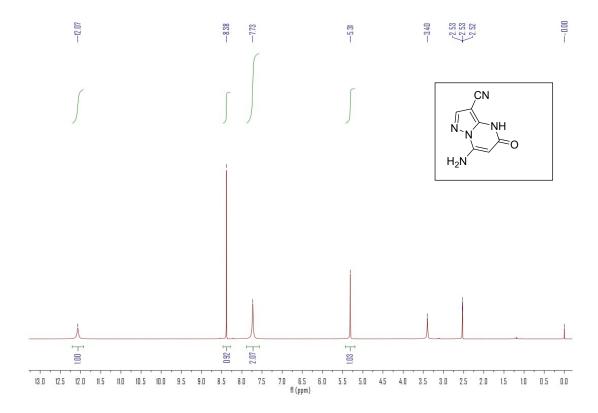


Figure S16. ¹H NMR spectra in DMSO-d6 for compound 3.

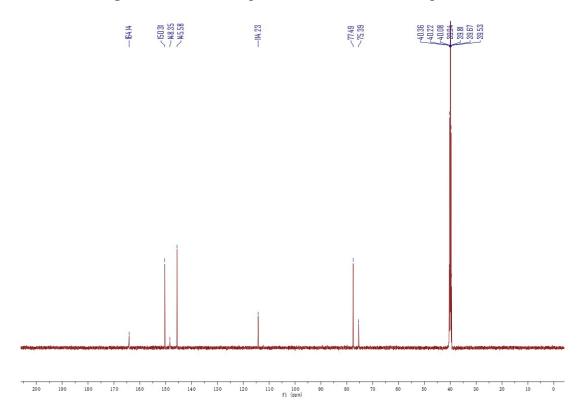


Figure S17. ¹³C NMR spectra in DMSO-d6 for compound **3**.

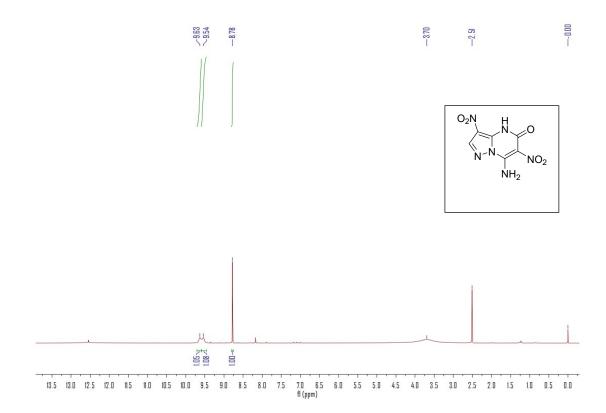


Figure S18. ¹H NMR spectra in DMSO-d6 for compound 4.

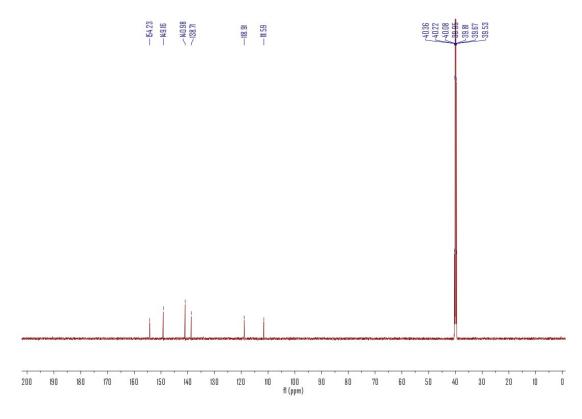


Figure S19. ¹³C NMR spectra in DMSO-d6 for compound 4.

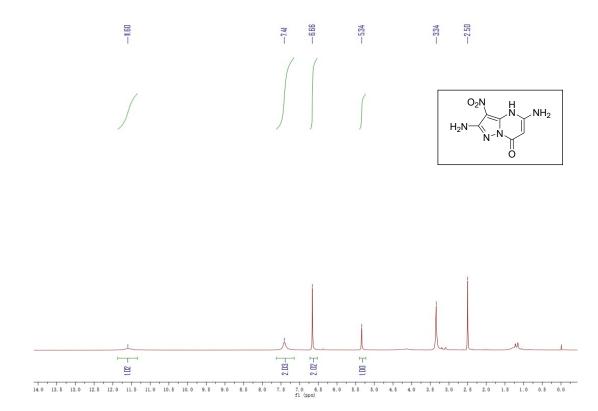


Figure S20. ¹H NMR spectra in DMSO-d6 for compound 6.

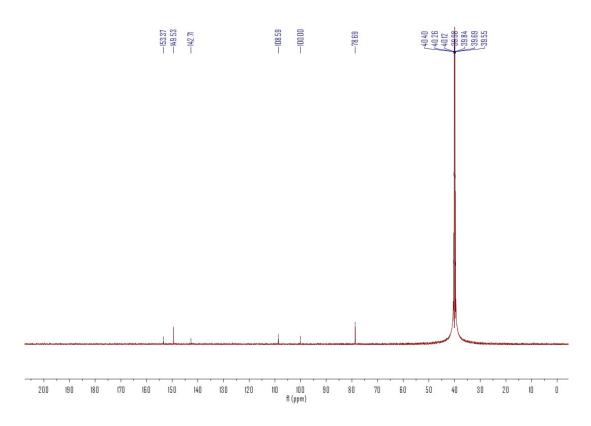


Figure S21. ¹³C NMR spectra in DMSO-d6 for compound 6.

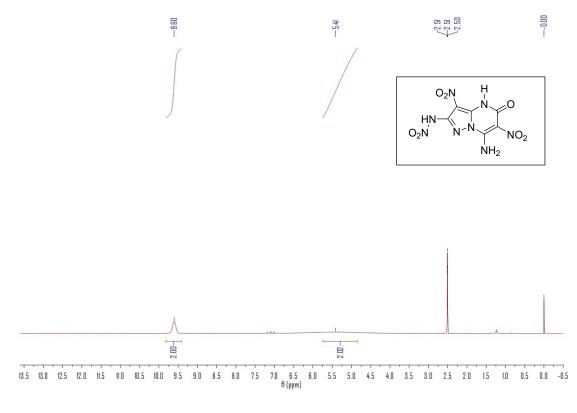


Figure S22. ¹H NMR spectra in DMSO-d6 for compound 7.

Figure S23. ¹³C NMR spectra in DMSO-d6 for compound 7.

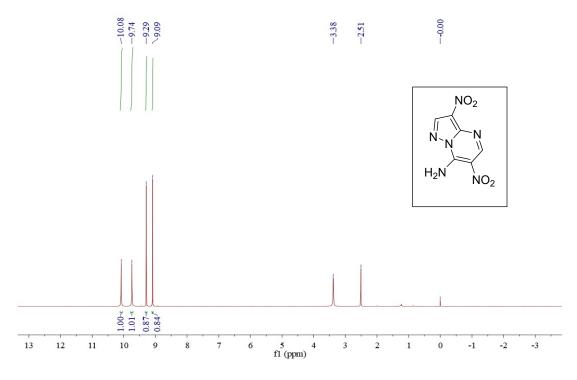


Figure S24. ¹H NMR spectra in DMSO-d6 for compound 9.

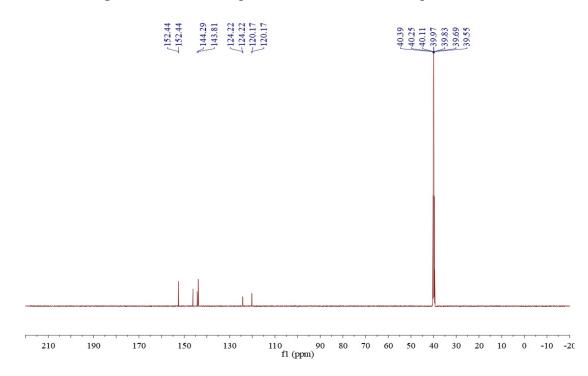


Figure S25. ¹³C NMR spectra in DMSO-d6 for compound 9.

6. DSC of new compounds 4, 7 and 9

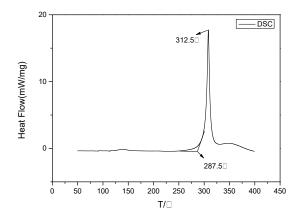


Figure S26. DSC of new compounds 4.

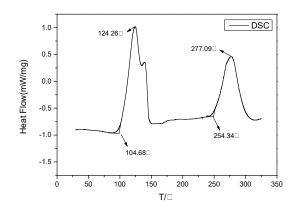


Figure S27. DSC of new compounds 7.

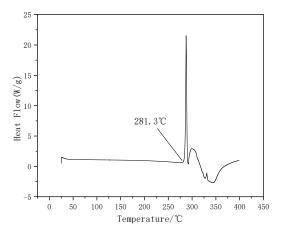


Figure S28. DSC of new compounds 9.

7. References

(1) Westwell, M. S.; Searle, M. S.; Wales, D. J.; Williams, D. H. Empirical correlations between thermodynamic properties and intermolecular forces. *J. Am. Chem. Soc.* **1995**, *117*, 5013–5015.

(2) Z. Zeng, Y. Liu, Q. Lv, W. Huang, H. Yang, G. Cheng, Y. Tang, From N atom to C–NO2 group: Achieving a high energy density material with a "NH₂–NO₂–NH₂" block. *Chem. Eng. J.* **2022**, *450*, 138094-138099.

(3) D. A. Gazizov, E. B. Gorbunov, G. L. Rusinov, E.N. Ulomsky, V. N. Charushin, A new family of fused azolo[1,5-a]pteridines and azolo[5,1-b]purines, *ACS Omega* **2020**, *5*, 18226-18233.