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Figure S1. Thermogravimetric performance of 3 materials.
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Figure S2. Infrared spectra of a) Cubic (F-43m) Zn3[Co(CN)e],-12H,0; b) cubic stabilized (Pm-
3m) Zn; 7Cdg 3[Co(CN)gl;:12H,0; c) Rhombohedral stabilized (R-3¢) Zns[Feg.1Cogo(CN)sl,.

The band in 3,650 cm™ (1) is due to the asymmetric vibration of water molecules that are
coordinated to Zn atoms; the wide band from 3,570 to 2,900 cm™ (2) originates from the
combination of asymmetric and symmetric vibrations of the hydrogen bridged water
molecules; the band in 2,175 cm™ (3) is the stretching vibration of triple bonded carbon to
nitrogen in the cyanide block [Co(CN)e]3; the band in 2,106 cm™ (4) is stretching vibration
of CN in [Fe(CN)g]; the band forming a shoulder in 1,675 cm™ (5) is for the bending vibration
of the hydrogen bridged water molecules; the band in 1,609 cm™ (6) is for the bending
vibration of water molecules that are coordinated to Zn atoms; the band in 488 cm™ (7) is
due to the bending vibration of Fe-C=N- atoms; the band in 471 cm™ (8) is for the bending
vibration of Co-C=N- chain.



Table S1. Crystallographic Parameter of catalysts

ZnCoCn ZnCoCs ZnCoRs
Geometry Cubic Cubic Rhombohedral
space group F-43m Pm-3m R-3c¢
H,0 molecules 12 12 0
a[A] 10.252 10.287 12.478
b [A] 10.252 10.287 12.478
c [A] 10.252 10.287 32.738
External* Vacancy [%] 26.37 25 0
Internal Vacancy [%)] 50.56 49.56 0
Size (A) 1128.68 740.23 1778.51
Strain (% %) 6.87 34.28 1.94

*7Zn or Cd; *Co or Fe
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Figure S3. SEM image of zinc hexacyanocobaltate (lll) (ZnCoCn), there is a big particle with
the smallest ones above.
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Figure S4. SEM image of zinc-cadmium hexacyanocobaltate (l1l) (ZnCoCs).
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Figure S5. SEM image of zinc hexacyanocobaltate with iron replacement (ll1) (ZnCoRs).
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Figure S6. 3-cycle DSC Termogram of catalysts: a) ZnCoCn (1%t cycle) and ZnCoRn (2" and
3" cycle); b) ZnCoCs; ¢) ZnCoRs.



Figure S7. Unity Cell image of zinc hexacyanocobaltates; a) Cubic F -4 3 m
Zn3[Co(CN)¢]>-12H,0, the red balls are the distinct water molecules; b) Rhombohedral R -
3c; c) cubic P m -3 m stabilized, the darker cyan balls are cadmium atom and red balls the
water; d) Rhombohedral R -3 c stabilized, the orange balls are the internal iron, the green
one is the potassium as compensation cation and red are the water associated.
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Figure S8. Thermal treatment at different times to water extraction in stabilized materials.
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Figure S9. XPS survey spectra of all materials.



Table S2. C 1s, N 1s, Co 2p, and Zn 2p BE (eV) and Zn Auger (kinetic energy in eV) and
Auger modified parameter of the catalysts.

C N Co Zn Zn a'zn
Iscy 1sz0n 2p3); 2p3); L3M45My5 [eV]

ZnCoCs 284.39 397.8 781.29 10214  987.55 2008.95

ZnCoCn 284.41 397.66 781.15 1021.29 987.6 2008.89

ZnCoRn 284.42 397.7 781.32 1021.33 987.7 2009.03

ZnCoRs 284.37 397.4 782.19 1021.75 987.6 2009.35

Because auger peaks have well-defined positions and shapes (see Figure S9 in supporting
information), the zinc auger line L3sMysMys was measured (Table S2), due to Zn° and ZnO
having a narrow binding energy difference (0.65 eV) >3.

Taking the cubic phase (ZnCoCn) as a reference, the rhombohedral phase shows an +0.1 eV
shift, in agreement with Zn 2p;/, results, the cubic stabilized presented a negligible decrease
of 0.05 eV and the rhombohedral stabilized has no change. Hence, the modified Auger
parameter (a') 48°%37 was calculated to find a better way to determine the Zn chemical
environment, as compared above, taking the cubic phase (ZnCoCn) as a reference with
2008.89 eV (calculated), the rhombohedral phase has a +0.14 eV shift, according with the
previous discussed, due to the positive charge accumulation in Zn atom by the change to
tetrahedral coordination and water molecules loss. The cubic stabilized showed a +0.06 eV
shift, opposite of what was found in the auger peak, but keeping in mind that the modified
auger parameter is a combination of the kinetic energy of LsMysMys Auger line and 2ps,
peak, the net effect for chemical environment analysis is sensed %8657, becoming the best
option because has no charge effect interference, for this reason, the a’ was chosen for the
final Zn analysis, the result may be attributed to the cadmium atoms that replace zincin 9:1
proportion as was determined by XRD (see Figure S7-c), a unit cell) and the rhombohedral
stabilized phase presented a +0.46 shift, due to the iron substitution as an internal metal,
as discussed before, iron is slightly less electronegative than cobalt, then the m-back
bonding charge donation effect has more positive charge accumulation in zinc atoms.
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Figure S10. IUPAC isotherm classification [58].
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Figure S11. ZnCoRs Isotherm comparison with other materials.
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Figure S12. Micropore Size Distribution calculated by the DFT method.
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Figure S13. Mesopore Size Distribution calculated by BJH method.



Table S3. Textural properties of all studied materials

ZnCoCn ZnCoRn ZnCoCs ZnCoRs
BET Surface Area (m%-g?) 624.86 636.94 646.28 634.52
t-Plot Micropore Area (m%-g1) 552.8 550.52 574.1 625.79
t-Plot External Area (m?-g1) 72.05 86.43 72.18 8.73
Pore Volume (cm3-g1) 0.343 0.349 0.351 0.337
t-Plot micropore vol. (cm3-g1) 0.289 0.288 0.3 0.326
Micropore Size by DFT (A) 11.82 11.82 12.04 11.96
Mesopore Size by BJH (A) 26.082 25.662 24.999 32.117

1H NMR characterization



The spectra were recorded with a Bruker Ascend 750 MHz spectrometer with a relaxation
time of 10 s and a 2 mM hexamethyldisilane (HMDS), in the NMR laboratory of the Centro
de Nanociencias y Micro y Nanotecnologias (CNMN) of the Instituto Politécnico Nacional.

Table S4. 'H NMR signals of the mixture obtained for ZnCoCn in 2 h reaction.

Chemical shift Molecular

(ppm) Type group Proton Compound
0.04 Singlet CH; -Si-CH; HMDS
1.01 Triplet CH; -CH,-CH3 TBAB
1.46 Sextuplet CH, -CH,-CH,-CHj; TBAB
1.68 Quintuplet CH, -CH,-CH,-CH,- TBAB
2.8 Double doublet CH, -CH-CH,-O- Styrene oxide
3.15 Double doublet CH, -CH-CH,-0O- Styrene oxide
3.38 Triplet CH, -N*-CH,-CH,- TBAB
3.67 Double doublet CH, -CH-CH,-OH Alcohol
3.76 Double doublet OH -CH,-OH; -CH-OH Alcohol
3.86 Triplet CH -O-CH-CH,- Styrene oxide
4.24 Double doublet CH, -CH,-CH-

434 Double doublet | CH, -CH-CH,-O- C:’:g;enr;e
4.44 Double doublet CH, -CH,-CH-

4.69 Double doublet CH, -CH,-CH- Copolymer
48 Double doublet | CH, -CH-CH,-O- C::Z;enr;e
4.83 Triplet CH -CH,-CH-OH Alcohol
4.9 Double doublet CH, -CH,-CH- Copolymer
5.57 Triplet CH -CH,-CH- Copolymer
5.67 Triplet CH -0-CH-CH,- ) asxgenr;ie
5.77 Triplet CH -CH,-CH-

6.70-8.20 - CeHs CeHe- Reparizr:ci:d




105 -
100 ot 3.22% " ZnCoRs
] A
95 1
90 1 ° 3
. e
X iy 3
~ 85 4
2 ]
oo 1 ZnCoCs
Q@ 30 -
S ] / ZnCoRn
75 - Y
70 ] 40-180°C Isothermat 180 °C 180 - 40 °C Isotherm at 40 °C
] withN, with N, with CO, with CO,
65-lllllllllllllllllllllllllllllllllllll'lll'lllll'l
0 10 20 30 40 50 60 70 80 90 100

Time / [min]
Figure S14. TGA experiment with 25 ml-min-t of CO, flow.

The experiment was carried out first with 25 ml-mint of N, flow and an isothermal range
was performed, to probe if any interaction may occur, then, the flow was changed to CO,.
And lets the temperature down to 40 °C by the thermal equilibrium.
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Figure S17. Copolymer and Styrene Polycarbonate formation on ZnCoRs surface.



