Boosting broadband short-wave infrared emission to near-unity quantum efficiency via bridging Cr³⁺-Ni²⁺ in spinel solid-solutions towards light-emitting diode applications

Geng Chen¹, Lifang Yuan^{2,*}, Chaoyue Peng¹, Haoyi Wu¹, Yahong Jin^{1,*}

¹ School of Physics and Optoelectronic Engineering, Guangdong University of Technology, WaiHuan Xi Road, No. 100, Guangzhou 510006, China.

² School of Electronics and Communications, Guangdong Mechanical & Electrical Polytechnic, Guangzhou 510515, China.

Corresponding author:

E-mail: ylf121382@163.com (L. Y.), yhjin@gdut.edu.cn (Y. J.)

Fig. S1. DRS of $Mg_{0.5}Zn_{0.5}Ga_2O_4$ and $Mg_{0.5}Zn_{0.5}Ga_2O_4$:2% Cr^{3+} .

Fig. S2. Direct optical band gap of $Mg_{0.5}Zn_{0.5}Ga_2O_4$ host.

Fig. S3. EPR spectrum of $Mg_{0.5}Zn_{0.5}Ga_2O_4:2\%Cr^{3+}$.

The signals in the EPR spectrum correspond to different types of Cr^{3+} . Specifically, g = 3.995 and g = 2.505 denote the isolated Cr^{3+} ions, while g = 1.979 signifies the presence of $Cr^{3+}-Cr^{3+}$ ion pairs.

Fig. S4. Quantum efficiency measurement of $Mg_{0.5}Zn_{0.5}Ga_2O_4$:2% Cr^{3+} , 2% Ni^{2+} .