Electronic Supporting Information

Na4Sn4(C2O4)3F6 and NaSnC2O4F·H2O: two tin(II) fluoride oxalates display large birefringence

Liying Ren, ^a Zeqiao Yin, ^a Shiyi Wang, ^a Zhengyan Lin, ^a Liling Cao,*^a Xuehua Dong, ^a Ling Huang, ^a Yuqiao Zhou, ^b Daojiang Gao^a and Guohong Zou*^b

a. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P.

R. China.

b. College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China.

E-mail: llcao21@163.com; zough@scu.edu.cn

Table of contents

Sections	Titles	Pages
Table S1	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters (Å ² ×10 ³)	S3
	for Na ₄ Sn ₄ (C ₂ O ₄) ₃ F ₆ . $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij}	
	tensor.	
Table S2	Atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters (Å ² ×10 ³)	S4
	for NaSnC ₂ O ₄ F·H ₂ O. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij}	
	tensor.	
Table S3	Selected bond lengths [Å] and angles [°] for $Na_4Sn_4(C_2O_4)_3F_6$.	S5
Table S4	Selected bond lengths [Å] and angles [°] for $NaSnC_2O_4F \cdot H_2O$.	S6
Fig. S1	Powder XRD patterns of $Na_4Sn_4(C_2O_4)_3F_6$ and $NaSnC_2O_4F \cdot H_2O$.	S7
Fig. S2	The TG curves of $Na_4Sn_4(C_2O_4)_3F_6$ and $NaSnC_2O_4F \cdot H_2O$.	S7
Fig. S3	XRD patterns for compounds Na ₄ Sn ₄ (C ₂ O ₄) ₃ F ₆ and NaSnC ₂ O ₄ F·H ₂ O after melting.	S7
Fig. S4	IR spectra of $Na_4Sn_4(C_2O_4)_3F_6$ and $NaSnC_2O_4F \cdot H_2O$.	S8
Fig. S5	The UV-vis-NIR diffuse reflectance spectra and band gaps of $\rm Na_4Sn_4(\rm C_2O_4)_3F_6$ and	S8
	NaSnC ₂ O ₄ F·H ₂ O.	
Fig. S6	Birefringence measurement photos of Na ₄ Sn ₄ (C ₂ O ₄) ₃ F ₆ and NaSnC ₂ O ₄ F·H ₂ O.	S8
Fig. S7	Calculated band gaps of $Na_4Sn_4(C_2O_4)_3F_6$ and $NaSnC_2O_4F\cdot H_2O$.	S9

atom	X	у	Z	$U_{ m eq}({ m \AA}^2)$	
Sn1	8305.4(3)	11381.0(2)	1343.7(2)	18.54(7)	
Sn2	8318.5(3)	5688.7(2)	8202.9(2)	20.15(7)	
Na1	8604(2)	7352.8(14)	3758.5(14)	25.9(3)	
Na2	12912(2)	9569.1(15)	4212.6(15)	29.6(3)	
F1	6385(3)	10415(2)	3438.6(19)	30.5(4)	
F2	10601(3)	9563(2)	2571(2)	29.6(4)	
F3	8686(3)	7646(2)	6176(2)	33.5(4)	
01	5403(3)	2967(2)	6078(3)	23.2(4)	
02	7879(3)	4206(2)	6773(3)	25.1(4)	
O3	7533(3)	9240(2)	834(2)	22.6(4)	
04	2013(3)	4769(3)	7154(3)	25.9(4)	
05	4565(4)	5915(3)	7896(3)	28.5(5)	
O6	5471(4)	8154(3)	-329(3)	33.1(5)	
C1	5890(5)	3931(3)	6663(3)	18.1(5)	
C2	5853(5)	9253(3)	139(3)	19.1(6)	
C3	3971(5)	4971(3)	7289(3)	18.8(5)	

Table S1. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for Na₄Sn₄(C₂O₄)₃F₆. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	X	у	Z	$U_{ m eq}({ m \AA}^2)$
Sn1	10808.2(4)	7335.9(3)	9565.1(3)	23.32(10)
Na1	9074(3)	2384(2)	5096(2)	28.9(3)
F1	9720(4)	4253(3)	8203(3)	28.1(5)
O1	8639(5)	7385(4)	6887(3)	25.2(5)
O2	4999(5)	7417(4)	5116(4)	29.9(6)
O3	6842(5)	7004(4)	9355(3)	29.7(6)
O4	3099(5)	6682(5)	7450(4)	34.1(6)
O5	7518(6)	-1233(5)	3303(4)	33.3(7)
C1	5316(7)	6951(5)	7879(5)	23.9(7)
C2	6369(6)	7276(5)	6482(5)	21.2(7)

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for NaSnC₂O₄F·H₂O. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Sn1-F1	2.0439(17)	Na1-O4 ^v	2.381(2)
Sn1-F2	2.0989(16)	Na2-F1 ⁱⁱ	2.243(2)
Sn1-O3	2.2092(19)	Na2-F1 ^{iv}	2.251(2)
Sn1-O6 ⁱ	2.521(2)	Na2-F2	2.194(2)
Sn2-F3	2.0473(17)	Na2-F3 ^{iv}	2.447(2)
Sn2-O2	2.204(2)	Na2-O1 ^{vi}	2.424(2)
Sn2-O4 ⁱⁱ	2.454(2)	O1-C1	1.232(3)
Sn2-O5	2.301(2)	O2-C1	1.278(3)
Na1-F1	2.800(2)	O3-C2	1.271(3)
Na1-F2	2.266(2)	O4-C3	1.246(3)
Na1-F3	2.318(2)	O5-C3	1.258(3)
Na1-O1 ^v	2.446(2)	O6-C2	1.243(4)
Na1-O2 ^{vi}	2.466(2)	C1-C3	1.555(4)
Na1-O3	2.731(2)	C2-C2 ⁱ	1.539(5)
F1-Sn1-F2	79.55(8)	O1vi-Na2-F3iv	166.39(9)
F2-Sn1-O3	77.87(7)	Sn1-F1-Na1	89.82(7)
F2-Sn1-O6 ⁱ	143.06(7)	Sn1-F1-Na2 ⁱⁱⁱ	136.43(9)
O3-Sn1-O6 ⁱ	69.12(7)	Na2-F2-Na1	107.07(8)
F3-Sn2-O2	88.70(8)	Na2 ^{vi} -O1-Na1 ^v	101.91(8)
O5-Sn2-O4 ⁱⁱ	141.72(7)	C1-O1-Na1 ^v	116.08(18)
F2-Na1-F1	62.06(7)	C1-O1-Na2vi	135.79(18)
F2-Na1-O2 ^{vi}	85.04(8)	Sn2-O2-Na1 ^{vi}	111.88(9)
F3-Na1-F1	75.98(6)	C1-O2-Sn2	118.76(18)
F3-Na1-O3	137.89(8)	Sn1-O3-Na1	88.30(7)
O2vi-Na1-F1	147.07(8)	C2-O3-Sn1	122.48(17)
O2vi-Na1-O3	103.84(8)	C3-O4-Sn2 ⁱⁱⁱ	133.04(19)
O3-Na1-F1	62.62(6)	C2-O6-Sn1 ⁱ	112.68(18)
O4v-Na1-O2vi	67.60(7)	01-C1-C3	118.9(2)
O4 ^v -Na1-O3	81.90(7)	O2-C1-C3	115.3(2)
F1 ^{iv} -Na2-O1 ^{vi}	107.59(8)	O6-C2-O3	125.2(3)
F2-Na2- F1 ^{iv}	151.79(10)	04-C3-O5	126.9(3)
F2-Na2-F1 ⁱⁱ	123.35(9)		

Table S3. Selected bond lengths [Å] and angles [°] for $Na_4Sn_4(C_2O_4)_3F_6$.

Symmetry codes:

(i) 1-*x*, 2-*y*, -*z*; (ii) 1+*x*, +*y*, +*z*; (iii) -1+*x*, +*y*, +*z*; (iv) 2-*x*, 2-*y*, 1-*z*; (v) 1-*x*, 1-*y*, 1-*z*; (vi) 2-*x*, 1-*y*, 1-*z*; (vii) 3-*x*, 2-*y*, 1-*z*.

Sn1-F1	2.020(2)	Na1-O5	2.390(3)	
Sn1-O1	2.215(3)	O1-Na1 ⁱⁱ	2.479(3)	
Sn1-O3	2.304(3)	O1-C2	1.280(4)	
Sn1-O4 ⁱ	2.496(2)	O2-C2	1.223(4)	
Na1-F1	2.318(2)	O3-C1	1.266(5)	
Na1-O2 ^{iv}	2.416(3)	O4-C1	1.234(5)	
Na1-O4 ^{iv}	2.480(3)	C1-C2	1.551(5)	
F1-Sn1-O1	86.59(9)	C2-O1-Sn1	119.0(2)	
F1-Sn1-O4 ⁱ	78.50(9)	C2-O1-Na1 ⁱⁱⁱ	125.8(2)	
O1-Sn1-O4 ⁱ	69.91(9)	Na1 ^{iv} -O4-Sn1 ^v	105.65(11)	
O3-Sn1-O4 ⁱ	138.82(9)	C1-O4-Sn1 ^v	128.1(2)	
F1-Na1-O1 ⁱⁱⁱ	133.55(11)	C1-O4-Na1 ^{iv}	116.2(2)	
F1-Na1-O2 ^{iv}	78.67(10)	Na1-O5-Na1 ⁱⁱ	99.52(12)	
O1 ⁱⁱⁱ -Na1-O4 ^{iv}	66.23(9)	O3-C1-C2	116.0(3)	
O1 ⁱⁱⁱ -Na1-O5 ⁱⁱ	85.60(11)	O4-C1-O3	126.8(3)	
O2 ^{iv} -Na1-O1 ⁱⁱⁱ	132.82(10)	O4-C1-C2	117.2(3)	
O4 ^{iv} -Na1-O5 ⁱⁱ	151.56(12)	O1-C2-C1	115.9(3)	
O5-Na1-O4 ^{iv}	95.66(12)	O2-C2-O1	125.8(3)	
Sn1-F1-Na1	125.40(10)	O2-C2-C1	118.3(3)	

Table S4. Selected bond lengths [Å] and angles [°] for $NaSnC_2O_4F \cdot H_2O$.

Symmetry codes:

(i) 1+*x*, +*y*, +*z*; 3/2-*z*; (ii) 2-*x*, 1-*y*, 1-*z*; (iii) 2-*x*, -*y*, 1-*z*; (iv) 1-*x*, 1-*y*, 1-*z*; (v) -1+*x*, +*y*, +*z*.

(i) 1+x, +y, +z; (ii) 2-x, -y, 1-z; (iii) 2-x, 1-y, 1-z; (iv) 1-x, 1-y, 1-z; (v) -1+x, +y, +z.

Fig. S1 Powder XRD patterns of (a) $Na_4Sn_4(C_2O_4)_3F_6$ and (b) $NaSnC_2O_4F \cdot H_2O$. The red curves are patterns of samples, the black are the simulated ones. (a) (b)

Fig. S2 The TG curves of (a) $Na_4Sn_4(C_2O_4)_3F_6$ and (b) $NaSnC_2O_4F \cdot H_2O$.

Fig. S3 XRD patterns for compounds (a) Na₄Sn₄(C₂O₄)₃F₆ and (b) NaSnC₂O₄F·H₂O after melting.

Fig. S4 IR spectra of (a) $Na_4Sn_4(C_2O_4)_3F_6$ and (b) $NaSnC_2O_4F \cdot H_2O$.

Fig. S5 The UV-vis-NIR diffuse reflectance spectra and band gaps of (a) $Na_4Sn_4(C_2O_4)_3F_6$ and (b) $NaSnC_2O_4F \cdot H_2O$.

(a)

(b)

Fig. S6 Birefringence measurement photos of (a) $Na_4Sn_4(C_2O_4)_3F_6$ and (b) $NaSnC_2O_4F \cdot H_2O$.

Fig. S7 Calculated band gaps of (a) $Na_4Sn_4(C_2O_4)_3F_6$ and (b) $NaSnC_2O_4F \cdot H_2O$.