Supporting Information

Synthesis of Highly Luminescent Core-shell Nanoprobes in a Single Pot for Ofloxacin Detection in Blood Serum, and Water

Pallavi Kadian^a, Astha Singh^a, Manish Kumar^b, Kanchan Kumari ^a, Deepika Sharma^a, Jaspreet Kaur Randhawa^{*b}

a School of Chemical Sciences, Indian Institute of Technology, Mandi

b School of Materials and Mechanical Engineering, Indian Institute of Technology, Mandi

*Corresponding Author: jaspreet@iitmandi.ac.in

Table of content

Figure S1: FTIR spectra of CSIONPs

Figure S2: N₂- absorption isotherm of CSIONPs

Figure S3: Fluorescence emission spectra of CSIONPs in different solvent

Figure S4: lifetime decay plot of CSIONPs in different solvents

Table S1: lifetime of CSIONPs in different solvents

Figure S5: Fluorescence emission spectra of CSIONPs in solid state at 350nm

Figure S6: Fluorescence emission spectra of CSIONPs in DMF at different temperature

Figure S7: Fluorescence emission spectra of CSIONPs in PBS at different pH

Figure S8: Fluorescence emission spectra of CSIONPs in mixture of DMF and glycerol of varying composition

Figure S9: F_0/F vs time plot

Figure S10: Fluorescence emission spectra (a) quinine sulphate, and (b) CSIONPs at 350nm

Figure S11: FTIR spectra (a) CSIONPs + OLF and (b) OLF

Figure S12: Detection of OLF by CSIONPs in the tap water(a) and the blood serum(b).

Table S2: Documented percentage of ofloxacin recovery in water and blood serum as per the literature.

Figure S1: FTIR spectra of CSIONPs

Figure S2: N₂- absorption isotherm of CSIONPs

Figure S3: Fluorescence emission spectra of CSIONPs in different solvent

Figure S4: Lifetime decay plot of CSIONPs in different solvents

Solvent	Lifetime (ns)
DMF	0.230
Methanol	0.062
Ethanol	0.130
DI Water	0.054
Acetonitrile	0.028

Table S1: Lifetime of CSIONPs in different solvents

Figure S5: Fluorescence emission spectra of CSIONPs in solid state at 350nm.

Figure S6: Fluorescence emission spectra of CSIONPs in DMF at different temperature.

Figure S7: Fluorescence emission spectra of CSIONPs in PBS at different pH.

Figure S8: Fluorescence emission spectra of CSIONPs in mixture of DMF and glycerol of varying composition.

Figure S9: F₀/F vs time plot

Figure S10: Fluorescence emission spectra (a) quinine sulphate, and (b) CSIONPs at 350nm

Figure S11: FTIR spectra (a) CSIONPs + OLF and (b) OLF

Figure S12: Detection of OLF by CSIONPs in the tap water(a) and the blood serum(b).

Sensing probe	Sensing method	Recovery (%) in water	Recovery (%) in blood serum	Reference
PtNPs/KB/CD- MOFs/GCE	Electrochemical	-	91% to 103%	1

SG-I	Fluorescence	104.47-117.76%	-	2
Aptamer and AuNPs	colorimetric	102.62 to 107.60%	-	3
β- CD/Sm ₂ O ₃ NPs/LIG	Electrochemical	98.00 % ~ 107.30 %	-	4
Ag NCs-Cu ²⁺	Fluorescence	-	98.4–101.5%	5
P-L CuO:Tb ³⁺ NS/GCE	Electrochemical	-	98.3-100.5%	6
CSIONPs	Fluorescence	89.9-96.0%	95.52- 103.28%	Our work

Table S2: Documented percentage of ofloxacin recovery in water and blood serum as per the literature.

REFERNCES

- 1. Luan, F. *et al.* Facile synthesis of a cyclodextrin-metal organic framework decorated with Ketjen Black and platinum nanoparticles and its application in the electrochemical detection of ofloxacin. *Analyst* **145**, 1943–1949 (2020).
- 2. Yi, H. *et al.* Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I. *Microchimica Acta* **186**, (2019).
- 3. Zhou, X. *et al.* Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. *Microchimica Acta* **185**, (2018).
- 4. Liu, Z. *et al.* Highly efficient detection of ofloxacin in water by samarium oxide and β-cyclodextrinmodified laser-induced graphene electrode. *Microchemical Journal* **186**, 108353 (2023).
- 5. Mao, B., Qu, F., Zhu, S. & You, J. Fluorescence turn-on strategy based on silver nanoclusters-Cu2+ system for trace detection of quinolones. *Sens Actuators B Chem* **234**, 338–344 (2016).
- 6. Taherizadeh, M., Jahani, S., Moradalizadeh, M. & Foroughi, M. M. Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. *Talanta* **255**, 124216 (2023).