Supporting Information

Molybdenum-maltolate as a Molybdopterin Mimic for Bioinspired Oxidation Reaction

Swapnil S. Pawar,^a Rohit N. Ketkar,^a Pranav B. Gaware,^a Kaustubh U. Jagushte,^a Divyani Dhawne,^a Shreyada N. Save,^b Shilpy Sharma,^b Ganga Periyasamy,^c Niyamat Chimthanawala,^d Sadhana Sathaye,^d Prof. Shreerang V. Joshi,^d Nabanita Sadhukhan,^{*a}

^aDepartment of Speciality Chemicals Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, INDIA.

^bDepartment of Biotechnology, Savitribai Phule Pune University, Ganeshkind Rd, Pune, Maharashtra – 411007, INDIA.

^cDepartment of Chemistry, Central College Campus, Bangalore University, Bangalore 560001, INDIA ^dDepartment of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra - 400019, INDIA.

*To whom correspondence should be addressed.

Email address: nn.sadhukhan@ictmumbai.edu.in

Table of Contents

		Page No.
1.	General Information	S4
2.	Synthetic procedures	S5
3.	Figures and Tables	S7
	Fig. S1. ATR–FTIR spectra of Maltol and [MoO ₂ (Mal) ₂].	S7
	Fig. S2. ESI–MS of Maltol.	S8
	Fig. S3. ESI–MS of [MoO ₂ (Mal) ₂].	S8
	Fig. S4. Stacked ¹³ C NMR spectra of Maltol and [MoO ₂ (Mal) ₂].	S 9
	Fig. S5 Thermogravimetric analysis (TGA) of [MoO ₂ (Mal) ₂].	S 9
	Table S1. Crystallographic data and structure refinement for Maltol.	S10
	Fig. S6. ORTEP diagram of Maltol in 50% occupancy.	S10
	Table S2. Bond lengths for Maltol.	S11
	Table S3. Bond angles for Maltol.	S13
	Table S4. Crystallographic data and structure refinement for complex 1 [MoO ₂ (Mal) ₂].	S16
	Fig. S7. ORTEP diagram of complex 1 [MoO ₂ (Mal) ₂].	S16
	Table S5. Bond lengths for complex 1 [MoO ₂ (Mal) ₂].	S17
	Table S6. Bond angles for complex 1 [MoO ₂ (Mal) ₂].	S17
4.	[MoO ₂ (Mal) ₂] catalyzed oxidation reactions	S19
	Table S7. [MoO ₂ (Mal) ₂] catalyzed oxidation reactions.	S19
	Fig. S9. GC chromatogram of oxidation of diphenylmethane catalyzed by $[MoO_2(Mal)_2]$ using H_2O_2 as an oxidant.	S20
	Fig. S10. GC chromatogram of oxidation of toluene to benzaldehyde catalyzed by $[MoO_2(Mal)_2]$ by using 1 mmol TBHP as an oxidant.	S21
	Fig. S11. GC chromatogram of oxidation of toluene to benzaldehyde catalyzed by [MoO ₂ (Mal) ₂] by using 2 mmol TBHP as an oxidant.	S22
	Fig. S12. GC chromatogram of oxidation of toluene to benzaldehyde catalyzed by $[MoO_2(Mal)_2]$ by using 5 mmol TBHP as an oxidant.	S22
	Fig. S13. GC chromatogram of oxidation of toluene to benzaldehyde catalyzed by $[MoO_2(Mal)_2]$ by using 5 mmol TBHP as an oxidant.	S22
	Fig. S14. Stacked ¹ H NMR spectra of toluene and its oxidation reaction mixtures at different time intervals in $dmso-d_6$.	S23
	Fig. S15. Stacked ATR-FTIR spectra of toluene and its oxidation reaction mixtures	S23
	Fig. S16. GC chromatogram of oxidation of styrene to styrene oxide catalyzed by [MoO₂(Mal)₂] by using 0.5 mmol TBHP as an oxidant.	S24
	Fig. S17. GC chromatogram of oxidation of hypoxanthine to xanthine catalyzed by [MoO ₂ (Mal) ₂] by using 1 mmol TBHP as oxidant at room temperature for 15h.	S25
	Fig. S18. GC chromatogram of oxidation of hypoxanthine to xanthine catalyzed by [MoO₂(Mal)₂] by using 1 mmol TBHP as an oxidant at 100°C for 15 h.	S26
	Fig. S19. Stacked ¹ H NMR spectra of xanthine, reaction mixture after 24, 9, 6, 3, 0 h, [MoO₂(Mal)₂] and hypoxanthine in <i>dmso-d</i> ₆ respectively.	S26
	Fig. S20. ESI–MS of xanthine.	S27
	Fig. S21. Absorption spectra of [MoO₂(Mal)₂] in the presence of NBT and TBHP in ACN at 25 °C.	S28
5.	Control Studies	S29
	Fig. S22. Stacked ¹ H NMR spectra of the reaction mixture of hypoxanthine to xanthine in the presence of $(NH_4)_6MO_7O_{24}$. $4H_2O$ at 0 hr and 24 hr in <i>dmso-d</i> ₆ .	S29

7.	References	S36	
	Fig. S29. (a) Optimized geometry with important bond distances in Å, (b) Frontier molecular orbitals (c) Molecular electrostatic potential map (isocontour value 0.002 eV/bohr ²) and (d) the definition of dihedral angle calculation of Mo(VI) mono oxoperoxo complex.		
	Fig. S28. The computed the IR frequencies for mono oxoperoxo-Molybdenum complex. The Peroxo based vibrations are highlighted in the figure.	S34	
6.	Computational Studies		
	Fig. S29. Effect of a) maltol; and b) ammonium heptamolybdate on cell viability		
	Fig. S27. Absorption spectra of Bis(acetylacetonato)dioxomolybdenum(VI)[MoO2(acac)2] in the presence of NBT and TBHP in ACN at 25 °C.		
	Fig. S26. Absorption spectra of Ammonium molybdate (NH₄)₆Mo₇O₂₄ · 4 H₂O in the presence of NBT and TBHP in ACN at 25 °C.	S31	
	Fig. S25. Stacked ¹ H NMR spectra of the reaction mixture of toluene to benzaldehyde in the presence of $C_{10}H_{14}MoO_6$ at 0 hr and 24 hr in <i>dmso-d</i> ₆ .	S30	
	Fig. S24. Stacked ¹ H NMR spectra of the reaction mixture of toluene to benzaldehyde in the presence of $(NH_4)_6Mo_7O_{24}$. $4H_2O$ at 0 hr and 24 hr $dmso-d_6$.	S30	
	Fig. S23. Stacked ¹ H NMR spectra of the reaction mixture of hypoxanthine to xanthine in the presence of $C_{10}H_{14}MoO_6$ at 0 hr and 24 hr in <i>dmso-d</i> ₆ .	S29	

1. General Information

Materials and Methods

All chemicals were purchased from commercial sources and used directly without further purification. Boric acid, acetic acid, ammonium heptamolybdate, acetonitrile, ethanol, and t-butanol were purchased from Spectrochem Pvt. Ltd, India. Sodium hypochlorite solution, 30% hydrogen peroxide solution, and mesitylene were purchased from Avra Synthesis Pvt. Ltd, India. [MoO2(acac)2], 2acetylfuran, sodium borohydride, and tert-butyl hydroperoxide 5.0 M in decane were procured from Sigma-Aldrich. Deuterated solvents were also purchased from Sigma-Aldrich. All solvents were dried before use according to the procedures reported in the literature. ¹ Reactions were magnetically stirred under a nitrogen atmosphere unless otherwise stated and monitored by thin-layer chromatography (TLC) alumina sheets (Merck, USA), and were visualized by observation under UV light (254 nm). Volatile solvents were removed via distillation at the appropriate temperature and pressure. 1-(2-furyl) ethanol² and t-butyl hypochlorite³ were synthesized according to a reported procedure. A Bruker ALPHA-II spectrophotometer was used for recording IR Spectra. An Agilent USA Technologies 400 MHz spectrometer was used for measuring ¹H and ¹³C NMR Spectra where CDCl₃ and dmso-d₆ were used as the internal standard. ESI-MS was recorded on an Advion-Plate Express instrument (USA) operating in ESI-Mode. The Thermogravimetric analysis (TGA) was done on a Hitachi STA7300 Thermal Analysis System. CV and DPV were performed under the electrochemical workstation. The UV-visible absorption spectra were recorded on a Jasco-V-750, Japan spectrophotometer. Gas chromatography analysis was carried out using Agilent Technologies 7890 B network GC System, equipped with an Agilent Technologies G4513A series autosampler and a glass capillary HP-5, ID: 0.32 mm, length: 30 m, film thickness: 0.25 μm; packed with non-polar polymer [(5%-phenyl)-methylpolysiloxane. The single-crystal XRD data was collected by selecting and placing a suitable crystal on a dtrek-CrysAlisPro-abstract goniometer imported rigaku-d*trek images diffractometer (USA). The crystal was kept at 150 K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimization. The structure was optimized using the CAM-B3LYP long range corrected hybrid functional, as implemented in the Gaussian 09 suite of programs, with the Los Alamos effective core potential and basis set on Mo (LANL2DZ) and the 6-31+G(d,p) basis set on all other atoms.⁴ The computed all real harmonic vibrational frequencies confirm the minima nature of the geometry. All animal studies were ethically reviewed and carried out in accordance with the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) Institutional Animal Ethics Committee (IAEC) following acute oral toxicity (OECD) 420 guidelines (IAEC/ICT/2022/P20).

Cell culture

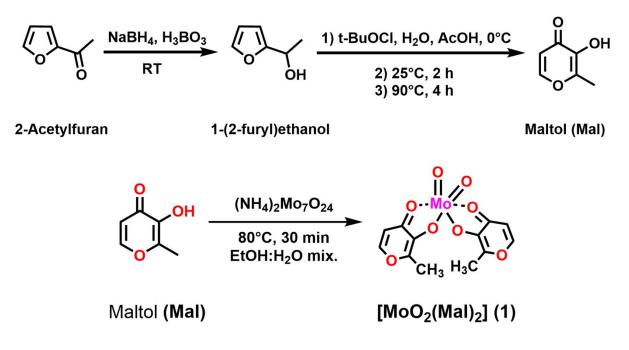
Non-cancerous cell lines namely, mouse embryonic fibroblasts (MEFs & NIH-3T3), human embryonic kidney (HEK293T) cells; and cancerous cell lines namely, MCF7 (human breast cancer), A549 (human alveolar basal epithelial cells) cells were grown in high glucose Dulbecco's modified Eagle medium (DMEM; ThermoFisher Scientific) containing 10% heat-inactivated fetal bovine serum (FBS; ThermoFisher Scientific) and 100 units/ml penicillin and 100 μ g/ml streptomycin in humidified 5% CO₂ incubator (Thermo Scientific) at 37°C.

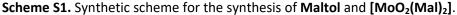
MTT-based cytotoxicity assay

Cellular viability in the presence of an increasing concentration of metal-organic complex $C_{16}H_{24}MoO_8$ was performed using MTT assay. Briefly, cells were dispersed in tissue-cultured treated 96-well plates (Corning) at a density of 8 x 10⁴ cells/well (per 100µL) in a complete DMEM medium and were allowed to adhere at 37°C for 24 hrs. Cells were incubated with increasing concentrations of metal-organic

complex $C_{16}H_{24}MoO_8$ (1-100 μ M) for 24 hrs. Post incubation, media was removed and the plates were incubated with 100 μ L of MTT solution (0.5 mg/ml in PBS) at 37°C for 4 hrs. The formazan crystals, thus formed, were dissolved with 100 μ L solubilization buffer (10% SDS/0.1N HCl) for 4 hrs at RT. Absorbance was measured at 570 nm using a multi-mode plate reader (Hidex). Relative cell viability was expressed as a percentage for each treatment with respect to control wells (untreated wells, set as 100 %). All experiments were repeated four times (N = 4).

Oral toxicity studies

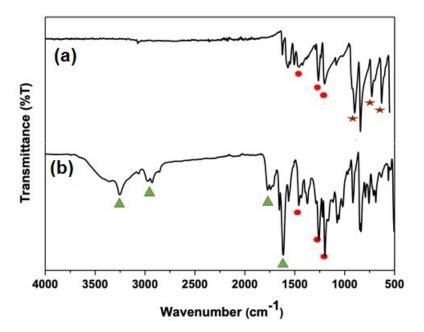

The acute oral toxicity test was carried out for the prepared formulation $[MoO_2(Mal)_2]$ and administered to the animals in accordance with the OECD guideline 420 (fixed-dose procedure). Briefly, 20 female Swiss albino mice weighing 25 ± 2 g animals were divided into 04 groups, each group containing 05 animals. A limit test was performed with a starting dose of 2000 mg/kg and administered to a group of 05 animals. If the animal showed no mortality or morbidity, the compound was considered safe or non-toxic. This would then be followed by dosing of a further four animals at this level serving as a limit test for this guideline.


For the main study, a starting dose of 5mg/kg was administered to Group I, followed by 50 mg/kg, 300 mg/kg, and 2000 mg/kg to Group II, III, and IV, respectively. The animals were observed individually after dosing at least once during the first 30 minutes, periodically during the first 24 hours, and daily thereafter, for a total of 14 days. All animals showed no signs of toxicity. The prepared formulation was found to be safe/non-toxic.

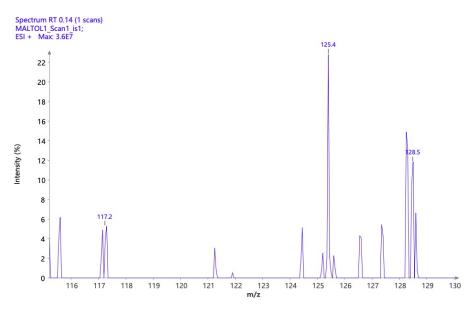
Statistical Analysis

Statistical analysis was performed using one-way analysis of variance (ANOVA). p < 0.05 was considered to be statistically significant.

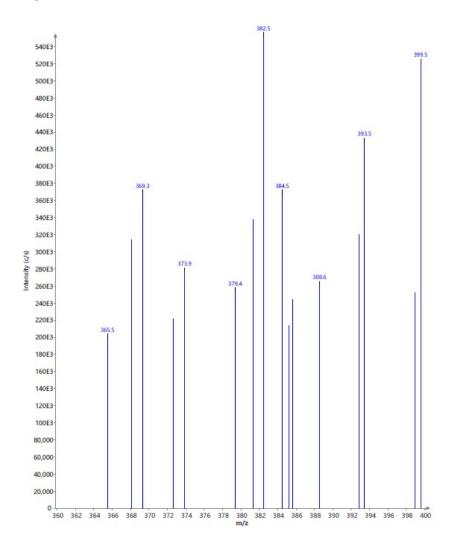
2. Synthetic Procedures

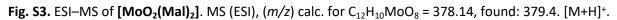

Synthesis of Maltol (Mal):

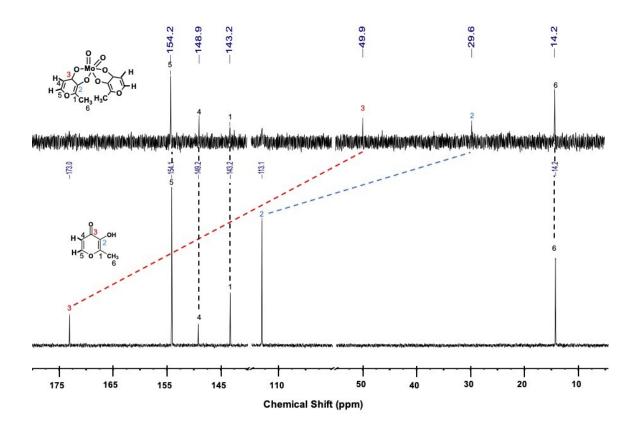
A two neck round bottom flask equipped with a magnetic stirrer is placed and solution of 1(2-furyl ethanol) (2) (2 g, 17.83 mmol) in 35 % aquatic acetic acid (17.5 gm, 297.35 mmol) is added in a round bottom flask. The flask is placed in an ice bath and stirred at a temperature of -5 to 0°C. Then *t*-butyl hypochlorite (7.745 gm, 71.34 mmol) is gradually added to the solution by using an addition funnel. After addition, the mixture was kept at room temperature to achieve 25°C temperature. Then the stirring is continued at 25°C for the next 2 hours. The mixture was then heated at 90°C for the next 4 hours with continuous stirring. Then the reaction was stopped and the solution was neutralized by the dropwise addition of a saturated solution of NaHCO₃. Then the mixture was extracted by washing three times with chloroform (CHCl₃) and the aqueous layer is discarded. The organic layer is then evaporated and concentrated to give crystals (1.2 gm) in 61 % yield. IR (cm⁻¹): 3252 (O-H), 2974 (C-H), 1654 (C=O), 1615 (C=C), 1075 (C-O-C). ¹H NMR (CDCl₃): δ 2.34 (3H, CH₃), δ 6.39 (1H, CH), δ 7.24 (1H, O-H), δ 7.67 (1H, CH). ¹³C NMR (CDCl₃): δ 173.0, δ 154.1, δ 149.2, δ 143.2, δ 113.1, δ 14.2. MS (ESI), (*m/z*) calc. for C₆H₆O₃ = 126.03, found: 125.4 [M-H]⁺.


Synthesis of [MoO₂(Mal)₂] complex:

In a beaker ammonium heptamolybdate [(NH₄)₆Mo₇O₂₄•4H₂O] (1 g, 0.86 mmol), was dissolved in (10 mL) of warm water. Then keep it for cooling at room temperature, In another beaker maltol (0.22 gm, 1.74 mmol) was dissolved in ethanol. Then round bottom flask was equipped with a magnetic stirrer with an oil bath and the solution of ammonium heptamolybdate was added to the flask. The temperature should be at 80°C. Then the solution of Maltol and ethanol was added to the flask. Then the mixture was stirred for the next 30 minutes. After the addition of maltol ethanol solution suddenly yellow colour change is observed. After 30 minutes the mixture was filtered and washed with a hot mixture of ethanol and water and then dried at 110°C. Recrystallization of the crude from chloroform afforded yellow crystalline product **1**. The yield of the product is 60 %. Chemical characterization by ATR-FTIR, NMR (¹H and ¹³C), and ESI-Mass spectroscopy, X-Ray single crystal of the complex verified their preparation. Anal. Calcd for $C_{12}H_{10}MOO_8$: C, 38.11; H, 2.67. Found: C, 38.05; H, 2.43. IR (cm⁻¹): 3071 (O-H), 1623 (C=O), 1568(C=C), 1203 (C-O-C). ¹H NMR (CDCl₃): δ 2.5 (3H, CH₃), δ 6.6 (1H, CH), δ 7.9 (1H, CH). ¹³C NMR (CDCl₃): δ 154.2, δ 148.9, δ 143.2, δ 49.9, δ 29.6, δ 14.2. MS (ESI), (*m/z*) calc. for $C_{12}H_{10}MOO_8 = 378.14$, found: 379.4 [M+H]⁺.


3. Figures and Tables




Fig. S1. ATR–FTIR spectra of (a) $[MoO_2(Mal)_2]$ (top), (b) **Maltol** (bottom). Peak disappeared after complexation with maltol are marked with green triangle (\blacktriangle) 3520 (O-H), 2974 (C-H), 1772 (C=O), 1616 (C=C); Peak intensity changed after complexation are marked with red circle (•) 1459 (C-H), 1257 (C-O), 1198 (C-O); New peaks appeared after complexations are marked with maroon star (\bigstar) 894 (Mo=O).

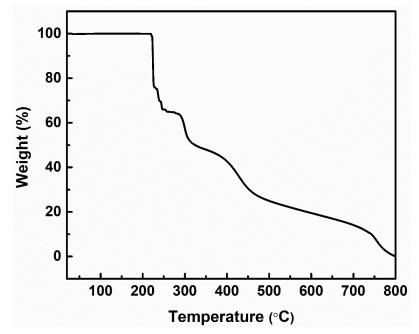

Fig. S2. ESI–MS of **Maltol.** MS (ESI), (*m*/*z*) calc. for C₆H₆O₃ = 126.03, found: 125.4 [M-H]⁺.

Fig. S4. Stacked ¹³C NMR spectra of **Maltol** and **[MoO₂(Mal)₂]**. ¹³C NMR were recorded at 25 °C in CDCl₃ solvent.

Fig. S5. Thermogravimetric analysis (TGA) of $[MoO_2(Mal)_2]$. Initial weight of the compound **1** (7.43 g) was subjected to thermal analysis at a heating rate of 20 °C min⁻¹ under an argon atmosphere.

Empirical formula	C ₃₀ H ₃₀ O ₁₅
M	630.54
Cryst sym	Triclinic
space group	P-1
a (Å)	6.9493(4)
b (Å)	7.1414(4)
c (Å)	30.2196(13)
α (deg)	85.419(4)
β (deg)	86.684(4)
γ (deg)	70.931(5)
V (Å ³)	1412.09(13)
Z	2
D _{calc} (g cm ⁻³)	1.483
μ (Mo Kα) (mm ⁻¹)	1.031
F (000)	660.0
Range for data collection (deg)	5.872 to 147.79
Data/ Parameters	5419/0/416
Тетр (К)	150
refins collected	18978
R ^a [I > 2σ(I)]	R ₁ = 0.0907, wR ₂ = 0.2389
R _w ^b [all data]	R ₁ = 0.1352, wR ₂ = 0.3199
S [goodness of fit]	1.081
max/ min res (e Å ⁻³)	0.72/-0.91

Table S1. Crystallographic data and structure refinement for Maltol complex.

The CIF file can be obtained from CCDC. CCDC id: 2292692. Database identifier: JISLEG

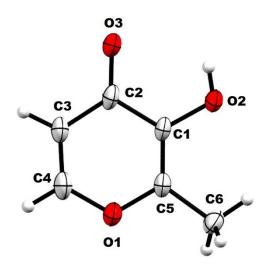


Fig. S6. ORTEP diagram of Maltol in 50% occupancy.

Atom	Atom	Length/Å
01	C4	1.353(4)
01	C5	1.360(4)
02	H2	0.84
02	C1	1.366(4)
03	C2	1.247(5)
04	C10	1.339(5)
04	C11	1.363(5)
05	H5	0.84
05	C7	1.358(4)
O6	C8	1.237(5)
07	C14	1.366(4)
07	C15	1.350(5)
08	H8	0.84
08	C13	1.354(4)
09	C17	1.234(4)
010	C22	1.348(5)
010	C23	1.367(5)
011	H11	0.84
011	C19	1.362(5)
012	C20	1.238(5)
013	C26	1.362(4)
013	C27	1.342(5)
014	H14	0.84
014	C25	1.359(4)
015	C29	1.234(4)
C1	C2	1.446(5)
C1	C5	1.340(5)
C2	C3	1.425(5)
C3	НЗ	0.95
C3	C4	1.334(6)
C4	H4	0.95
C5	C6	1.489(5)
C6	H6A	0.98
C6	Н6В	0.98
C6	H6C	0.98
C7	C8	1.443(5)
C7	C11	1.344(5)
C8	С9	1.451(5)
С9	Н9	0.95
С9	C10	1.341(6)
C10	H10	0.95

Table S2. Bond lengths for Maltol.

C11	C12	1.493(5)
C12	H12A	0.98
C12	H12B	0.98
C12	H12C	0.98
C13	C14	1.352(5)
C13	C17	1.434(5)
C14	C18	1.473(5)
C15	H15	0.95
C15	C16	1.323(5)
C16	H16	0.95
C16	C17	1.444(5)
C18	H18A	0.98
C18	H18B	0.98
C18	H18C	0.98
C19	C20	1.451(5)
C19	C23	1.335(6)
C20	C21	1.432(5)
C21	H21	0.95
C21	C22	1.335(6)
C22	H22	0.95
C23	C24	1.495(5)
C24	H24A	0.98
C24	H24B	0.98
C24	H24C	0.98
C25	C26	1.348(5)
C25	C29	1.447(5)
C26	C30	1.481(6)
C27	H27	0.95
C27	C28	1.326(5)
C28	H28	0.95
C28	C29	1.448(5)
C30	H30A	0.98
C30	H30B	0.98
C30	H30C	0.98

Atom	Atom	Atom	Angle/°
C4	01	C5	118.9(3)
C1	02	H2	109.5
C10	04	C11	119.4(3)
C7	05	H5	109.5
C15	07	C14	119.1(3)
C13	08	H8	109.5
C22	010	C23	119.0(3)
C19	011	H11	109.5
C27	013	C26	119.3(3)
C25	014	H14	109.5
02	C1	C2	118.7(3)
C5	C1	02	119.9(3)
C5	C1	C2	121.4(3)
03	C2	C1	120.8(3)
03	C2	C3	124.5(3)
C3	C2	C1	114.7(3)
C2	C3	H3	119.8
C4	C3	C2	120.4(3)
C4	C3	H3	119.8
01	C4	H4	118.3
C3	C4	01	123.4(4)
C3	C4	H4	118.3
01	C5	C6	112.7(3)
C1	C5	01	121.2(3)
C1	C5	C6	126.0(3)
C5	C6	H6A	109.5
C5	C6	H6B	109.5
C5	C6	H6C	109.5
H6A	C6	H6B	109.5
H6A	C6	H6C	109.5
H6B	C6	H6C	109.5
05	C7	C8	118.1(3)
C11	C7	05	119.7(3)
C11	C7	C8	122.2(4)
O6	C8	C7	122.2(4)
O6	C8	C9	123.8(3)
C7	C8	C9	114.0(3)
C8	C9	H9	120.1
C10	C9	C8	119.8(3)
C10	C9	H9	120.1
04	C10	C9	123.9(4)

Table S3. Bond angles for Maltol.

04	C10	H10	118.1
C9	C10	H10	118.1
04	C11	C12	112.8(3)
C7	C11	04	120.7(3)
C7	C11	C12	126.4(4)
C11	C12	H12A	109.5
C11	C12	H12B	109.5
C11	C12	H12C	109.5
H12A	C12	H12B	109.5
H12A	C12	H12C	109.5
H12B	C12	H12C	109.5
08	C13	C17	118.7(3)
C14	C13	08	119.2(3)
C14	C13	C17	122.0(3)
07	C14	C18	112.6(3)
C13	C14	07	120.4(3)
C13	C14	C18	126.9(3)
07	C15	H15	118.1
C16	C15	07	123.7(3)
C16	C15	H15	118.1
C15	C16	H16	119.8
C15	C16	C17	120.3(4)
C17	C16	H16	119.8
09	C17	C13	121.6(3)
09	C17	C16	124.1(4)
C13	C17	C16	114.3(3)
C14	C18	H18A	109.5
C14	C18	H18B	109.5
C14	C18	H18C	109.5
H18A	C18	H18B	109.5
H18A	C18	H18C	109.5
H18B	C18	H18C	109.5
011	C19	C20	118.3(3)
C23	C19	011	119.7(3)
C23	C19	C20	122.0(4)
012	C20	C19	121.6(4)
012	C20	C21	124.1(3)
C21	C20	C19	114.2(3)
C20	C21	H21	119.9
C22	C21	C20	120.2(3)
C22	C21	H21	119.9
010	C22	H22	118.2
C21	C22	010	123.7(4)

C21	C22	H22	118.2
010	C23	C24	112.1(3)
C19	C23	010	120.8(3)
C19	C23	C24	127.1(4)
C23	C24	H24A	109.5
C23	C24	H24B	109.5
C23	C24	H24C	109.5
H24A	C24	H24B	109.5
H24A	C24	H24C	109.5
H24B	C24	H24C	109.5
014	C25	C29	118.1(3)
C26	C25	014	119.9(3)
C26	C25	C29	122.0(3)
013	C26	C30	113.2(3)
C25	C26	013	120.7(4)
C25	C26	C30	126.1(3)
013	C27	H27	118
C28	C27	013	124.0(4)
C28	C27	H27	118
C27	C28	H28	119.9
C27	C28	C29	120.2(4)
C29	C28	H28	119.9
015	C29	C25	121.8(3)
015	C29	C28	124.4(3)
C25	C29	C28	113.8(3)
C26	C30	H30A	109.5
C26	C30	H30B	109.5
C26	C30	H30C	109.5
H30A	C30	H30B	109.5
H30A	C30	H30C	109.5
H30B	C30	H30C	109.5

Empirical formula	C ₁₂ H ₁₀ MoO ₈
Μ	378.14
Cryst sym	monoclinic
space group	C2/c
a (Å)	10.0766(11)
b (Å)	10.5933(12)
c (Å)	12.4062(12)
α (deg)	90
β (deg)	93.045
γ (deg)	90
V (Å ³)	1322.4(2)
Z	4
D _{calc} (g cm ⁻³)	1.899
μ (Mo Kα) (mm ⁻¹)	1.030
F (000)	752.0
Range for data collection (deg)	5.584 to 49.994
Data/ Parameters	1153/0/97
Temp (K)	150
reflns collected	11928
R ^a [l > 2σ(l)]	R ₁ = 0.0171, wR ₂ = 0.0458
R _w ^b [all data]	R ₁ = 0.0176, wR ₂ = 0.0461
S [goodness of fit]	1.151
max/ min res (e Å ⁻³)	0.27/-0.25

Table S4. Crystallographic data and structure refinement for complex 1 [MoO₂(Mal)₂].

The CIF file can be obtained from CCDCD. CCDC id: 2292693. Database identifier: JISLIK

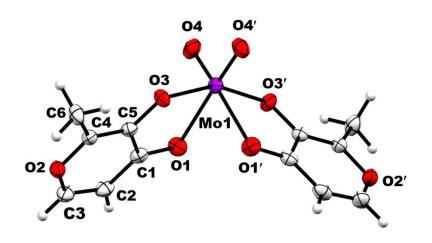


Fig. S7. ORTEP diagram of Complex 1 [MoO₂(Mal)₂] with 50% occupancy.

Atom	Atom	Length/Å
Mo1	01	2.2396(15)
Mo1	011	2.2396(14)
Mo1	03	1.9951(13)
Mo1	O3 ¹	1.9952(13)
Mo1	O4 ¹	1.7016(14)
Mo1	04	1.7016(14)
01	C1	1.264(3)
02	C3	1.351(2)
02	C4	1.361(2)
03	C5	1.342(2)
C1	C2	1.423(3)
C1	C5	1.437(3)
C2	C3	1.341(3)
C4	C5	1.354(3)
C4	C6	1.486(3)

Table S5. Bond lengths for complex 1 [MoO₂(Mal)₂].

Table S6. Bond angles for complex 1 [MoO₂(Mal)₂].

Atom	Atom	Atom	Angle/°
011	Mo1	01	79.54(8)
03	Mo1	01	75.31(5)
O3 ¹	Mo1	01	86.04(5)
03	Mo1	011	86.04(5)
O3 ¹	Mo1	011	75.31(5)
03	Mo1	O3 ¹	155.77(8)
04	Mo1	011	163.02(6)
O4 ¹	Mo1	011	89.07(7)
04	Mo1	01	89.08(7)
O4 ¹	Mo1	01	163.02(6)
O4 ¹	Mo1	O3 ¹	103.34(6)
04	Mo1	031	91.49(6)
O4 ¹	Mo1	03	91.50(6)
04	Mo1	03	103.34(6)
04	Mo1	O4 ¹	104.58(11)
C1	01	Mo1	112.61(12)
C3	02	C4	120.19(16)
C5	03	Mo1	118.46(11)
01	C1	C2	126.69(18)
01	C1	C5	116.74(17)
C2	C1	C5	116.57(18)

C3	C2	C1	118.77(19)
C2	C3	02	123.49(19)
02	C4	C6	114.11(16)
C5	C4	02	119.85(17)
C5	C4	C6	126.03(18)
03	C5	C1	115.94(16)
03	C5	C4	122.95(17)
C4	C5	C1	121.08(18)

4. [MoO₂(Mal)₂] catalyzed oxidation reactions

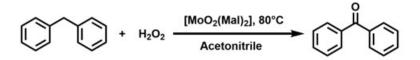
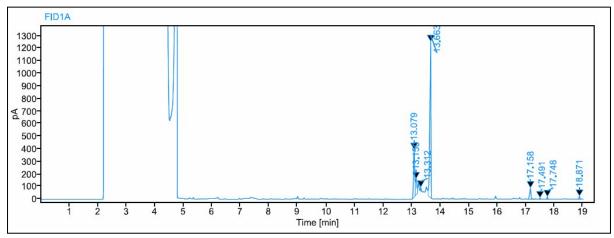
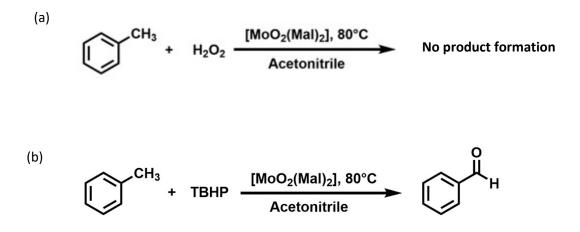

En	Substrate ^a	Catalyst	H ₂ O ₂	t-BuOOH	% Conversion	Temperatur	Time
try		mol %	(mmol)	(TBHP) (mmol)	(GC)	e (°C)	(h)
1	Diphenylmethan e	5	60	-	64.46	80 °C	12
2	Toluene	1	60	-	No	80°C	24
3		3	60	-	No	80°C	24
4		5	60	-	No	80 °C	24
5		5	-	1	18.58	80 °C	18
6		5 *Reused *Reused	-	2 2 2	64.57 *Conversion was monitored by TLC	80 °C	12
7		5	-	5	84.42	80 °C	18
8		5	-	5	99.66	80 °C	24
9	Styrene ^b	0.25	-	2.5	54.36	100 °C	6
10	Hypoxanthine	5	-	-	No	RT	20
11	Hypoxanthine	5		1	40.11	RT	15
12	Hypoxanthine	5		1	37.42	80 °C	15

Table S7. [MoO₂(Mal)₂] catalyzed oxidation reactions.


^a 1 mmol substrate was taken in acetonitrile for the reaction in inert condition. ^bReaction was performed in a solvent-free condition and 2.5 mmol of substrate was taken.

GC method for analysis of catalysis reactions of diphenylmethane, toluene, and styrene. Celite filtration under vacuum was performed prior to the GC analysis. Gas chromatography analysis was carried out using Agilent Technologies 7890 B network GC System, equipped with an Agilent Technologies G4513A series auto sampler and a glass capillary HP-5, ID: 0.32 mm, length: 30 m, film thickness: 0.25 μ m; packed with non-polar polymer [(5%-phenyl)methylpolysiloxane. A helium carrier gas flow 1.0 ml/min; injection temperature 280°C oven temperature program 50°C for 5min, @ 10°C/min to 180°C, post run: 280°C held for 2 min (total run time: 18 min); Splitless injection at a volume of 1 μ l by auto sampler.

A) Oxidation of diphenylmethane.



To a 100 mL two neck round bottom flask fitted with a reflux condenser and a magnetic stirrer bar in which diphenylmethane (168 mg, 1 mmol), $[MoO_2(Mal)_2]$ (5 mol%) and acetonitrile (1 mL) was added. Then H₂O₂ (1.40 mL, 60 mmol) was added dropwise over a period of 5 minutes. The reaction mixture was stirred at 80°C for 12 hours. Reaction was quenched, filtered through celite under vacuum prior to GC analysis.

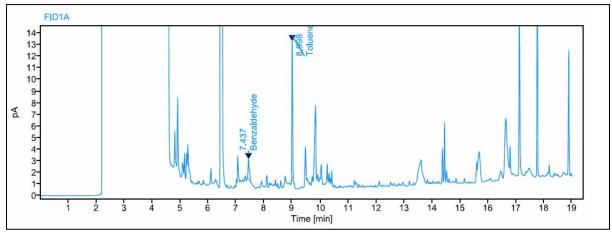
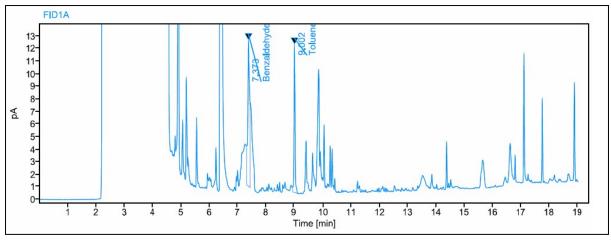


Fig. S8. GC chromatogram of oxidation of diphenylmethane catalyzed by $[MoO_2(Mal)_2]$ by using 60 mmol H₂O₂ as an oxidant. % Conversion = 64.46.


B) Oxidation of toluene.

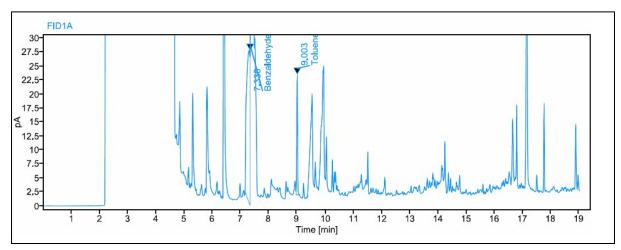

- a) To a 100 mL two neck round bottom flask fitted with a reflux condenser and a magnetic stirrer bar in which toluene (0.1mL, 1 mmol), [MoO₂(Mal)₂] (5 mol%) and acetonitrile (1 mL) was added. Then H₂O₂ (1.40 mL, 60 mmol) was added dropwise over a period of 5 minutes. The reaction mixture was stirred at 80°C for 12 hours. No progress in the reaction was observed.
- b) To a 100 mL two neck round bottom flask fitted with a reflux condenser and a magnetic stirrer bar in which toluene (0.1mL, 1 mmol), [MoO₂(Mal)₂] (5 mol%) and acetonitrile (1 mL) was added. Then TBHP in 5-6 M decane (1, 2, and 5 mmol, respectively) was added dropwise. The reaction mixture was then stirred at 80 °C for 12 24 h. Reaction was quenched, filtered through celite under vacuum prior to GC analysis.

Fig. S9. GC chromatogram of oxidation of toluene to benzaldehyde catalyzed by [MoO₂(Mal)₂] by using 1 mmol TBHP as an oxidant for reaction carried out for 12 h at 80 °C. % Conversion = 18.58.

Fig. S10. Oxidation of toluene to benzaldehyde catalyzed by $[MoO_2(Mal)_2]$ by using 2 mmol TBHP as an oxidant for reaction carried out for 12 h at 80 °C. % Conversion = 64.57.

Fig. S11. GC chromatogram of oxidation of toluene to benzaldehyde catalyzed by **[MoO₂(Mal)₂]** by using 5 mmol TBHP as an oxidant for reaction carried out for 18 h at 80 °C. % Conversion = 84.42.

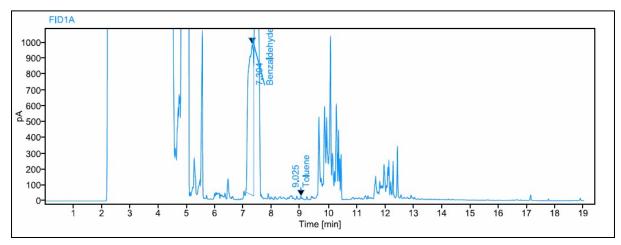
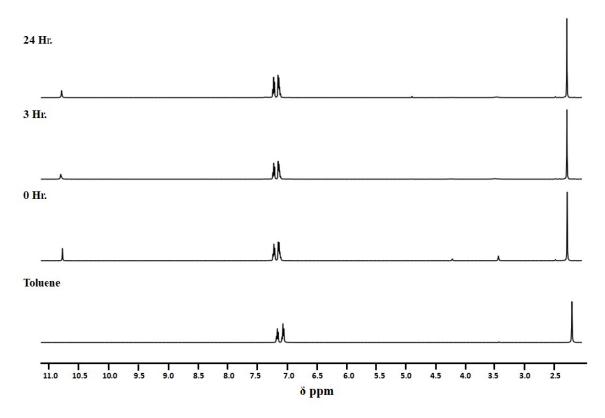



Fig. S12. GC chromatogram of oxidation of toluene to benzaldehyde catalyzed by
[MoO₂(Mal)₂] by using 5 mmol TBHP as an oxidant for reaction carried out for 24 h at 80 °C.
% Conversion = 99.66.

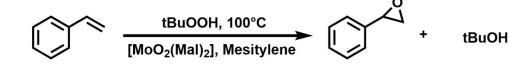


Fig. S13. Stacked ¹H NMR spectra of pure toluene (bottom) and its oxidation reaction mixtures catalysed by $[MOO_2(Mal)_2]$ at different time intervals in *dmso-d*₆. The reaction was performed at room temperature without the presence acetonitrile solvent with 5 mol% catalyst and 5 mmol TBHP under N₂ atmosphere.

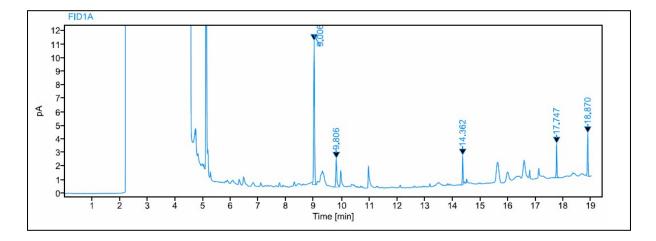


Fig. S14. Stacked ATR-FTIR spectra of toluene and its oxidation reaction mixtures at 0, and 24 h respectively. The reaction was performed at room temperature without the presence acetonitrile solvent with 5 mol% catalyst and 5 mmol TBHP. The absorption band at 1656 cm⁻¹ corresponds to - C=O stretching in benzaldehyde (red star) appeared in the FTIR spectra of the reaction mixture.

C) Epoxidation of styrene.

To a 100 mL two neck round bottom flask fitted with a reflux condenser and a magnetic stirrer bar in which [MoO₂(Mal)₂] (2.38 mg, 0.25 mol%) was added based on styrene. To this TBHP in 5-6 M decane (0.5 mL, 2.5 mmol) was added dropwise over a period of 2 min. Then styrene (0.286 mL, 2.50 mmol) was added with continuous stirring over a period of 20 min and then mesitylene (0.0486 mL, 0.349 mmol) was added as an internal standard. The reaction mixture was stirred at 100 °C for 6 hours. Reaction was quenched, filtered through celite under vacuum prior to GC analysis.

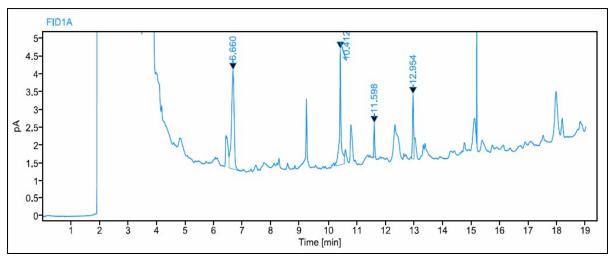
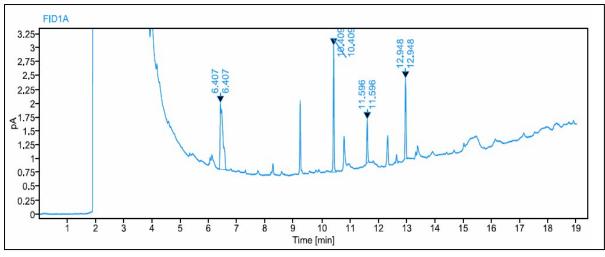
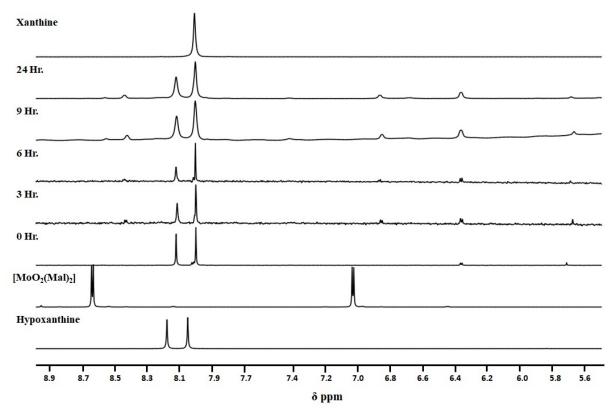
Fig. S15. GC chromatogram of oxidation of styrene to styrene oxide catalyzed by **[MoO₂(Mal)₂]** complex using 2.5 mmol TBHP as an oxidant. % Conversion =54.36.

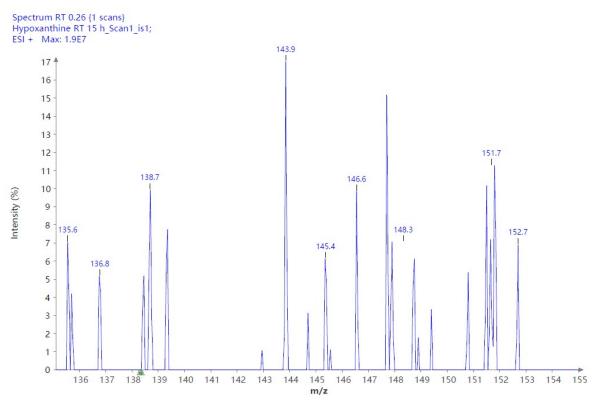
D) Oxidation of hypoxanthine

To a 100 mL two neck round bottom flask fitted with a reflux condenser and a magnetic stirrer bar in which hypoxanthine (0.136 gm, 1 mmol), **[MoO₂(Mal)₂]** (5 mol%), acetonitrile (1 mL) and water (1 mL) was added. Then TBHP in 5-6 M decane (1 mmol) was added dropwise. The reaction mixture was stirred at room temperature for 18 hours. Reaction was quenched, filtered through celite under vacuum prior to GC analysis.

GC method for analysis of catalysis reaction of Hypoxanthine to Xanthine:

Gas chromatography analysis was carried out using Agilent Technologies 7890 B network GC system, equipped with an Agilent Technologies G4513A series auto sampler and a glass capillary HP-5, ID: 0.32 mm, length: 30 m, film thickness:0.25 μ m; packed with non-polar polymer [(5%-phenyl)-methylpolysiloxane. A helium carrier gas flow 0.5 ml/min; injection temperature 280°C oven temperature program 120°C for 1 min, @ 15°C/min to 195°C, 5°C/min to 260°C, post run: 280°C held for 2 min (total run time: 18 min); Splitless injection at a volume of 1 μ l by auto sampler.


Fig. S16. GC chromatogram of oxidation of hypoxanthine to xanthine catalysed by $[MoO_2(Mal)_2]$ by using 1 mmol TBHP as an oxidant at room temperature for 15 h. % Conversion = 40.11.

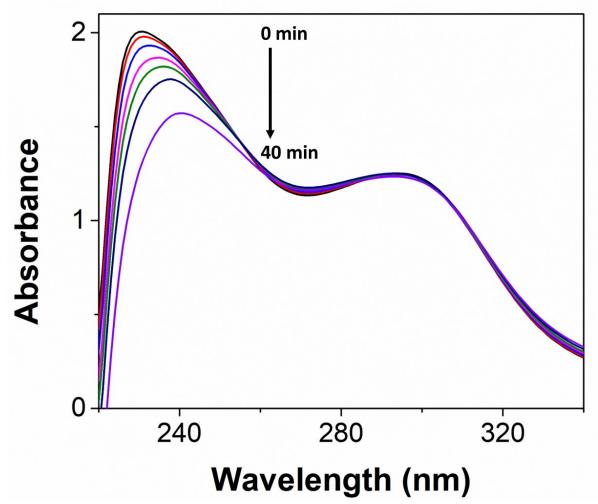

Fig. S17. GC chromatogram of oxidation of hypoxanthine to xanthine catalyzed by [MoO₂(Mal)₂] by using 1 mmol TBHP as an oxidant at 80°C for 15 h. % Conversion = 37.42.

Fig. S18. Stacked ¹H NMR spectra of (top to bottom) xanthine, reaction mixture after 24, 9, 6, 3, 0 h, $[MoO_2(Mal)_2]$ and hypoxanthine in *dmso-d*₆ respectively. The reaction was performed at room temperature in the presence DMSO solvent with 5 mol% catalyst and 1 mmol TBHP.

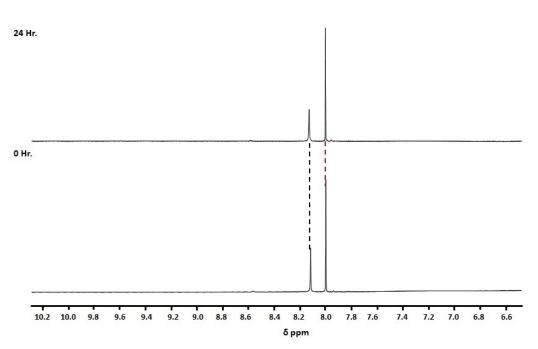


Fig. S19. TLC ESI–MS of the reaction mixture of hypoxanthine oxidation reaction catalysed by $[MoO_2(Mal)_2]$. (m/z) calc. for C₅H₄N₄O₂ = 152.11, found: 152.7 [M]⁺.

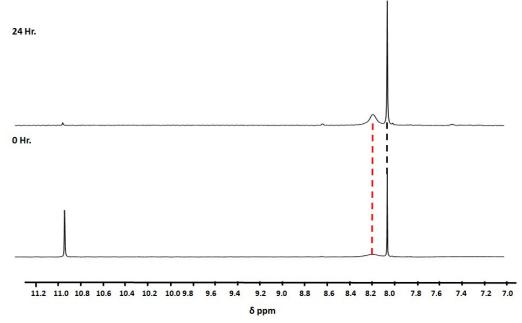
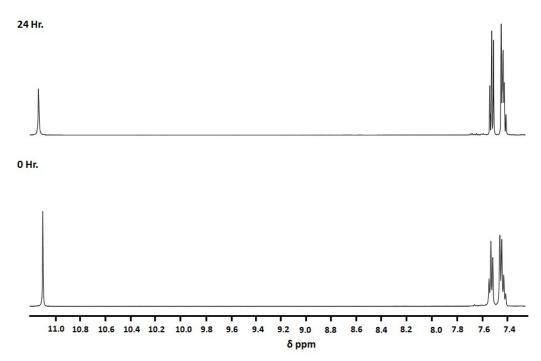
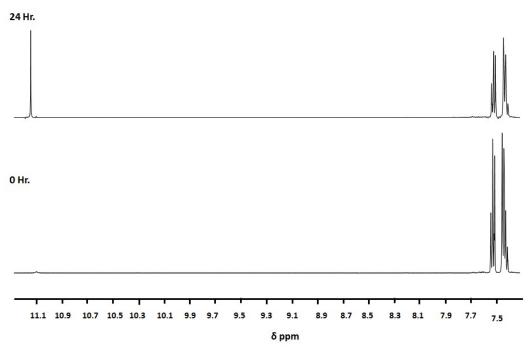
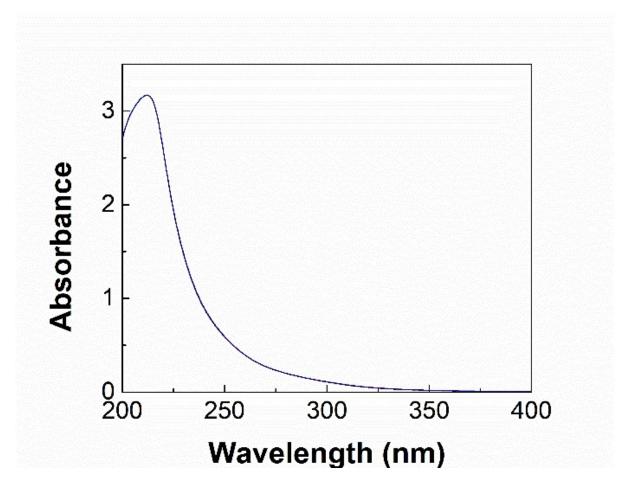
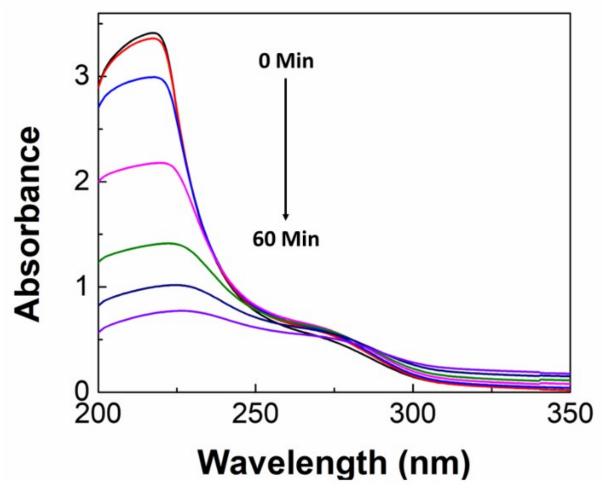


Fig. S20. Absorption spectra of $[MoO_2(Mal)_2]$ in the presence of NBT and TBHP in acetonitrile solvent at 25 °C at different time intervals showing reducing absorption intensity of NBT at λ_{max} = 230 nm over the period of 40 min. Concentrations [NBT] = 19 × 10⁻⁶ M, [MoO_2(Mal)_2] = 1.25 × 10⁻⁵ M, [TBHP] = 13.75 × 10⁻⁵ M in ACN at 25 °C.


5. Control Studies


Fig. S21. Stacked ¹H NMR spectra of the reaction mixture of hypoxanthine oxidation reaction in the presence of $(NH_4)_6Mo_7O_{24}$. $4H_2O$ catalyst at 0 hr (bottom) and 24 hr (top) in *dmso-d*₆. The reaction was performed at room temperature in the presence DMSO solvent with 5 mol% catalyst and 1 mmol TBHP.


Fig. S22. Stacked ¹H NMR spectra of the reaction mixture of hypoxanthine oxidation reaction in the presence of $C_{10}H_{14}MOO_6$ [MoO₂(acac)₂] catalyst at 0 hr (bottom) and 24 hr (top) in *dmso-d*₆. The reaction was performed at room temperature in the presence DMSO solvent with 5 mol% catalyst and 1 mmol TBHP.


Fig. S23. Stacked ¹H NMR spectra of the reaction mixture of toluene oxidation reaction in the presence of $(NH_4)_6Mo_7O_{24}$. 4H₂O catalyst at 0 hr (bottom) and 24 hr (top) *dmso-d*₆. The reaction was performed at room temperature without the presence acetonitrile solvent with 5 mol% catalyst and 5 mmol TBHP under N₂ atmosphere.

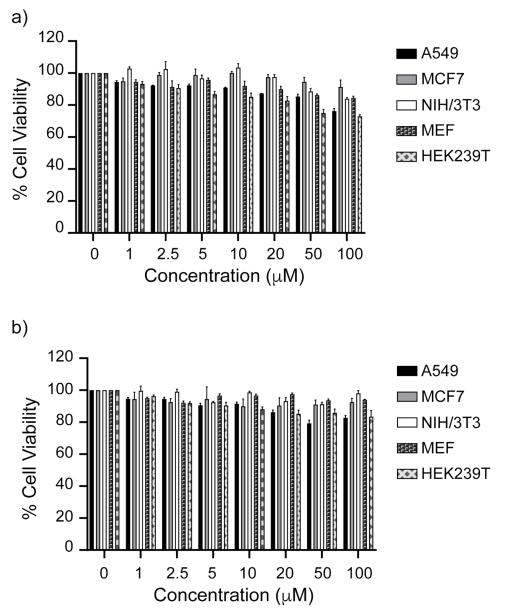

Fig. S24. Stacked ¹H NMR spectra of the reaction mixture of toluene to benzaldehyde in the presence of $C_{10}H_{14}MoO_6$ [MoO₂(acac)₂] catalyst at 0 hr (bottom) and 24 hr (top) in *dmso-d*₆. The reaction was performed at room temperature without the presence acetonitrile solvent with 5 mol% catalyst and 5 mmol TBHP under N₂ atmosphere.

Fig. S25. Absorption spectra of **Ammonium molybdate** $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ in acetonitrile solvent at 25 °C in the presence of NBT and TBHP at different time intervals is showing no significant reduction in absorption intensity of NBT at λ_{max} = 212 nm over the period of 50 min. Concentrations [NBT] = 14 × 10⁻⁶ M, $(NH_4)_6Mo_7O_{24} \cdot 4H_2O = 4 \times 10^{-6}$ M, $[TBHP] = 13.75 \times 10^{-5}$ M in ACN at 25 °C.

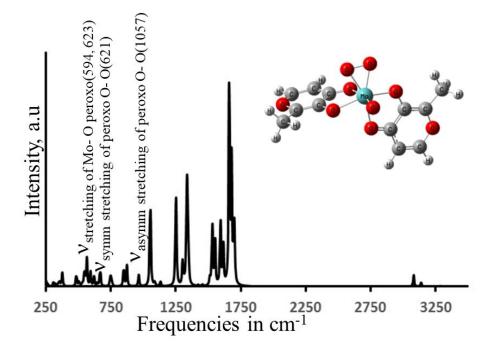


Fig. S26. Absorption spectra of [MoO₂(acac)₂] in acetonitrile solvent at 25 °C in the presence of NBT and TBHP at different time intervals showing a reduction in absorption intensity of NBT at λ_{max} = 217 nm over the period of 60 min. Concentrations [NBT] = 18 × 10⁻⁶ M, [MoO₂(acac)₂] = 1.5 × 10⁻⁵ M, [TBHP] = 13.75 × 10⁻⁵ M in ACN at 25 °C.

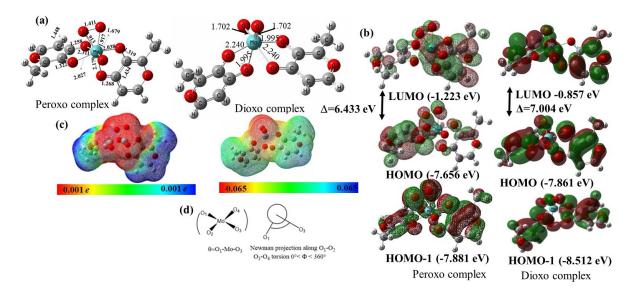


Fig. S27. Effect of a) maltol; and b) ammonium heptamolybdate on cell viability and growth in A549, MCF7, NIH/3T3, MEF, HEK 293T cells measured by MTT assay. The cells were treated with different concentrations of the test compound for 24 h and then cell viability was calculated by MTT assay. Data reported as the mean \pm SEM for N = 4.

6. Computational Studies

Fig. S28. The computed the IR frequencies for peroxo-Molybdenum complex. The Peroxo based vibrations are highlighted in the figure.

Fig. S29. (a) Optimized geometry with important bond distances in Å, (b) Frontier molecular orbitals (c) Molecular electrostatic potential map (isocontour value 0.002 eV/bohr²) and (d) the definition of dihedral angle calculation of Mo(VI) peroxo complex.

Fig. S29 illustrates the Mo(VI)-peroxo compound optimization. This figure reveals that molybdenum coordinates with six ligands in a distorted octahedral environment, with two maltol rings twisted to accommodate two axial oxo and peroxo groups. We found that peroxo group coordinated to molybdenum with 1.91 Å distance where both oxygens are bonded with a length of 1.41 Å. The computed IR frequency confirms the formation of bond between the peroxo and Molybdenum group. The computed IR plots are given in the **Fig. S28**.

We calculated two angles, as reported by Webster and Hall in their study of DMSO reductase: (i) the largest angle subtended at the metal by two oxygen atoms from different ligands (θ = O₁-Mo- O_3) and (ii) the torsion angle made by the four oxygen atoms with the two oxygen atoms as the central atoms, as shown in the Newman projection formula in Fig. S29.⁵ The proposed molybdenum structure exhibits a distorted octahedral structure with angular arrangements, with θ values of 83.98° and 78.21 ° and φ values of 97.91°, which is lower than the dioxo compound **1** (θ = 155.76° and 79.50°, and φ 164.39 °) values respectively. This shows that peroxo coordination increased the asymmetry in the structure. We also calculated the fold angles, as pointed out by Lauher and Hoffmann for metal dithiolene complexes, to help understand the oxidation state of the molybdenum.⁶ The Mo(VI) oxidation state, the empty d⁰-orbital results in a folded maltol ring with an angle of 2.2 °, which shows the planarity of the five member rings structure. The lower fold angle due to the larger electronegative of maltol groups which are not overlapping with metal d-orbitals. The frontier orbitals indicate that the ligand out-of-plane π orbitals (HOMO, HOMO-1) are delocalized with the π -donor oxo group where the metal contribution is minimal. The asymmetry shows that the peroxo compound MO orbital is not uniformly distributed on both side of the five-member ring while it is completely symmetry in the dioxo compound. However, the M-O-C-C-O metallocycle is planar in both dioxo and peroxo complexes, minimizing the filled-filled interaction between the ligand's out-of-plane orbitals and the metal inplane orbitals. The computed molecular electrostatic potential map shows that the charge is completely delocalized on both rings, with negative charge accumulating at the axial ligands. The negative charge accumulation is more in peroxo compound owing to the relative more contribution from the metal centre.

The computation shows that peroxo can form a stable complex with Mo(VI) and the synthesised structure is similar to the reported and synthesized active site model of Molybdenum dithiolene complexes. The larger electronegativity of the maltol ligand made the structure more planar and delocalised with minimal contribution from metal atom compared to dithiolene counterpart.

S35

7. References

- 1 W. L. F. Armarego and C. L. . Chai, *Purification of Laboratory Chemicals*, Elsevier, 6th Edition., 2009.
- 2 B. T. Cho, S. K. Kang, M. S. Kim, S. R. Ryu and D. K. An, *Tetrahedron*, 2006, **62**, 8164–8168.
- 3 M. J. Mintz and C. Walling, *Org. Synth.*, 1969, **49**, 9.
- 4 M.J. Frisch, et al., Gaussian 09 (Revision C.02), Gaussian, Inc., Wallingford, CT, 2009.
- 5 C.E. Webster, and M. B. Hall, J. Am. Chem. Soc. 2001, **123**, 5820.
- 6 J. W. Lauher, and R. Hoffmann, J. Am. Chem. Soc. 1976, **98**, 7, 1729–1742.