Electronic Supplementary Information

Probing the Influence of Strontium Doping and Annealing Temperature on Structure and Biocompatibility of Hydroxyapatite Nanorods

Harsha G. Patil¹, S. Archana Rajendran², Nibedita Lenka², B Sachin Kumar³ Selvakumar Murugesan¹, S. Anandhan^{1*}

¹Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru – 575025, Karnataka, India.

> ²National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.

³Department of Mechanical Engineering, B.M.S. College of Engineering, Bengaluru – 560019, Karnataka, India.

Crystallographic information file (CIF) numbers: (a) 9002216 for HAp (b)7215687 for Sr-HAp.

Table S1. Molar ratios of $Ca(NO_3)_2.4H_2O$, $Sr(NO_3)_2$, $(NH_4)_2HPO_4$ used in experiments, Ca/Sr ratio, chemical formula and abbreviations (M: molar; m: moles; g: grams).

Sr. No	Ca(NO ₃) ₂	Sr(NO ₃) ₂	(NH ₄) ₂ HPO ₄	Ca:Sr molar ratio	(Ca+Sr)/P molar ratio	Wt. % of Sr doping	Chemical formula	Sample designatio ns	
1	0.50 M	0.00 M	0.30 M	10:00	1.66	0	Ca ₁₀ (PO ₄) ₆ OH) ₂	HAp-UA, HAp-600, HAp-800	
2	0.45 M	0.05 M	0.3 M	09:01	1.66	9.05%	Ca ₉ Sr ₁ (PO ₄) ₆ (OH) ₂	Sr1-UA, Sr1-600, Sr1-800	
3	0.25 M	0.25 M	0.3 M	05:05	1.66	47.35%	Ca ₅ Sr ₅ (PO ₄) ₆ (OH) ₂	Sr5-UA, Sr5-600, Sr5-800	
4	0.15 M	0.35 M	0.3 M	03:07	1.66	67.64%	Ca ₃ Sr ₇ (PO ₄) ₆ (OH) ₂	Sr7-UA, Sr7-600, Sr7-800	
5	0	0.5 M	0.3 M	00:10	1.66	100%	Sr ₁₀ (PO ₄) ₆ OH) ₂	Sr10-UA, Sr10-600, Sr10-800	
6	0.46 M	0.04 M	0.3 M	9.2:0.8	1.66	7.22%	Ca _{9.2} Sr _{0.8} (PO ₄) ₆ (OH) ₂	Sr0.8-600	
7	0.48 M	0.02 M	0.3 M	9.6:0.4	1.66	3.60%	Ca _{9.6} .Sr _{0.4} (PO ₄) ₆ (OH) ₂	Sr0.4-600	
	Unannealed- (UA) Annealing temperature-600 °C and 800 °C								

		Standa	After Rietveld Refinement					Crystallite Size measurement						
Sample	ICDD	Chemical formula	a = b (Å)	c (Å)	Volume (Å) ³	a = b (Å)	c (Å)	Volume (Å) ³	Rwp	GoF	Microstrain (%)	Crystallite Size (Å)	Rwp	GoF
HAp-UA	01-073-8419	Ca ₅ (PO ₄) ₃ (OH)	9.4257	6.885	529.76	9.45173± 0.00667	6.89756 ± 0.003690	533.6±0.46	18.37	0.963	0.125±0.0094	306.9±0.59	18.68	0.977
НАр-600	01-073-8419	Ca ₅ (PO ₄) ₃ (OH)	9.4257	6.885	529.76	9.41705± 0.00045	6.8850027 ±0.000225	528.58±0.0 3	6.982	2.098	0.16±0.00539	368.9±5.47	6.734	2.023
НАр-800	01-073-8419	Ca ₅ (PO ₄) ₃ (OH)	9.4257	6.885	529.76	9.42143± 0.00071	6.8863 ± 0.000388	542.4±0.00 47	5.524	1.63	0.108±0.0033	529.15±1.33	5.388	1.593
Sr1-UA	00-060-0648	Ca ₉ Sr(PO ₄) ₆ (OH) ₂	9.4706	6.923	537.77	9.4494± 0.01429	6.905 ± 0.007784	533.96±1.0 0	17.47	0.94	0.194±0.0524	277±26.94	17.66	0.973
Sr1-600	00-060-0648	Ca ₉ Sr(PO ₄) ₆ (OH) ₂	9.4706	6.923	537.77	9.44403± 0.00226	$\begin{array}{c} 6.9072 \pm \\ 0.001223 \end{array}$	533.51±0.1 5	6.711	2.04	0.261±0.007	288.7±4.74	7.79	2.37
Sr1-800	00-060-0648	Ca ₉ Sr(PO ₄) ₆ (OH) ₂	9.4706	6.923	537.77	9.45326± 0.00113	6.91215± 0.000622	534.94±0.0 8	7.801	2.38	0.061 ± 0.008	404.8±5.03	6.7	2.04
Sr5-UA	00-034-0483	Ca ₈ Sr ₂ (PO ₄) ₆ (OH) ₂	9.486	6.951	541.68	9.51184± 0.01672	6.9826 ± 0.009351	547.14±1.2 0	15.09	0.909	0.397±0.057	383.3±85.5	15.57	0.933
	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.7643± 0.01877	7.2304± 0.011001	598.05±1.4 6	15.09	0.909	0.314±0.077	269.2±44.7	15.57	0.933
Sr5-600	00-034-0483	Ca ₈ Sr ₂ (PO ₄) ₆ (OH) ₂	9.486	6.951	541.68	9.5145± 0.00298	6.99± 0.001751	547.99±0.1 9	5.66	1.928	0.445±0.009	305.5±8.2	5.479	1.85
	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.7382± 0.00273	7.24± 0.00152	594.61±0.2 3	5.66	1.928	0.3±0.013	245.8±5.24	5.479	1.85
Sr5-800	00-034-0483	Ca ₈ Sr ₂ (PO ₄) ₆ (OH) ₂	9.486	6.951	541.68	9.5673 ± 0.00088	7.04644± 0.00535	558.57±0.0 6	6.871	2.3	0.3±0.0039	362.5±0.978	6.862	2.29
	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.6236± 0.00279	$\begin{array}{c} 7.0952 \pm \\ 0.001742 \end{array}$	569.08±0.2 1	6.871	2.3	0.77±0.00015	196.2±0.155	6.862	2.29
	01-085-7551	Sr ₇ Ca _{3.5} (PO ₄) ₇	10.662	38.94	3833.3	$\frac{10.6515 \pm}{0.00118}$	$ \begin{array}{r} 38.7\pm\\ 0.004132 \end{array} $	3802.52±0. 58	6.871	2.3	0.174±0.0008	429.9±1.631	6.862	2.29
Sr7-UA	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.6953 ± 0.00186	7.1787± 0.001028	584.39±0.1 3	6.83	2.91	0.348±0.0101	167.8±1.809	7.341	3.31

Table S2. Rietveld refinement data calculated using X'pert high score plus 4.7. ICDD numbers of different phases, unit cell parameters, unitcell volume and microstrains of various samples.

		Standard values from ICDD				After Rietveld Refinement					Crystallite Size measurement			
Sample	ICDD	Chemical formula	a = b (Å)	c (Å)	Volume (Å) ³	a = b (Å)	c (Å)	Volume (Å) ³	Rwp	GoF	Microstrain (%)	Crystallite Size (Å)	Rwp	GoF
	01-085-7551	Sr ₇ Ca _{3.5} (PO ₄) ₇	10.662	38.94	3833.3	10.78 ± 0.00177	38.83 ± 0.004922	3910.08±0. 81	6.83	2.91	0.2±0.0102	806.6±67.51	7.341	3.31
Sr7-600	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.6898± 0.00212	7.1751 ± 0.001188	583.43±0.1 6	6.07	2.78	0.406±0.0102	172.8±1.99	7.127	3.22
	01-085-7551	Sr ₇ Ca _{3.5} (PO ₄) ₇	10.662	38.94	3833.3	10.7075 ± 0.00194	39.0117± 0.005399	3873.54±0. 88	6.07	2.78	0.188±0.008	901.5±72.8	7.127	3.22
Sr7-800	01-085-7551	Sr ₇ Ca _{3.5} (PO ₄) ₇	10.662	38.94	3833.3	10.69± 0.0053	39.1 ± 0.001433	3876.92±0. 24	6.18	2.82	0.311±0.006	810.5±13.73	6.197	3.12
	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.64750± 0.00071	7.1508 ± 0.000433	576.39±0.0 5	6.18	2.82	0.071±0.003	295±4.98	6.197	3.12
Sr10-UA	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.77311± 0.00143	$\begin{array}{c} 7.28155 \pm \\ 0.00913 \end{array}$	602.3±0.11	15.48	1.019	0.076 ± 0.01974	492.9±4.55	15.4	1.01
Sr10-600	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.77065 ± 0.00056	7.28194± 0.00315	602.03±0.0 4	6.843	2.411	0.117±0.0022	496.4±4.37	6.778	2.468
Sr10-800	01-080-9970	Sr ₁₀ (PO ₄) ₆ (OH) ₂	9.7643	7.28	601.13	9.77148± 0.00032	7.2836 ± 0.00185	602.27±0.0 2	7.218	2.16	0.043±0.0036	583.8±4.54	6.937	2.449
	01-073-4870	$Sr_3(PO_4)_2$	5.3917	19.8	498.42	5.39± 0.00019	19.79± 0.00626	498.16±0.0 2	7.218	2.16	0.046±0.0045	812.2±14.9	6.937	2.449

Fig. S1 Rietveld refinement plots of samples annealed at 600°C.

S 1. Measurement of average length, diameter and aspect ratio of the nanostructures

High magnification FESEM images were acquired at multiple locations for all the samples. The average length (L_{avg}) and average diameters (D_{avg}) were measured using Image-J 1.46r software. One such example is given below for the sample HAp-600. The yellow lines within the circles indicate length and diameters of the nanoparticles.

Fig. S2 Length and diameter measurement of the nanostructures.

Table S3. Average length, average diameter and aspect ratios of all the samples.

Samplas	I (nm)	$\mathbf{D}_{(nm)}$	Aspect Ratio		
Samples	L _{avg} (IIII)	D _{avg} (IIII)	(L_{avg}/D_{avg})		
HAp-UA	276.8±105	58.8±14	4.70±1.3		
Sr1-UA	142.5±87	34.0±18	4.18±1.5		
Sr5-UA	131.6±57	37.1±12	3.5±1.9		
Sr7-UA	143.9±61	44.3±14	3.2±1.5		
Sr10-UA	195.4±150	160.2±107	1.2±0.3		
НАр-600	195.5±72	53.1±18	3.6±1.5		
Sr1-600	224.2±78	56.0±18	4.0±1.7		
Sr5-600	201.1±57	41.4±11	4.8±1.6		
Sr7-600	144.6±62	44.4±14	3.2±1.2		
Sr10-600	275.4±110	166.9±78	1.6±0.67		
HAp-800	89.6±50	36.1±20	2.4±0.61		
Sr1-800	253.8±83	93.3±26	2.7±0.69		
Sr5-800	291.2±97	120.0±31	2.4±0.88		
Sr7-800	285.0±124	167.9±60	1.6±0.58		
Sr10-800	283.1±107	152.2±75	1.8±0.82		

Assignment	HAp-UA	Sr1-UA	Sr5-UA	Sr7-UA	Sr10-UA	HAp-600	Sr1-600	Sr5-600	Sr7-600	Sr10-600	HAp-800	Sr1-800	Sr5-800	Sr7-800	Sr10-800
	140	140	140	139	130	140	139	141	140	128	140	139	139	139	140
Ca-PO ₄	205	205	198	197	193	205	208	198	169	191	209	203	184	185	191
	289	285	273	251	225	291	287	277	251	215	289	279	266	260	238
Ca-OH, v_3	329	328	316	315	315	334	330	324	320	317	330	332	319	319	314
$PO_4^{3-} bend, v_2$	431	431	428	423	422	431	430	426	424	424	431	430	423	423	417
PO ₄ ³⁻	592	591	588	585	581	592	591	588	587	580	592	592	586	585	606
bend, <i>v</i> ₄	608	607	604	598	595	608	607	601	597	596	606	606	601	600	579
$PO_4^{3-} sym.$ stretch, v_1	962	961	957	953	948	962	961	957	953	948	961	960	955	955	947
PO ₄ ³⁻ Asym. stretching, v ₃	1048	1047	1045	1039	1050	1048	1047	1042	1034	1051	1047	1046	1036	1032	1036
OH stretching mode	3573	3572	3576	3584	3593	3573	3573	3577	3590	3594	3573	3573	3583	3589	3593

Table S4. Raman band positions, modes and assignments for Sr-HAp nanostructures annealed atUA, 600 °C and 800 °C.

S2. BET surface area analysis

The nitrogen adsorption/desorption analysis was performed to find the specific surface area of the samples (Sr-HAp samples annealed at 600°C) by Brunauer-Emmett-Teller (BET) method. the pore parameters (pore volume and pore radius) were evaluated from the desorption branch of isotherm based on Barrett–Joyner–Halenda (BJH) model using Autosorb IQ-XR, Anton Paar, Austria.

The detailed parameters of the pores dispersed on the nanoparticles (HAp-600 and its doped versions) were determined by N₂ adsorption method. Figure S2 shows the adsorption-desorption isotherms exhibiting the typical characteristics of a type IV curve with a hysteresis loop, signalling the mesoporous quality of Sr-HAp particles.¹ The values of pore volume and specific surface area (SSA) of nanoparticles are shown in table S5. From The highest and the lowest SSA were found to be 36.07 (m²/g) and 25.22 (m²/g) for HAp-600 and Sr10-600, respectively. It is important to note that as the dopant level increases in HAp, the surface area decreases. This might be due the change in the morphology from rod to sheet shape. In

addition, with the increase in the dopant level, both pore volume and pore radius increased until Sr5-600 and then decreased. This might be due to creation of defects within the sample.²

Fig. S3 Nitrogen adsorption–desorption isotherms of various Sr-HAp nanoparticles annealed at 600°C.

Table S5. Specific surface area, pore size and pore volume of various Sr-HAp nanoparticles annealed at 600°C.

	НАр-600	Sr1-600	Sr5-600	Sr7-600	Sr10-600
Average pore Radius (Å)	42.38	44.53	71.67	59.53	43.38
SSA (m²/g)	36.07	29.40	31.16	29.02	25.23
Total pore volume (cc/g)	0.076	0.066	0.12	0.086	0.055

Samples	2.5%	5%
Control	100	100
HAp-600	71	28
Sr0.4-600	88	75
Sr0.8-600	90	59
Sr1-600	87	26
Sr5-600	85	58
Sr7-600	71	66
Sr10-600	69	56

 Table S6. Cell viability data.

References

- C. Shamitha, T. Senthil, L. Wu, B. S. Kumar and S. Anandhan, *J. Mater. Sci. Mater. Electron.*, 2017, 28, 15846–15860.
- 2. H. Klym, I. Karbovnyk, A. Luchechko, Y. Kostiv, V. Pankratova and A. I. Popov, *Crystals*, 2021, **11**, 1515-1530.