Twinned *versus* **Linked Organometallics** -

Bimetallic "Half-Baguette" Pentalenide Complexes of Rh(I)

Hugh J. Sanderson,^a Gabriele Kociok-Köhn,^b Claire L. McMullin,^a Ulrich Hintermair*^{a,c}

- a) Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- b) Material and Chemical Characterisation Facility, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- c) Institute for Sustainability, University of Bath, Claverton Down, Bath, BA2 7AY, UK.

u.hintermair@bath.ac.uk

Supporting Information

Contents

Spectroscopic Data	3
<i>Anti</i> -[Rh ^I (COD)] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (1)	3
<i>Anti</i> -[lr ^l (COD)]₂[μ:η⁵:η⁵Ph₄Pn] (2)	5
<i>Anti</i> -[Rh ^៲ (NBD)] ₂ [μ:η ⁵ :η ⁵ Ph₄Pn] (3)	8
<i>Anti</i> -[Rh ^I (C ₂ H ₄) ₂] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (4)	9
<i>Syn</i> -[Rh ^I (CO) ₂] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (5)	11
UV-vis spectra of 1 , 5 and $(Ph_2Cp)Rh^{I}(CO)_2$	15
Attempted reaction of 5 with 2-2'-bipyridine	16
Attempted reaction of 5 with pyridine	16
Substitution of 5 with Triphenylphosphine	17
Substitution of 5 with Trimethylphosphine	19
Substitution of 5 with bis(diphenylphosphino)ethane	22
Reaction of 5 with Triphenylphosphite	24
$[Rh^{\prime}(CO)(P\{OPh\}_{3})]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ (11)	28
Reaction of 5 with Trimethylphosphite	30
UV-vis Spectra of 5 , 6 and 11	32
Near-IR Spectra of 5 , 10 and 11	32
Computational Details	33
Methodology	33
Breakdown of Energy Contributions	33
NBO Data	34
Cartesian Coordinates and Computed Energies (in Hartrees) for Calculated Structures	36
References	39
Crystallographic Data	40
<i>Anti</i> -[Rh ^I (COD)] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (1)	40
<i>Anti</i> -[lr ^l (COD)] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (2)	41
<i>Anti</i> -[Rh ^I (NBD)] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (3)	42
<i>Anti</i> -[Rh ^I (C ₂ H ₄) ₂] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (4)	43
<i>Syn-</i> [Rh ^I (CO) ₂] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (5)	44
[Rh ^{II} (CO)(PMe ₃) ₄][Ph ₄ Pn] (8)	46
[Rh ^I (dppe) ₂][Rh ^I (CO) ₂ (η ⁵ -Ph ₄ Pn)] (9)	47
[Mg ₂ (μ-Cl) ₃][Rh ^I (CO) ₂ (η ⁵ -Ph ₄ Pn)]	48
[Rh ^l (CO)(P{OPh} ₃)] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (11)	49
[Rh ^៲ (CO)(P{OMe} ₃)] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (12)	50

Spectroscopic Data

Anti-[Rh^I(COD)]₂[μ : η^{5} : η^{5} Ph₄Pn] (1)

Figure S1: 500 MHz ¹H NMR spectrum of $[Rh^{I}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in $C_{6}D_{6}$

Figure S2: 126 MHz ¹³C{¹H} NMR spectrum of $[Rh^{1}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆

Figure S3: 500 MHz ¹H-¹H HSQC spectrum of $[Rh^{I}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in $C_{6}D_{6}$ (Blue = H_w, Red = H_a, Light blue = H_b and H_c)

Figure S4: 500 MHz stacked ¹H NMR spectra of $[Rh^{I}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆

Anti-[Ir^I(COD)]₂[μ:η⁵:η⁵Ph₄Pn] (**2**)

135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 **Figure S7:** 126 MHz ¹³C{¹H} NMR spectrum of $[Ir^{I}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆

Figure S8: 500 MHz ¹H-¹³C HSQC spectrum of $[Ir^{I}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆ (Blue = H_w, Red = H_a, Light blue = H_b and H_c)

Figure S9: 500 MHz stacked ¹H NMR spectra of $[Ir^{I}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆

Figure S10: 500 MHz stacked ¹H NMR spectra of $[Ir^{I}(COD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆

Anti-[Rh^I(NBD)]₂[μ : η^{5} : η^{5} Ph₄Pn] (**3**)

Figure S11: 500 MHz ¹H NMR spectrum of $[Rh^{I}(NBD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in $C_{6}D_{6}$

Figure S12: 126 MHz ¹³C{¹H} NMR spectrum of $[Rh^{I}(NBD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆

Figure S13: 500 MHz ¹H-¹³C HSQC spectrum of $[Rh^{I}(NBD)]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in C₆D₆ (Blue = H_w, Yellow = H_b, Green = H_a, Red = H_c)

Anti-[Rh^I(C₂H₄)₂]₂[μ : η ⁵: η ⁵Ph₄Pn] (**4**)

Figure S14: 500 MHz ¹H NMR spectrum of $[Rh^{1}(C_{2}H_{4})_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in $C_{6}D_{6}$

Figure S16: 500 MHz ¹H-¹³C HSQC spectrum of $[Rh^{I}(C_{2}H_{4})_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in $C_{6}D_{6}$ (Blue = H_w, Green = CH_2)

Figure S17: 500 MHz ¹H NMR spectrum of $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈. Spectrum obtained using the lc1gppnf2 solvent suppression pulse sequence, a double presaturation experiment during relaxation and mixing time using two independent channels.

Figure S19: 500 MHz ¹H-¹³C HSQC spectrum of $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈ (Blue = H_w)

THF-H₈

Figure S21: 126 MHz stacked ¹³C{¹H} NMR spectra of alternative $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ syntheses in THF-H₈

Figure S22: ATR-IR spectrum of solid $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$

Figure S23: ATR-IR spectrum of solid $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ (expanded CO region)

Figure S24: ATR-IR spectra of solid $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ from alternative syntheses

UV-vis spectra of 1, 5 and (Ph₂Cp)Rh^I(CO)₂

Figure S25: UV-vis spectra of $[Rh^{1}(COD)]_{2}[Ph_{4}Pn]$ (1.5 x 10⁻⁶ M), $[Rh^{1}(CO)_{2}]_{2}[Ph_{4}Pn]$ (1.5 x10⁻⁶ M) and $(Ph_{2}Cp)Rh^{1}(CO)_{2}$ (6.6 x 10⁻⁶ M)recorded in THF at 298K

Attempted reaction of **5** with 2-2'-bipyridine

8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 f1(ppm)

Figure S26: 500 MHz ¹H NMR spectra of attempted substitution of $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ with 2,2-bipyridine in THF-H₈

Attempted reaction of 5 with pyridine

9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 f1(ppm)

Figure S27: 500 MHz ¹H NMR spectra of attempted substitution of $[Rh'(CO)_2]_2[\mu:\eta^5:\eta^5Ph_4Pn]$ with pyridine in THF-H₈

Figure S28: 500 MHz ¹H NMR spectrum of *in-situ* formed [Rh^I(CO)₂Rh(CO)(PPh₃)][μ : η ⁵: η ⁵Ph₄Pn] in THF-H₈. Spectrum obtained using the lc1gppnf2 solvent suppression pulse sequence, a double presaturation experiment during relaxation and mixing time using two independent channels.

f1 (ppm)

Figure S29: 126 MHz ¹³C{¹H} NMR spectrum of *in-situ* formed [Rh^I(CO)₂;Rh^I(CO)(PPh₃)][μ : η ⁵: η ⁵Ph₄Pn] in THF-H₈

Figure S30: 202 MHz ³¹P{¹H} NMR spectrum of *in-situ* formed [Rh^I(CO)₂;Rh^I(CO)(PPh₃)][μ : η ⁵Ph₄Pn] in THF-H₈

Figure S31: 202 MHz ³¹P{¹H} NMR spectra of varying equivalents of PPh₃ added to $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈

Substitution of **5** with Trimethylphosphine

Figure S32: 500 MHz ¹H NMR spectrum of four equivalents PMe₃ added to $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈. Spectrum obtained using the lc1gppnf2 solvent suppression pulse sequence, a double presaturation experiment during relaxation and mixing time using two independent channels.

Figure S34: 202 MHz ³¹P{¹H} NMR spectrum of four equivalents PMe₃ added to $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈

Figure S35: 162 MHz ³¹P{¹H} variable temperature NMR spectra of four equivalents PMe₃ added to $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈

Figure S36: 500 MHz ¹H NMR spectrum of four equivalents PMe₃ added to $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈ with capillary insert of TMS in THF.

Substitution of 5 with bis(diphenylphosphino)ethane

Figure S37: 500 MHz ¹H NMR spectrum of *in-situ* formed [Rh^I(dppe)₂][Rh(CO)₂(η^{5} Ph₄Pn)] in THF-H₈. Spectrum obtained using the lc1gppnf2 solvent suppression pulse sequence, a double presaturation experiment during relaxation and mixing time using two independent channels.

Figure S39: 202 MHz ³¹P{¹H} NMR spectrum of *in-situ* formed [Rh^I(dppe)₂][Rh^I(CO)₂(η ⁵Ph₄Pn)] in THF-H₈

Figure S40: 500 MHz ¹H-³¹P HMBC spectrum of *in-situ* formed [Rh(dppe)₂][Rh(CO)₂(η^{5} Ph₄Pn)] in THF-H₈ (Blue = Rh(dppe)₂⁺)

Figure S41: ATR-IR spectrum of solid $[Rh^{1}(dppe)_{2}][Rh^{1}(CO)_{2}(\eta^{5}Ph_{4}Pn)]$ (expanded CO region)

Figure S42: XRD structure of $[Mg_2(\mu-Cl)_3(THF)_6[Rh^{I}(CO)_2(\eta^5-Ph_4Pn]]$ with thermal ellipsoids at the 50% probability level (hydrogens omitted for clarity)

Reaction of **5** with Triphenylphosphite $1eq P(OPh)_3$

Figure S43: 500 MHz ¹H NMR spectrum of *in-situ* [Rh^I(CO)₂;Rh^I(CO)(P{OPh}₃)][μ : η^5 : η^5 Ph₄Pn] in THF-H₈. Spectrum obtained using the lc1gppnf2 solvent suppression pulse sequence, a double presaturation experiment during relaxation and mixing time using two independent channels.

Figure S44: 126 MHz ¹³C{¹H} NMR spectrum of *in-situ* [Rh^I(CO)₂;Rh^I(CO)(P{OPh}₃)][μ : η ⁵: η ⁵Ph₄Pn] in THF-H₈

⁵⁰ ¹⁴⁸ ¹⁴⁶ ¹⁴⁴ ¹⁴² ¹⁴⁰ ¹³⁸ ¹³⁶ ¹³⁴ ¹³² ¹³⁰ ¹²⁸ ¹²⁶ ¹²⁴ ¹²² ¹²⁰ ¹¹⁸ ¹¹⁶ ¹¹⁴ ¹¹² ¹¹⁰ ¹⁰⁸ ¹⁰⁶ ¹⁰⁴ ¹⁰² ¹⁰⁰ ^{f1} (ppm) **Figure S45:** 202 MHz ³¹P{¹H} NMR spectrum of *in-situ* [Rh^I(CO)₂;Rh^I(CO)(P{OPh}₃)][μ :η⁵:η⁵Ph₄Pn] in THF-H₈

Figure S46: 500 MHz ¹H-¹³C HSQC spectrum of *in-situ* [Rh^I(CO)₂;Rh^I(CO)(P{OPh}₃)][μ : η ⁵: η ⁵Ph₄Pn]in THF-H₈ (Blue = H_b, Red = H_a)

Figure S47: 500 MHz ¹H-³¹P HMBC spectrum of *in-situ* [Rh^I(CO)₂;Rh^I(CO)(P{OPh}₃)][μ : η ⁵: η ⁵Ph₄Pn] in THF-H₈ (Blue = H_a)

 $[Rh^{I}(CO)(P{OPh}_{3})]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ (**11**)

Figure S49: 126 MHz ¹³C{¹H} NMR spectrum of [Rh^I(CO)(P{OPh}₃)]₂[μ:η⁵:η⁵Ph₄Pn] in THF-H₈

Figure S51: ATR-IR spectrum of solid $[Rh^{1}(CO)(P{OPh}_{3})]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$

Figure S52: ATR-IR spectrum of solid $[Rh^{1}(CO)(P{OPh}_{3})]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$, expansion of CO region.

Reaction of **5** with Trimethylphosphite

Figure S53: XRD structure of *E-syn*-[Rh^I(CO)(P{OMe}₃)]₂[Ph₄Pn] with thermal ellipsoids at the 50% probability level (hydrogens omitted for clarity)

Figure S54: 500 MHz ¹H NMR spectra of addition of P(OMe)₃ to $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈. Spectra obtained using the lc1gppnf2 solvent suppression pulse sequence, a double presaturation experiment during relaxation and mixing time using two independent channels.

161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 12 f1 (ppm)

Figure S55: 202 MHz ³¹P{¹H} NMR spectra of addition of P(OMe)₃ to $[Rh^{I}(CO)_{2}]_{2}[\mu:\eta^{5}:\eta^{5}Ph_{4}Pn]$ in THF-H₈

Figure S56: UV-vis spectra of $[Rh^{1}(CO)_{2}]_{2}[Ph_{4}Pn]$, $[Rh^{1}(CO)_{2};Rh^{1}(CO)(PPh_{3})][Ph_{4}Pn]$ and $[Rh^{1}(CO)(P\{OPh_{3})]_{2}[Ph_{4}Pn]$ recorded at 1.5 x 10⁻⁶ M in THF at 298K

Near-IR Spectra of 5, 10 and 11

Figure S57: NIR spectra of $[Rh^{1}(CO)_{2}]_{2}[Ph_{4}Pn]$, $[Rh^{1}(CO)_{2};Rh^{1}(CO)(P\{OPh\}_{3})][Ph_{4}Pn]$ and $[Rh^{1}(CO)(P\{OPh\}_{3})]_{2}[Ph_{4}Pn]$ recorded at 1.5 x 10⁻⁵ M in THF at 298K

Computational Data

Methodology

DFT calculations were run with Gaussian 16 (C.01).¹ The Rh centres were described with the Stuttgart RECPs and associated basis sets,² and the 6-31G** basis sets were used for all other atoms (BS1).^{3,4} Initial BP86^{5,6} optimizations were performed using the 'grid = ultrafine' option, with all stationary points being fully characterized via analytical frequency calculations as minima (all positive eigenvalues). All energies were recomputed with a larger basis set featuring 6-311++G** on all atoms, with the exception of Rh (aug-cc-pVTZ-PP). Natural Bonding Orbital (NBO7)^{7]} analyses were performed on the BP86/BS1-optmised geometries with a larger basis set featuring 6-311++G** on all atoms, with the exception of Rh (aug-cc-pVTZ-PP) within Gaussian 16 (C.01).

Breakdown of Energy Contributions

The following tables detail the evolution of the relative energies as the successive corrections to the initial SCF energy are included. Terms used are:

ΔE_{BSI}	SCF energy computed with the BP86 functional with BS1
ΔH_{BSI}	Enthalpy at 0 K with BS1
ΔG_{BSI}	Free energy at 298.15 K and 1 atm with BS1
$\Delta G_{BSI/THF}$	Free energy corrected for THF solvent with BS1
$\Delta G_{BSI/THF + D3BJ}$	Free energy corrected for THF and dispersion effects with BS1
ΔE_{BS2}	SCF energy computed with the BP86 functional with BS2
ΔG_{THF}	Free energy corrected for basis set (BS2), dispersion effects and THF solvent
In each case the f	inal data used in the main article are highlighted in bold

Table S1. Relative energies for computed structures. Data in bold are those used in the main text. Free energies are quoted relative to synthesised complexes, **4** and **5**, at 0.0 kcal mol⁻¹.

	ΔE_{BSI}	ΔH_{BSI}	ΔG_{BSI}	$\Delta G_{BSI/THF}$	$\Delta G_{BSI/THF} + D3BJ$	ΔE_{BS2}	ΔG_{THF}
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4-syn	1.9	2.6	3.6	3.8	0.6	2.4	1.2
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5-anti	1.6	1.5	1.4	2.3	5.0	1.2	4.6

Figure S58 – DFT optimised geometries of theoretical species, *syn*-[Rh(C₂H₄)₂]₂[Ph₄Pn] (*syn*-4, left) and *anti*-[Rh(CO)₂]₂[Ph₄Pn] (*anti*-5, right) using BP86-D3BJ(THF)/BS2//BP86/BS1

HOMO (-4.63 eV)

LUMO (-2.48 eV)

HOMO-1 (-5.39 eV)

Figure S62 - HOMO (left) and LUMO (right) of anti-[Rh(CO)₂]₂[Ph₄Pn] (anti-5)

Table S2. Wiberg Bond Indices (WBI) data for the DFT-optimised structures 4-syn and 5

	<i>syn</i> -[Rh(C ₂ H ₄) ₂] ₂ [Ph ₄ Pn]	<i>syn</i> -[Rh(CO) ₂] ₂ [Ph ₄ Pn]
Rh – Rh	0.0587	0.0448

Cartesian Coordinates and Computed Energies (in Hartrees) for Calculated Structures

$anti-[Rh(C_2H_4)_2]_2[Ph_4Pn] (4)$

SCF (BP86) Energy = -1768.49137296 Enthalpy OK = -1767.856404Enthalpy 298K = -1767.814975Free Energy 298K = -1767.929667 Lowest Frequency = 16.0002 cm^{-1} Second Frequency = 19.9555 cm^{-1} SCF (BP86-D3BJ) Energy = -1768.72819232 SCF (THF) Energy = -1768.49977223SCF (BS2) Energy = -1768.19693388 Rh -0.02738 2.02782 1.17761 С 0.72103 0.00006 -0.00001 С 1.19217 1.23215 -0.64452 1.60245 -1.09854 С 2.55211 3.49593 0.62132 -1.47940 С 3.24207 -0.43731 -1.38046 Η 4.74715 0.99031 -1.99652 С 5.45992 0.21158 -2.28739 Η С 5.08290 2.34489 -2.14442 Η 6.06035 2.63100 -2.54628 С 4.15522 3.33149 -1.76792 Н 4.40844 4.39208 -1.87116 С 2.90667 2.96541 -1.24894 Η 2.19289 3.73616 -0.93843 С 0.01744 1.94321 -1.06640 2.81155 -1.72557 Η 0.02909 1.26770 -0.62260 С -1.18490 С -2.52620 1.70315 -1.08240 С -2.78243 3.07686 -1.31929 -2.00078 3.81154 -1.10148 Η С -4.01483 3.50807 -1.82589 -4.18551 4.57679 -1.99404 Η -5.02788 2.57756 -2.11313 С -5.99244 2.91394 -2.50700 Н С -4.78781 1.21295 -1.89295 Η -5.56256 0.47339 -2.12111 С -3.55224 0.78079 -1.38729 -3.37483 -0.28566 -1.23659 Η 1.86058 -1.20134 3.66218 С -0.61989 4.35403 2.48368 Η -1.72986 4.14548 1.03098 Н -1.71286 2.45661 С 2.42684 -2.61769 2.01223 1.99727 Η Η -1.54755 2.21356 3.48202 2.06856 1.68764 2.97305 С 2.74308 1.46055 2.57123 Н 1.53277 Η 4.04394 2.24509 С 1.15412 2.00879 2.96727 Η 0.59012 2.34023 3.84763 Η 1.62676 1.02491 3.07761 С -0.74289 0.00003 0.0000 -1.18486 -1.26768 0.62257 С С -2.52613 -1.70319 1.08238 -3.55217 -0.78087 1.38740 С -3.37478 0.28560 1.23681 Н С -4.78771 -1.21310 1.89308 -5.56247 -0.47358 2.12134 Н -5.02774 -2.57774 2.11315 С 2.50704 Η -5.99227 -2.91418 -4.01468 -3.50820 С 1.82579 -4.18533 -4.57694 1.99385 Н

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
<pre>syn-[Rh(C₂H₄)₂]₂ SCF (BP86) H Enthalpy 0K Enthalpy 298 Free Energy Lowest Frequ Second Frequ SCF (BP86-D) SCF (THF) En SCF (BS2) En</pre>	<pre>[Ph₄Pn] (syn-4) Energy = -1768.48842457 = -1767.852336 3K = -1767.811293 298K = -1767.923952 aency = 22.5270 cm⁻¹ aency = 36.2811 cm⁻¹ 3BJ) Energy =</pre>
C -1.18573 C 0.00272 H 0.00579 C 1.18478 C 0.72900 C 1.18580 C -0.00256 H -0.00551 C -1.18472 C -0.72903 C -2.50190 C -3.33575 H -3.03656 C -4.52753 H -5.15415 C -4.91091 H -5.84246 C -4.08440 H -4.36828 C -2.89625	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

С	2.57425	1.89928	-0.71073
С	2.89619	3.10896	-1.37276
н	2.11491	3.65395	-1.91212
C	4 20683	3 60783	-1 36885
ц Ц	1 120000	1 51328	_1 89312
 C	F 22000	2 00007	0.70624
C	J.22909	2.90997	-0.70024
H	6.25307	3.29943	-0.70457
С	4.92879	1.70522	-0.05018
Н	5.71734	1.14778	0.46603
С	3.61870	1.20630	-0.05109
Н	3.39488	0.26387	0.45824
С	2.50204	-1.88763	-1.36824
С	3.33562	-1.10588	-2.20140
Н	3.03620	-0.08736	-2.46039
C	4 52741	-1 63079	-2 72309
с ц	5 15393	_1 00/10	-3 36667
п	1 01100	-1.00419	-3.30007
C	4.91109	-2.94927	-2.43342
Н	5.84265	-3.35629	-2.84019
С	4.08488	-3.74451	-1.62148
Η	4.36904	-4.77705	-1.39156
С	2.89671	-3.22062	-1.09516
Н	2.25946	-3.84393	-0.45919
С	-2.57406	-1.89921	-0.71136
С	-2.89559	-3.10909	-1.37324
Н	-2.11412	-3.65399	-1,91240
С	-4.20609	-3.60831	-1.36946
н	-4 42848	-4 54391	-1 89362
C	-5 22947	-2 91062	-0 70718
11	6 25255	2.91002	0.70561
п С	-0.23233	1 70569	-0.70301
	-4.92000	-1.70368	-0.05128
H	-5./1/59	-1.14833	0.46469
С	-3.61883	-1.20641	-0.05203
Η	-3.39540	-0.26383	0.45717
Rh	-0.11851	1.63127	1.15747
Rh	0.11825	-1.63148	1.15716
С	1.00900	3.21111	2.01399
С	1.45335	1.97417	2.57220
Н	0.39553	3.89507	2.61401
Н	1.60851	3.70639	1.24020
н	1.20118	1.70488	3.60356
н	2 38711	1 53572	2 19901
C	-1 44619	1 42406	2 86096
c	_1 87//8	2 50685	2.000000
	0.02650	1 61710	2.00004
п 11	-0.92039	1.01/19	2 01776
н	-1.96669	0.46521	2.81//6
Н	-1.69564	3.54412	2.35/36
Н	-2.72246	2.37922	1.36800
С	1.44417	-1.42660	2.86237
С	1.87528	-2.50610	2.04919
Н	0.92400	-1.62374	3.80671
Н	1.96291	-0.46666	2.82269
Н	1.69826	-3.54468	2.35253
Н	2.72351	-2.37466	1.36760
С	-1.00778	-3.21227	2.01361
C.	-1,45453	-1.97565	2.57063
H	-0.39383	-3.89494	2.61463
н	-1 60588	-3 70897	1 23961
ц	-1 20300	-1 70526	3 60209
п	1.2UJOY	1 52074	2 10607
п	-2.3004/	-1.030/4	Z.1900/

<i>syn</i> -[Rh(CO) ₂] ₂ [Ph ₄ Pn] (5)	
SCF (BP86) Energy = - Enthalpy $0K = -1907.0$	-1907.48671547
Enthalpy $298K = -1906$	5.991886
Free Energy $298K = -1$	907.106987
Second Frequency = 30	1.1757 cm^{-1}
SCF (BP86-D3BJ) Energ	ал =
-1	907.68722449
SCF (THF) Energy = -1	907.49678106
SCF (BS2) Energy = -1	907.26206118
C 1.21833 -1.36836	-0.91296
C 0.04646 -2.21756	-0.99351
C -1.15200 -1.41976	-0.80739
C -0.72339 -0.01214	-0.86008
C -1.21833 1.36858 C -0.04651 2.21779	-0.91299
Н -0.07126 3.28901	-1.19083
C 1.15197 1.41995	-0.80722
C 2.59068 -1.85390	-1.21535
C 3.39847 -1.17510	-2.15411
H 3.03432 -0.25138	-2.61325
H 5.26908 -1.14149	-3.24015
C 5.12685 -2.87652	-1.94278
H $6.11043 - 3.26940$ C $4.32810 - 3.56339$	-2.22028
Н 4.68748 -4.49306	-0.55916
C 3.07217 -3.05735	-0.65205
C -2.53660 -1.95313	-0.87796
C -2.82927 -3.05334	-1.71510
C -4.12935 -3.57673	-2.32835
н -4.33614 -4.42934	-2.43720
C -5.15958 -3.00802 H -6.17366 -3.41757	-1.01685
C -4.88143 -1.90912	-0.18615
H -5.67705 -1.45934	0.41640
Н -3.37207 -0.53861	0.54235
C -2.59071 1.85414	-1.21521
H -3.03392 0.25240	-2.61415
C -4.65653 1.68368	-2.51198
H -5.26874 1.14260 C -5 12693 2.87684	-3.24082
Н -6.11054 3.26975	-2.21973
C -4.32841 3.56324	-1.01168
C -3.07246 3.05715	-0.65121
н -2.45642 3.58201	0.08710
C 2.53656 1.95341 C 2.82926 3.05353	-0.8//66
H 2.03481 3.49140	-2.32827
C 4.12934 3.57698	-1.78164
C 5.15950 3.00840	-1.01638
Н 6.17357 3.41799	-1.06643
C 4.88131 1.90957	-0.18558

Η	5.67689	1.45990	0.41710
С	3.58390	1.38545	-0.11747
Н	3.37192	0.53905	0.54288
С	-1.11907	-1.98827	2.38709
С	1.54570	-1.69182	2.29961
С	-1.54547	1.69015	2.30020
С	1.11902	1.98881	2.38694
0	-1.88807	-2.34822	3.19116
0	2.43172	-1.85028	3.04708
0	-2.43137	1.84761	3.04802
0	1.88793	2.34907	3.19096
Rh	0.13322	-1.48427	1.09147
Rh	-0.13317	1.48407	1.09155

anti-	[Rh(CO) ₂] ₂ [Ph ₄ Pn] (<i>anti</i> -5)
SCF	(BP86) Energy = -1907.48422317
Ent.	halpy $OK = -1907.029008$
Ent.	halpy 298K = -1906.989346
Fre	e Energy 298K = -1907.104728
Low	est Frequency = 24.9880 cm ⁻¹
Sec	ond Frequency = 31.5320 cm ⁻¹
SCF	(BP86-D3BJ) Energy =
	-1907.68055560
SCF	(THF) Energy = -1907.49283916
SCF	(BS2) Energy = -1907.26007984
Rh	0.00045 -2.18984 -0.89983
С	0.72477 -0.00041 -0.00018
С	1.18618 -1.16214 0.78020
С	2.55473 -1.48089 1.25693
С	3.45884 -0.44893 1.59031
Н	3.16637 0.59453 1.44441
С	4.72044 -0.75293 2.12447
Н	5.40742 0.06059 2.37908
С	5.09875 -2.08811 2.33210
Н	6.08530 -2.32345 2.74442
С	4.20544 -3.12264 2.00332
Н	4.49503 -4.16790 2.15363
С	2.94509 -2.82261 1.47123
Н	2.25638 -3.62893 1.19541
С	0.00029 -1.78748 1.31649
Н	0.00042 -2.58179 2.06277
С	-1.18573 -1.16247 0.78026
С	-2.55419 -1.48162 1.25702
С	-2.94447 -2.82350 1.47047

Н	-2.25577	-3.62959	1.19395
С	-4 20472	-3 12393	2 00263
ц	_1 10125	-1 16030	2 15226
п	-4.49425	-4.10930	2.13220
C	-5.09/96	-2.08963	2.33230
Η	-6.08443	-2.32525	2.74466
С	-4.71973	-0.75429	2.12550
Н	-5.40668	0.05902	2.38082
С	-3.45825	-0.44990	1.59129
ц	-3 16581	0 59366	1 11602
 C	0 70469	0.00060	0.00022
C	-0.72468	-0.00069	-0.00022
С	-1.18612	1.16182	-0.77963
С	-2.55464	1.48042	-1.25654
С	-3.45894	0.44850	-1.58948
Н	-3.16665	-0.59495	-1.44321
С	-4.72051	0.75248	-2.12375
ч	-5 40760	-0.06105	-2 37801
C	5 00062	2 09761	2.37001
C	-3.09603	2.00701	-2.33194
н	-6.08515	2.32292	-2.74434
С	-4.20514	3.12215	-2.00360
Н	-4.49455	4.16739	-2.15434
С	-2.94485	2.82212	-1.47139
Н	-2.25603	3.62846	-1.19588
C	-0 00021	1 78713	-1 31603
ц	-0 00021	2 59134	-2 06241
п	1 10504	1 1 6 2 2 0	-2.00241
C	1.18584	1.16220	-0.//9/5
С	2.55425	1.48124	-1.25673
С	2.94448	2.82310	-1.47044
Н	2.25578	3.62921	-1.19396
С	4.20465	3.12350	-2.00277
Н	4.49412	4.16885	-2.15262
C	5 09793	2 08919	-2 33233
ц	6 08/35	2 32480	-2 74492
п	0.00433	2.32400	-2.74402
C	4./19/8	0./5389	-2.12526
Н	5.40673	-0.05946	-2.38047
С	3.45835	0.44953	-1.59089
Н	3.16596	-0.59403	-1.44547
Rh	-0.00043	2.19065	0.89950
С	-1.34180	3.01268	1.90339
Ĉ	1 34040	3 01173	1 90/96
0	2 16044	3.01173 2.55006	1.50450
0	2.10944	3.33896	2.52362
0	-2.17127	3.56058	2.52090
С	-1.34038	-3.01093	-1.90519
С	1.34145	-3.01230	-1.90378
0	-2.16947	-3.55817	-2.52379
0	2.17058	-3.56067	-2.52134

References

- (1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R. Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01., Gaussian Inc., Wallingford CT 2016.
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. *Theor. Chim. Acta* 1990, *77* (2), 123–141. https://doi.org/10.1007/BF01114537
- Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. *Theor. Chim. Acta* 1973, *28* (3), 213–222. https://doi.org/10.1007/BF00533485.
- (4) Hehre, W. J.; Ditchfield, R.; Pople, J. A.; Wall, F. T.; Hiller, L. A.; Wheeler, D. J.; Chern Phys, J.;
 Hammersley, J. M.; Morton, K. W.; Roy Stat Soc, J.; Herre, W. J.; Ditcrfield, R. Self—Consistent
 Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular
 Orbital Studies of Organic Molecules. *J. Chem. Phys.* 1972, *56* (5), 2257–2261.
 https://doi.org/10.1063/1.1677527.
- Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior.
 Phys. Rev. A 1988, 38 (6), 3098. https://doi.org/10.1103/PhysRevA.38.3098.
- Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous
 Electron Gas. *Phys. Rev. B* 1986, *33* (12), 8822. https://doi.org/10.1103/PhysRevB.33.8822.
- Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;
 Karafiloglou, P.; Landis, C. R.; Weinhold, F., NBO 7.0. Theoretical Chemistry Institute, University of
 Wisconsin: Madison 2018.

Crystallographic Data Anti-[Rh^I(COD)]₂[μ : η^5 : η^5 Ph₄Pn] (**1**)

CCDC	2309145		
Identification code	s21uh9		
Empirical formula	$C_{48}\:H_{46}\:Rh_2$		
Formula weight	828.67		
Temperature	150.00(10) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /n		
Unit cell dimensions	a = 11.0316(2) Å	α = 90°	
	b = 20.0004(3) Å	$\beta=96.9761(19)^\circ$	
	c = 16.3232(3) Å	γ = 90°	
Volume	3574.83(11) Å ³		
Z	4		
Density (calculated)	1.540 Mg/m ³		
Absorption coefficient	0.958 mm ⁻¹		
F(000)	1696		
Crystal size	0.430 x 0.302 x 0.179 mm ³		
Theta range for data collection	3.236 to 27.485°		
Index ranges	-14<=h<=14, -25<=k<=25, -21<=l<=20		
Reflections collected	32896		
Independent reflections	8194 [R(int) = 0.0275]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1.00000 and 0.82879		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8194 / 0 / 451		
Goodness-of-fit on F ²	1.055		
Final R indices [I>2sigma(I)]	R1 = 0.0308, wR2 = 0.0768		
R indices (all data)	R1 = 0.0363, wR2 = 0.0801		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.385 and -0.392 e.Å ⁻³		

Anti-[Ir^I(COD)]₂[μ:η⁵:η⁵Ph₄Pn] (**2**)

CCDC	2309146		
Identification code	s21uh8		
Empirical formula	C ₄₈ H ₄₆ Ir ₂		
Formula weight	1007.25		
Temperature	150.00(10) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /n		
Unit cell dimensions	a = 10.4071(2) Å	α = 90°	
	b = 18.5544(5) Å	$\beta=103.209(2)^\circ$	
	c = 19.0926(4) Å	γ = 90°	
Volume	3589.19(14) Å ³		
Z	4		
Density (calculated)	1.864 Mg/m ³		
Absorption coefficient	7.442 mm ⁻¹		
F(000)	1952		
Crystal size	0.606 x 0.211 x 0.087 mm ³		
Theta range for data collection	3.328 to 27.482°		
Index ranges	-13<=h<=13, -24<=k<=22, -24<=l<=24		
Reflections collected	39304		
Independent reflections	8218 [R(int) = 0.0504]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1.00000 and 0.35394		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8218 / 0 / 451		
Goodness-of-fit on F ²	1.075		
Final R indices [I>2sigma(I)]	R1 = 0.0320, wR2 = 0.0636		
R indices (all data)	R1 = 0.0414, wR2 = 0.0676		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.484 and -2.054 e.Å ⁻³		

Anti-[Rh^I(NBD)]₂[μ : η ⁵: η ⁵Ph₄Pn] (**3**)

CCDC	2309147	
Identification code	s22uh33	
Empirical formula	$C_{54} H_{54} O_2 Rh_2$	
Formula weight	940.79	
Temperature	150.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	12/a	
Unit cell dimensions	a = 10.72484(18) Å	α = 90°
	b = 15.12621(19) Å	$\beta=96.9831(15)^\circ$
	c = 26.3385(4) Å	γ = 90°
Volume	4241.10(11) Å ³	
Z	4	
Density (calculated)	1.473 Mg/m ³	
Absorption coefficient	6.611 mm ⁻¹	
F(000)	1936	
Crystal size	0.132 x 0.099 x 0.042 mm ³	
Theta range for data collection	5.080 to 68.248°	
Index ranges	-12<=h<=10, -18<=k<=18, -31<=l<=31	
Reflections collected	47478	
Independent reflections	3876 [R(int) = 0.0478]	
Completeness to theta = 67.684°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.68951	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3876 / 72 / 307	
Goodness-of-fit on F ²	1.147	
Final R indices [I>2sigma(I)]	R1 = 0.0893, wR2 = 0.2285	
R indices (all data)	R1 = 0.0897, wR2 = 0.2288	
Extinction coefficient	n/a	
Largest diff. peak and hole	5.393 and -1.756 e.Å ⁻³	

Anti-[Rh^I(C₂H₄)₂]₂[μ : η ⁵Ph₄Pn] (4)

CCDC	2309148	
Identification code	s23uh11	
Empirical formula	$C_{48} H_{54} O_4 Rh_2$	
Formula weight	900.73	
Temperature	150.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.45331(12) Å	$\alpha=70.0281(12)^\circ$
	b = 11.67087(14) Å	$\beta=85.1666(10)^\circ$
	c = 16.3454(2) Å	$\gamma = 76.5215(10)^{\circ}$
Volume	1996.91(4) Å ³	
Z	2	
Density (calculated)	1.498 Mg/m ³	
Absorption coefficient	7.028 mm ⁻¹	
F(000)	928	
Crystal size	$0.200 \times 0.180 \times 0.120 \text{ mm}^3$	
Theta range for data collection	3.969 to 72.932°	
Index ranges	-14<=h<=13, -14<=k<=14, -20<=l<=20	
Reflections collected	44268	
Independent reflections	7923 [R(int) = 0.0221]	
Completeness to theta = 67.684°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.62331	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7923 / 0 / 487	
Goodness-of-fit on F ²	1.071	
Final R indices [I>2sigma(I)]	R1 = 0.0218, wR2 = 0.0573	
R indices (all data)	R1 = 0.0222, wR2 = 0.0575	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.550 and -0.589 e.Å ⁻³	

<i>Syn-</i> [Rh ^I (CO) ₂] ₂ [μ:η ⁵ :η ⁵ Ph ₄ Pn] (5)		
CCDC	2309149	
Identification code	s22uh4	
Empirical formula	$C_{36} H_{22} O_4 Rh_2$	
Formula weight	724.35	
Temperature	150.01(10) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 12.7037(2) Å	α = 90°
	b = 10.34448(16) Å	$\beta = 103.7600(16)^{\circ}$
	c = 22.6879(4) Å	γ = 90°
Volume	2895.92(8) Å ³	
Z	4	
Density (calculated)	1.661 Mg/m ³	
Absorption coefficient	1.179 mm ⁻¹	
F(000)	1440	
Crystal size	0.472 x 0.421 x 0.090 mm ³	
Theta range for data collection	3.302 to 27.497°	
Index ranges	-16<=h<=16, -13<=k<=13, -29<=l<=29	
Reflections collected	44989	
Independent reflections	6633 [R(int) = 0.0305]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Gaussian	
Max. and min. transmission	1.000 and 0.264	
Refinement method	Full-matrix least-squares on F ²	1
Data / restraints / parameters	6633 / 0 / 379	
Goodness-of-fit on F ²	1.111	
Final R indices [I>2sigma(I)]	R1 = 0.0231, wR2 = 0.0509	
R indices (all data)	R1 = 0.0266, wR2 = 0.0525	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.436 and -0.299 e.Å ⁻³	

Figure S63: Definition of the dihedral between L-Rh-L plane and the plane of **Ph₄Pn²⁻**. Value given in main text is the average of each L-Rh-L plane (79.08° and 76.60°)

[Rh^{II}(CO)(PMe₃)₄][Ph₄Pn] (**8**)

CCDC	2309150	
Identification code	s22uh24	
Empirical formula	$C_{102} H_{140} O_5 P_8 Rh_2$	
Formula weight	1899.71	
Temperature	150.00(10) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 12.6981(2) Å	α = 76.340(2)°
	b = 13.2480(3) Å	$\beta=69.8125(19)^\circ$
	c = 17.4462(4) Å	γ = 63.790(2)°
Volume	2459.11(10) Å ³	
Z	1	
Density (calculated)	1.283 Mg/m ³	
Absorption coefficient	0.516 mm ⁻¹	
F(000)	1002	
Crystal size	0.320 x 0.200 x 0.120 mm ³	
Theta range for data collection	3.374 to 30.550°	
Index ranges	-17<=h<=17, -18<=k<=18, -23<=l<=23	
Reflections collected	44004	
Independent reflections	13180 [R(int) = 0.0292]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.97819	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	13180 / 15 / 608	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0291, wR2 = 0.0673	
R indices (all data)	R1 = 0.0346, wR2 = 0.0699	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.850 and -0.456 e.Å ⁻³	

$[Rh^{1}(dppe)_{2}][Rh^{1}(CO)_{2}(\eta^{5}-Ph_{4}Pn)]$ (9)

CCDC	2309151	
Identification code	s22uh32	
Empirical formula	C ₁₀₂ H ₁₀₂ O ₆ P ₄ Rh ₂	
Formula weight	1753.53	
Temperature	150.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 13.9687(3) Å	$\alpha = 75.3403(16)^{\circ}$
	b = 14.9315(3) Å	$\beta=87.2098(15)^\circ$
	c = 22.8545(4) Å	$\gamma = 79.4900(15)^{\circ}$
Volume	4534.28(16) Å ³	
Z	2	
Density (calculated)	1.284 Mg/m ³	
Absorption coefficient	4.022 mm ⁻¹	
F(000)	1824	
Crystal size	0.153 x 0.128 x 0.035 mm ³	
Theta range for data collection	3.784 to 72.980°	
Index ranges	-17<=h<=16, -18<=k<=17, -28<=l<=18	
Reflections collected	47619	
Independent reflections	17878 [R(int) = 0.0430]	
Completeness to theta = 67.684°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.82514	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	17878 / 10 / 1082	
Goodness-of-fit on F ²	1.115	
Final R indices [I>2sigma(I)]	R1 = 0.0555, wR2 = 0.1492	
R indices (all data)	R1 = 0.0636, wR2 = 0.1549	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.496 and -1.079 e.Å ⁻³	

$[Mg_2(\mu-CI)_3][Rh^1(CO)_2(\eta^5-Ph_4Pn)]$

CCDC	2309152	
Identification code	s22uh22	
Empirical formula	C ₅₈ H ₇₀ Cl ₃ Mg ₂ O ₈ Rh	
Formula weight	1153.02	
Temperature	150.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 18.23888(15) Å	α = 90°
	b = 14.65593(8) Å	$\beta=103.8749(9)^\circ$
	c = 21.64988(19) Å	γ = 90°
Volume	5618.32(8) Å ³	
Z	4	
Density (calculated)	1.363 Mg/m ³	
Absorption coefficient	4.409 mm ⁻¹	
F(000)	2408	
Crystal size	0.241 x 0.055 x 0.030 mm ³	
Theta range for data collection	3.677 to 72.955°	
Index ranges	-22<=h<=22, -18<=k<=11, -26<=l<=26	
Reflections collected	65504	
Independent reflections	11168 [R(int) = 0.0473]	
Completeness to theta = 67.684°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.76675	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11168 / 36 / 677	
Goodness-of-fit on F ²	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0316, wR2 = 0.0756	
R indices (all data)	R1 = 0.0376, wR2 = 0.0787	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.555 and -0.536 e.Å ⁻³	

[Rh^I(CO)(P{OPh}₃)]₂[μ:η⁵:η⁵Ph₄Pn] (**11**)

CCDC	2309153	
Identification code	s23uh3	
Empirical formula	C ₁₅₂ H ₁₂₈ O ₁₉ P ₄ Rh ₄	
Formula weight	2794.06	
Temperature	150.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 14.00549(11) Å	α = 90°
	b = 19.39104(14) Å	$\beta=106.3340(8)^\circ$
	c = 23.86254(18) Å	γ = 90°
Volume	6219.04(8) Å ³	
Z	2	
Density (calculated)	1.492 Mg/m ³	
Absorption coefficient	5.282 mm ⁻¹	
F(000)	2864	
Crystal size	0.150 x 0.080 x 0.030 mm ³	
Theta range for data collection	3.861 to 73.007°	
Index ranges	-17<=h<=16, -23<=k<=23, -29<=l<=27	
Reflections collected	61512	
Independent reflections	12365 [R(int) = 0.0571]	
Completeness to theta = 67.684°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.87710	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12365 / 216 / 961	
Goodness-of-fit on F ²	1.052	
Final R indices [I>2sigma(I)]	R1 = 0.0316, wR2 = 0.0746	
R indices (all data)	R1 = 0.0360, wR2 = 0.0773	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.528 and -0.499 e.Å ⁻³	

[Rh^I(CO)(P{OMe}₃)]₂[µ:η⁵:η⁵Ph₄Pn] (**12**)

CCDC	2309154	
Identification code	s23uh12	
Empirical formula	$C_{40} H_{40} O_8 P_2 Rh_2$	
Formula weight	916.48	
Temperature	150.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 9.87390(5) Å	α = 90°
	b = 21.78333(8) Å	$\beta = 102.6820(5)^{\circ}$
	c = 17.76504(7) Å	γ = 90°
Volume	3727.80(3) Å ³	
Z	4	
Density (calculated)	1.633 Mg/m ³	
Absorption coefficient	8.414 mm ⁻¹	
F(000)	1856	
Crystal size	0.296 x 0.113 x 0.084 mm ³	
Theta range for data collection	4.059 to 72.910°	
Index ranges	-10<=h<=12, -26<=k<=27, -22<=l<=21	
Reflections collected	77133	
Independent reflections	7423 [R(int) = 0.0237]	
Completeness to theta = 67.684°	100.0 %	
Absorption correction	Gaussian	
Max. and min. transmission	1.000 and 0.554	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7423 / 0 / 475	
Goodness-of-fit on F ²	1.127	
Final R indices [I>2sigma(I)]	R1 = 0.0201, wR2 = 0.0492	
R indices (all data)	R1 = 0.0202, wR2 = 0.0493	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.435 and -0.365 e.Å ⁻³	