Supplement of Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer

Ruby Marten¹, Mao Xiao¹, Mingyi Wang², Weimeng Kong², Xu-Cheng He^{3,4}, Dominik Stolzenburg^{3,5}, Joschka Pfeifer^{6,7}, Guillaume Marie⁷, Dongyu S. Wang¹, Andrea Baccarini^{1,8}, Chuan Ping Lee¹, Antonio Amorim⁹, Rima Baalbaki³, David M. Bell¹, Barbara Bertozzi¹⁰, Lucía Caudillo⁷, Lubna Dada¹, Jonathan Duplissy^{3,11}, Henning Finkenzeller¹², Martin Heinritzi⁷, Markus Lampimäki³, Katrianne Lehtipalo^{3,4}, Hanna E. Manninen⁶, Bernhard Mentler¹³, Antti Onnela⁶, Tuukka Petäjä³, Maxim Philippov¹⁴, Birte Rörup³, Wiebke Scholz¹³, Jiali Shen³, Yee Jun Tham³, António Tomé¹⁵, Andrea C. Wagner^{7,12,16}, Stefan K. Weber^{6,7}, Marcel Zauner-Wieczorek⁷, Joachim Curtius⁷, Markku Kulmala³, Rainer Volkamer¹², Douglas R. Worsnop^{3,17}, Josef Dommen¹, Richard C. Flagan², Jasper Kirkby^{6,7}, Neil McPherson Donahue¹⁸, Houssni Lamkaddam^{1,@}, Urs Baltensperger¹, Imad El Haddad^{1,@}

²California Institute of Technology, Division of Chemistry and Chemical Engineering 210-41, Pasadena, CA 91125, USA. ³Institute for Atmospheric and Earth System Research (INAR)/ Helsinki Institute of Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland.

⁴Finnish Meteorological Institute, FI-00560 Helsinki, Finland

⁵Institute for Materials Chemistry, TU Wien, 1060 Vienna, Austria

⁶CERN, CH-1211 Geneva, Switzerland.

⁷Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. ⁸Atmospheric Processes and their Impact, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, CH.

⁹CENTRA and FCUL, University of Lisbon, 1749-016 Lisbon, Portugal.

¹⁰Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.

¹¹Helsinki Institute of Physics (HIP)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland

¹²Department of Chemistry & CIRES, University of Colorado Boulder, 215 UCB, Boulder, 80309, CO, USA.

¹³Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria

¹⁴Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Leninsky prospekt, 53, Russian Federation.

¹⁵IDL-Universidade da Beira Interior, 6201-001 Covilhã, Portugal.

¹⁶Aerosol Physics Laboratory, Physics Unit, Tampere University, FI-33014 Tampere, Finland

¹⁷Aerodyne Research, 01821 Billerica, MA, USA

¹⁸Center for Atmospheric Particle Studies, Carnegie Mellon University, 1521 Pittsburgh, PA, USA.

[@]Corresponding authors e-mails: <u>houssni.lamkaddam@psi.ch</u>, <u>imad.el-haddad@psi.ch</u>

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.

Summary

This supplementary information (SI) section presents supplementary figures exploring growth by N_2O_5 , sensitivity tests of the kinetic model, particle composition outputs from the model, and model results with the resolution of a long scanning mobility particle sizer (ISMPS).

Figure S1 : Growth rates using input of HNO₃ **as the limiting gas.** All of the -10°C runs were limited by HNO₃, these modelled growth rates are calculated using only the measured HNO_3 concentration, whereas for the model results presented in Fig. 1 the concentration of N_2O_5 was added to the HNO_3 concentration for the model constraints. Including the N_2O_5 concentrations in the model brought the model and measured growth rates closer together, and also shifted the points right on the x-axis since the gas concentration was increased.

Run	Limiting gas / pptv	GR / nm hr ⁻¹	N ₂ O ₅ / pptv	N₂O₅ / pptv assuming no wall loss
1	228	1814.3	150	1300
2	64	495.6	24	196
3	41	113.41	17	150
4	59	611.97	9	370
5	24	25.65	2e-2	0.1
6	24	34.6	2e-2	0.1

Table S1: Data from figure S1. N_2O_5 was modelled assuming that it has the same wall and condensation sink losses as HNO_3 and H_2SO_4 .

7	23	26.6	1e-2	2e-2
8	30	40.01	2e-2	6e-2
9	16	29.39	3e-3	2e-2
10	16	40.54	1e-2	0.1

$$Flux_A = v_{dep} \div h_{BL}$$
(S1)
$$p_A = [A_i] \times Flux_A$$
(S2)

We calculated suitable production values of HNO₃, NH₃, and H₂SO₄ based on the required steady-state concentration in the absence of condensation. The vertical dry deposition fluxes of gas A, *Flux*_A, were calculated using equation S1 with literature deposition velocities, v_{dep} , for HNO₃, NH₃, and H₂SO₄, shown in Table S2. The height of the boundary layer, h_{BL} , used was 1km. The production values of HNO₃ and NH₃ were calculated using equation S2 from the deposition flux, and initial concentration of A, [A_i], considering the deposition flux as the highest loss rate for both gases. The production rate of H₂SO₄ was calculated considering new particle formation as the highest loss rate of gaseous H₂SO₄. The initial concentrations and production rates for the experiments in sections "Effect of inhomogeneity of NH₃ concentrations in cities" and "Effect of temperature change during vertical transport" are shown in Table S2.

Gas	Simulation	T/°C	Deposition Velocity v_{dep}	Boundary layer height	Initial concentration	Production rate / molecules cm ⁻³ s ⁻¹
HNO ₃	Temperature change	15	4 ¹	100,000	1 ppbv	1.1×10 ⁶
NH ₃	Temperature change	15	2 ²	100,000	3 ррbv	1.6×10 ⁶
H ₂ SO ₄	Temperature change	15	1.5 ¹	100,000	1×10 ⁷ molecules cm ⁻³	1.6×10 ⁵
HNO ₃	NH ₃ inhomogeneities	5	41	100,000	0.2 ppbv	3.3×10⁵
NH ₃	NH₃ inhomogeneities	5	2 ²	100,000	1 ppbv	6.5×10⁵
H ₂ SO ₄	NH ₃ inhomogeneities	5	1.5 ¹	100,000	1×10 ⁷ molecules cm ⁻³	2.2×10 ⁵

Table S2	Calculation	of diffusion	losses
----------	-------------	--------------	--------

Figure S2: Temperature change sensitivity tests. All model Initial conditions are 3 ppbv NH₃, 1 ppbv HNO₃ and 1×10^7 molecules cm⁻³ H₂SO₄. **a)** Repeat of model presented in Fig. 2c) with a change in temperature of 15°C from 15°C to 0°C. Displayed here for comparison. **b)** Repeat of a) but with a temperature change of 10°C from 15°C to 5°C. **c)** Repeat of a) with a temperature change of 5°C from 15°C to 10°C. It is clear that a larger temperature change results in a bigger change to the nucleation mode.

Figure S3: Rate of temperature change sensitivity tests. All model initial conditions are 3 ppbv NH_3 , 1 ppbv HNO_3 and 1×10^7 molecules cm⁻³ H_2SO_4 . **a)** Model results with a temperature change of 10°C from 15°C to 5°C over 5 minutes. **b)** Repeat of Figure S2b) Model results with a temperature change of 10°C from 15°C to 5°C over 10 minutes. Displayed here for comparison. **c)** Model results with a temperature change of 10°C from 15°C to 5°C over 20 minutes. This shows that the temperature change must be fast to affect the growing particles.

Figure S4: Nucleation rate sensitivity tests. a) Model results with a temperature change of 15° C from 15° C to 0° C with kinetic nucleation rates. b) Repeat of model presented in Fig. 2c) with a change in temperature of 15° C from 15° C to 0° C. Displayed here for comparison. c) Repeat of b) but with fifty times lower nucleation rates. Since the nucleation rate affects the pre-existing particle distribution at the time of activation, a lower nucleation rate can result in activation of fewer particles.

Figure S5: Initial temperature sensitivity tests. a) Model results with a temperature change of 10° C from 20° C to 10° C with kinetic nucleation rates. b) Model results with a temperature change of 10° C from 15° C to 5° C with kinetic nucleation rates. c) Model results with a temperature change of 10° C from 10° C to 0° C with kinetic nucleation rates.

Figure S6 shows the relationship of the dissociation constant, K_p , with temperature. It can be seen that in steady-state conditions, where the product of concentrations of gas phase NH₃ and HNO₃ are equal to the saturation temperature, a change in 10°C from 20°C to 10°C results in more available gas to condense than for 10°C to 0°C. K_p can be calculated by integrating the van't Hoff equation ³. Equation S.1 shows the equation for K_p in units of ppb² (assuming 1 atm of total pressure) ⁴.

$$lnK_p = 118.87 - \frac{24,084}{T} - 6.025 \ lnT \tag{S.1}$$

Figure S6: Dissociation constant of NH_4NO_3 (K_p/ppb^2) vs temperature ($T/^{\circ}C$).

Figure S7: Number fraction of NH_4NO_3 from Fig. 2 and Fig. 3 as a function of time. Number fraction is defined as the number concentration ratio (molecules cm⁻³ / total molecules cm⁻³). The simulated condensation sink starts with 10% NH_4NO_3 and the inputs of NH_3 and HNO_3 are saturated at 200 nm (i.e. 200 nm is the activation diameter). **a**) Model results from Fig. 2c) (temperature change due to vertical transport). **b**) Model results from Fig. 3c) (inhomogeneities due to spikes of NH_3). The white colour represents absence of particles.

Figure S8: Low-resolution replication of Fig. 3b). The size distribution from the model output presented in Fig. 3b) was interpolated to the size bins of the long SMPS (89 logarithmically spaced size bins 20-480 nm) and 5-minute time resolution. This illustrates that inhomogeneities may not be as noticeable in ambient measurements.

References

- 1 J. Seinfeld H. and S. Pandis N., *Atmospheric Chemistry and Physics*, John Wiley & Sons, 2006, vol. 2nd edn.
- 2 R. San Jose, F. J. Moreno and M. A. San Feliu, eds. P. Fabian, V. Klein, M. Tacke, K. Weber and C. Werner, Munich, Germany, 1995, pp. 274–285.
- 3 K. G. Denbigh, *The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Eengineering*, Cambridge University Press, 1981.
- 4 M. Mozurkewich, Atmospheric Environment. Part A. General Topics, 1993, 27, 261–270.