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S1. Data Collection 
For this work, a previously published prediction model data from a network of 47 RAMPs 

deployed in Allegheny County (Pennsylvania, USA)4 was used to estimate concentration at every 

50 x 50 m grid in the City of Pittsburgh. The locations of RAMPs and EPA monitors are shown in 

Figure S1. RAMPs contain either a Met-One Neighborhood Monitor (Met-One) or a PurpleAir 

PA-II (PPA). In this network, the default sensor was the Met-One (40/47 sites); PurpleAir monitors 

were only used in cases where a Met-One monitor was offline or otherwise unavailable. 

 
Figure S1 (from Jain et. al., 20214, duplicated with permission): Location of RAMPs (orange hexagons) 
and EPA monitors (purple diamonds) across Allegheny County.  
 

On average, across 47 sites, 180 days of data was used; the period of observation (filtered and 

calibrated data) across each PM2.5 sensor is displayed in Figure S2 (green boxes). Calibrated 15-

minute data can be found at https://doi.org/10.5281/zenodo.8264657.   
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Figure S2: Filtered and calibrated data used for this work (green boxes) across each site over the duration of study 
period (January-December 2017). The number of days of data range from 95 (site 12) to 328 (site 18), with an 
average of 180 days of data.  
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S2. QA/QC for RAMP data 
a) Data Cleaning 

RAMP data underwent both automated and manual cleaning. The automated cleaning involved 

two major bounds: (1) Limits for PM2.5 collected was set as 0-1000 μg/m3, and readings with 

concentrations outside the limits were removed and (2) a change faster than 50 μg/m3 per minute 

was filtered as it was deemed unphysical. The manual cleaning of RAMP data included a review 

of RAMP data and post-deployment checks of the instruments, and removing or re-scaling the 

data-point (e.g., flat-lining). 

b) Calibration 

The calibration of data used in this work was performed using methodologies developed by 

Malings et al. (2020)1. A subset of methodology is paraphrased below. All methodologies, results, 

figures and tables in this section are the intellectual property of Carl Malings and have been 

paraphrased or reproduced here with his permission. 

RAMPs contain either a Met-One Neighborhood Monitor (Met-One) or a PurpleAir PA-II (PPA) 

that were calibrated against Beta Attenuation Monitors (BAM, a Federal Equivalent Method) at 

Allegheny County Health Department (ACHD) or Pennsylvania Department of Environmental 

Protection (DEP). Met-One sensors were calibrated using the seasonally-varying hygroscopic 

growth correction formula (linear correction) and PPA sensors were calibrated using the empirical 

approach (Malings et. al., 20201). 

Met-One Sensor calibration:  
The following equation was adopted to calibrate Met-One sensors to the reference grade 

instrument.  

[corrected PM2.5] =  θ1
[PM2.5 as reported]

fRH(T, RH)
+  θ0 

Here, corrected PM2.5 is the reference concentration, and PM2.5 as reported is the RAMP 

concentration. Values of coefficients (θ0 and θ1) are reported in Table 1. 
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Table S1: Coefficients calculated using typical linear regression techniques for Met-One sensors, 
reproduced from Malings et. al., 20201. 

 θ0 θ1 
 Coefficient S.D. Coefficient S.D. 
Summer 5.28 0.09 1.5 0.01 
Winter 2.03 0.08 1.5 0.01 
Other 1.68 0.13 1.76 0.02 

 
PPA sensor calibration:  

[corrected PM2.5] = �β0 + β1(PM2.5) + β2T + β3RH + β4DP(T, RH) if [PM2.5] > 20 μg/m3 
γ0 + γ1(PM2.5) + γ2T + γ3RH + γ4DP(T, RH) if [PM2.5] ≤ 20 μg/m3 

 

Here, corrected PM2.5 is the reference concentration, and PM2.5 is the RAMP concentration. 

Coefficients (β and γ) can be found in Table S4 of Malings et al. (2020)1. 
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S3. Limit of Detection (LOD) 

For this work, LOD is the smallest concentration that can be reliably measured by the low-cost 

sensors and was identified as 5-μg/m3. We opted against removing the datapoint below LOD as 

the data would then be skewed high. Similarly, replacing the datapoints below LOD with 0 would 

result in data skewed low. Therefore, we opted for replacing the data measured below LOD with 

3.53-μg/m3 (LOD/√2), as recommended by Hornung and Reed (1990)2 and Tekindal (2015)3. 

Figure S1 shows a boxplot for the percent of data at each of the 47 sites replaced due to being 

below LOD.  

 
Figure S3: Boxplot for percent of data at each site (n = 47 sites) that were below Limit of Detection (LOD; 
5-μg/m3) and replaced with LOD/√2 (=3.53-μg/m3). 
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S4. Selection of prediction models and variables 

In our previous study (Jain et al., 20214), we compared regression, random forests, and hybrid 

regression-random forest models for both standard and time-decomposed signals. In time-

decomposed analysis, we created separate land use regression / random forest models for persistent 

enhancements (> 8 h duration), longer-lived events (2-8 h duration) and short-lived events (<2 h 

duration) and layered these on top of the regional background to predict overall PM2.5 

concentrations.  

For modeling of PM2.5, random forest models outperformed regression models (R2 increases of 

0.17-0.19; normalized mean absolute error decreased by 4-7%). Hybrid regression-random forest 

models were created to address the incapability of random forests to extrapolate. However, we 

found that hybrid models didn’t improve the overall model performance or robustness of random 

forest models. Therefore, random forest models were chosen for predicting concentrations at every 

grid cell. 

For random forest models, the standard signal model had comparable performance to decomposed 

signals. However, decomposing the signal improved the relative importance of static (spatial) 

variables in the model for short-lived events. This implies that local spikes in concentrations can 

be predicted using land use characteristics in the nearby locations. Since we are primarily looking 

into spatial effects for this work, we opted for the decomposed signal model. For a detailed 

discussion of the relative model performance of land use regression vs. land use random forest, as 

well as the impact of time decomposition, see Jain et al., 20214. 

Table S2: Top 5 most important variables for modeling of random forest decomposed signal. Value in the 
brackets signify buffer distance. 

Signal Spatial variables Temporal variables 

Persistent 

enhancement 

Population density (100m), road length (100m), 

housing density (100m), rail length (100m) 

EPA’s daily PM2.5 

measurements 

Long-lived events Elevation, vehicle density (50m), bus fuel consumption 

(50m), inverse distance to the road 

EPA’s daily CO 

measurements 

Short-lived events Elevation, road length (50m), vehicle density (100m), 

bus fuel consumption (100m) 

Wind 
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S5: Modeling 

The methodology adopted for building regression models was performed by Jain et al. (2021)4 and 

paraphrased below in steps.  

1) Concentrations below LOD (5-μg/m3) were replaced with LOD/√2. 

2) Wavelet decomposition was performed on calibrated 15-minute calibrated data and resulted in 

three signal components – short-lived events (<2 hours), long-lived events (2-8 hours) and 

persistent enhancements (> 8 hours). Regional background concentrations were dynamically 

calculated as the lowest persistent enhancement across 47 locations at any given time.  

3) The four signals were each averaged into daily average concentrations. 

4) LURF predictions were built for each component of the signal (short-lived, long-lived and 

persistent enhancements) using various spatial and temporal variables and tested for validation 

using the leave-one location-out cross-validation (LOLOCV). The spatial and temporal 

candidate variables can be found in Table S3 of Jain et al. (2021)4 and the top five most 

important variables can be found in Table S2.  

a. For LURF model building on training dataset, 10-fold cross-validation was used, with 

termination at 1000 trees and minimum terminal node size of 1. 

b. Initial model was created using all the spatial and temporal variables, and variable 

importance factor (VIF) for each predictor variable was reported. 

c. Multiple models were built, each one by removing the least important variable from 

the model and the new R2 was reported. For each iteration, VIF from the original model 

was used. 

5) The decomposed signal predictions were calculated by adding the predictions: LURFshort-lived 

+ LURFlong-lived + LURFpersistent + regional background.  
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S6. Land Use Types by Allegheny County GIS Group5 
 
1. Water 

2. Transportation 

3. Forest 

4. Grasslands 

5. Agriculture 

6. Low-density residential 

7. Medium-density residential 

8. High-density residential 

9. Identified malls 

10. Commercial 

11. Light industrial 

12. Heavy industrial 

13. Strip mine 

14. Non-vegetative  
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S7. Spatial distribution at 100m buffers for residential and commercial areas 

 
Figure S4: Spatial distribution of (a) Residential and (b) Commercial areas at 100m buffers in Pittsburgh 
city, obtained via Allegheny County GIS Group5. Grid cells with no value (colorless) imply residential or 
commercial density is zero for that grid.  
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S8. Average day-wise concentrations in 2017 

This work segregates the daily concentrations into weekday (Monday through Friday) and 

weekend (Saturday and Sunday) concentrations. Figure S3 shows a boxplot for EPA’s daily PM2.5 

concentrations across different days of the week for 2017. Amongst weekdays, Mondays through 

Thursdays have similar medians (~8 µg/m3). Median Friday concentrations are higher (~9 µg/m3) 

and can be attributed to higher rate of various evening activities by individuals or citywide events 

(e.g., dining out, game nights, festivals). Nonetheless, we opted to group weekday concentrations 

because we expect similar behavioural movement (e.g., amount of time spent) between residential 

and commercial areas during the weekdays. Analogously, even though Saturday and Sunday 

concentrations are also dissimilar, we have grouped them together into weekends.  

 

Figure S5: Boxplot for mean day-wise concentrations in 2017 for data collected at EPA’s Lawrenceville 
site in Pittsburgh city.  
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S9. Uncertainties in measurement and models 

We identified two uncertainties associated with this work – uncertainties in measurements taken 

by RAMPs and uncertainties in prediction modeling.  

• Uncertainties in measurements: In Pittsburgh city, we collocated a RAMP at EPA’s 

Lawrenceville site. We compared calibrated daily PM2.5 measurements from RAMP with 

EPA’s data and found normalized mean error to be 18%. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀) =  
∑ (𝐸𝐸𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖)/𝑛𝑛𝑛𝑛
𝑖𝑖=1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 

• Uncertainties in modeling: Random Forest models are created as an ensemble of decision trees. 

However, these decision trees use the mean value estimate predicted values. To ascertain that 

we account for uncertainties associated at this stage of modeling, in addition to mean values, 

we noted 2.5th and 97.5th percentile predicted values. Using these, we found normalized mean 

error to be about 28% and 72% respectively for 2.5th and 97.5th percentile predicted values. 

We assume that uncertainties in modeling had a higher overall effect due to higher normalized 

mean error. Therefore, we opted to evaluate model uncertainties, and used the predicted values 

across 5th and 95th percentile random forest models and compared the concentrations in residential 

and commercial areas (Figure S6). 

 
Figure S6: Boxplots for daily predicted PM2.5 for residential (plots with solid colors) and commercial (plots 
with diagonal lines) land-use type separately. Blue and orange boxplots refer to annual average predicted 
PM2.5 concentrations when random forest models noted 5th and 95th percentile concentrations, instead of 
mean concentrations (pink boxplots). 
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Average and median concentrations in commercial areas were higher than concentrations at 

residential areas across the 5th percentile, mean and 95th percentile of the random forest models 

(Figure S6). For the mean (pink boxes; Figure S6), both median and average concentration at 

commercial areas were 6% higher than at residential areas. For the 5th percentiles of the random 

forest models (blue boxes, Figure S6) both average and median concentration at commercial areas 

were 1% higher than residential areas. Similarly, for the 95th percentiles of the random forest 

models (orange boxes, Figure S6), average and median concentration at commercial grids were 

22% and 18% higher. Although the absolute value between models (5th, mean and 95th percentile; 

Figure S6) are different, the average concentration in commercial areas is always higher when 

compared to residential areas. As such, addressing these uncertainties strengthens our argument 

that average PM2.5 concentrations that the population experiences may be underreported when only 

residential address is considered. 

 

Section S10: Static and Dynamic Models 

 

Figure S7: Boxplots for static and dynamic models when α = 12 and β = 18 hours in Equations 4 and 5 of 
the main manuscript. 
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