

1 Supporting information for

2 **Co-photolysis of Mixed Chromophores Affects Atmospheric Lifetimes of Brown Carbon**

3

4

5

6 Yalin Wang^a, Tian Qiu^a, Cong Zhang^a, Tianwei Hao^a, Brix Raphael Go^b, Ruifeng Zhang^b, Masao
7 Gen^c, Man Nin Chan^d, Dan Dan Huang^c, Xinlei Ge^f, Junfeng Wang^f, Lin Du^g, Ru-Jin Huang^h, Qi
8 Chenⁱ, Ka In Hoi^a, Kai Meng Mok^a, Chak K. Chan^{b,j}, Yong Jie Li^{a,*}

9

10 ^aDepartment of Civil and Environmental Engineering, Department of Ocean Science and
11 Technology, and Centre for Regional Oceans, Faculty of Science and Technology, University of
12 Macau, Macau 999078, China

13 ^bSchool of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China

14 ^cInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1,
15 Katahira, Sendai, Miyagi 980-8577, Japan

16 ^dEarth System Science Programme, Faculty of Science, and the Institute of Environment, Energy,
17 and Sustainability, The Chinese University of Hong Kong, Hong Kong 999077, China

18 ^eShanghai Academy of Environmental Sciences, Shanghai 200233, China

19 ^fJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
20 (AEMPC), School of Environmental Science and Engineering, Nanjing University of
21 Information Science & Technology, Nanjing 210044, China

22 ^gEnvironment Research Institute, Shandong University, Shanda South Road 27, Shandong
23 250100, China

24 ^hState Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment,
25 Chinese Academy of Sciences, Xi'an 710061, China

26 ⁱState Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and
27 IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871,
28 China

29 ^jPhysical Sciences and Engineering Division, King Abdullah University of Science and
30 Technology, Kingdom of Saudi Arabi

31

32

*Correspondence should be addressed to:

33

Yong Jie Li: yongjieli@um.edu.mo

34

35

36

37

38

Summary: 14 pages, 7 figures, 4 tables, 1 scheme

39 **Section S1. Determining the fraction of light absorption**

40 For co-photolysis of two BrC chromophores, the effective quantum yields were calculated
41 via:

$$42 \quad \Phi_{e,1} = \frac{k_1 c_1}{\sum I_0(\lambda) \times (1 - 10^{-[\varepsilon_1(\lambda)c_1 + \varepsilon_2(\lambda)c_2] \times l}) \times f_1(\lambda) \times \Delta\lambda}, \quad f_1(\lambda) = \frac{\varepsilon_1(\lambda)c_1}{\varepsilon_1(\lambda)c_1 + \varepsilon_2(\lambda)c_2} \quad (\text{S1})$$

$$43 \quad \Phi_{e,2} = \frac{k_2 c_2}{\sum I_0(\lambda) \times (1 - 10^{-[\varepsilon_1(\lambda)c_1 + \varepsilon_2(\lambda)c_2] \times l}) \times f_2(\lambda) \times \Delta\lambda}, \quad f_2(\lambda) = \frac{\varepsilon_2(\lambda)c_2}{\varepsilon_1(\lambda)c_1 + \varepsilon_2(\lambda)c_2} \quad (\text{S2})$$

44 where k is photolysis rate constants (s^{-1}); ε_1 and ε_2 are molar absorption coefficients ($\text{M}^{-1} \text{cm}^{-1}$) of
45 BrC 1 and 2, respectively; l is the optical path (cm); $I(\lambda)$ is light intensity (Einstein $\text{L}^{-1} \text{s}^{-1} \text{nm}^{-1}$);
46 and c_1 and c_2 (M) are concentrations of BrC 1 and 2, respectively.

47 **Section S2. Correction factor for quantum yield**

48 The photolysis rate of 2-nitrobenzaldehyde (2NB), a chemical actinometer ¹, was measured in
49 photolysis experiments under the same conditions with BrC (co-) photolysis in this study. The

50 photolysis rate constant, $k_{2\text{NB}}$, was calculated by fitting the $\ln\left(\frac{[2\text{NB}_t]}{[2\text{NB}_0]}\right)$ vs. illumination time (t) as
51 the following equation:

$$52 \quad \ln\left(\frac{[2\text{NB}_t]}{[2\text{NB}_0]}\right) = -k_{2\text{NB}}t \quad (\text{S3})$$

53 where $[2\text{NB}_t]$ and $[2\text{NB}_0]$ are the concentrations of 2NB measured at time t and 0 min,
54 respectively.

55 The quantum yield of 2NB photolysis in our experiments was calculated by the following
56 equation ²:

$$57 \quad \Phi_{2\text{NB}} = \frac{k_{2\text{NB}} c}{\sum I(\lambda) (1 - 10^{-\varepsilon(\lambda) \times c \times l}) \Delta\lambda} \quad (\text{S4})$$

58 where c is the concentration (M) of 2NB (0.02 mM); $I(\lambda)$ is volume-normalized light intensity
59 (Einstein $\text{L}^{-1} \text{s}^{-1} \text{nm}^{-1}$) of the lamp; $\varepsilon(\lambda)$ is the molar absorption coefficient ($\text{M}^{-1} \text{cm}^{-1}$); and l is the
60 optical path (2.2 cm in this study).

61 The correction factor for the quantum yield of BrC photolysis is calculated as:

62

$$f_{2NB,corr} = \frac{\Phi}{\Phi_{2NB}} = \frac{0.41}{\phi_{2NB}} \quad (\text{S5})$$

63 where Φ is the intrinsic quantum yield of 2NB (0.41) reported in a previous study.¹

64 **Section S3. Estimation of atmospheric lifetime for particles containing BrC**

65 Generally, the atmospheric lifetimes (τ , s) (Eq. S6) for the BrC chromophores are obtained by
 66 taking the reciprocal of photolysis rate constants (j , s⁻¹), which are calculated by Eq. S7 (Eq.3 in
 67 the main text, Method 1)³.

68

$$\tau = \frac{1}{j} \quad (\text{S6})$$

69

$$j_1 = 3.82 \times 10^{-21} \phi \sum F(\lambda) \varepsilon(\lambda) \Delta \lambda \quad (\text{S7})$$

70 where Φ is the intrinsic quantum yield (dimensionless); $F(\lambda)$ is wavelength-dependent solar flux
 71 (photon cm⁻² s⁻¹ nm⁻¹), shown in Figure S2 (yellow line)³; and $\varepsilon(\lambda)$ is the wavelength-dependent
 72 molar absorption coefficient (M⁻¹ cm⁻¹).

73 However, for the concentrated particles containing BrC chromophores, there might be light
 74 depletion, especially for the larger particles which have longer light paths. Therefore, another
 75 equation, as below (Eq.4 in the main text, Method 2),² can be used to take concentration and droplet
 76 size into account.

77

$$j_2 = \frac{\sum \Phi_e I(\lambda) (1 - 10^{-\varepsilon(\lambda) \times c \times l}) \Delta \lambda}{c} \quad (\text{S8})$$

78 where $I(\lambda)$ is the volume-normalized solar intensity (Einstein L⁻¹ s⁻¹ nm⁻¹), which is converted from
 79 solar flux $F(\lambda)$ with particle size considered; c is the concentration (M); and Φ_e is the effective
 80 quantum yield, equivalent to the Φ in Eq. S7 if determined from dilute solutions.

81 Using the data obtained in the 0.05 mM and 500 mM of VL in IPA solutions, we estimated
 82 the atmospheric lifetimes of VL with particle radius from 100 nm to 10 μm , as shown in Figure
 83 S7, and the details of processing are shown as follows.

84 **S3.1 VL at 0.05 mM (dilute)**

85 We calculated the average light-absorbing fractions (f_{abs}) of the sunlight for particles with
 86 0.05-mM VL and a radius of 100 nm, 1000 nm or 10 μm by Eq. S9 (Eq.2 in the main text) below.

87

$$f_{abs} = \frac{\sum_{300}^{380} (1 - 10^{-\varepsilon(\lambda) \times c \times l})}{380 - 300} \quad (\text{S9})$$

88 where $\varepsilon(\lambda)$ is the wavelength-dependent molar absorption coefficient ($M^{-1} \text{ cm}^{-1}$) for VL within
89 300–380 nm, as shown in Figure S2 (blue line); c is the concentration (M) of VL; and l is the
90 optical path (cm), being 10^{-5} , 10^{-4} , 10^{-3} cm, respectively, for the three particle sizes simulated.

91 The f_{abs} values for 0.05-mM VL particles of 100 nm, 1000 nm and 10 μm (radius, same
92 hereinafter unless stated otherwise) are much lower than 0.01, which indicates that there is little
93 shadowing effect for the 0.05-mM scenario for particles containing VL. Therefore, the Φ_e values
94 for these particles are very close to the that obtained in dilute bulk solution (0.05 mM), with a
95 value of 0.002 ± 0.0004 . Since there is no difference between Method 1 (j_1) and Method 2 (j_2) at
96 low concentrations (< 5 mM) (Figure S5A), we used the simplified equation Eq. S7 (Method 1) to
97 calculate the j values. The j values for particles of 100 nm, 1000 nm and 10 μm were similar, at
98 about $(1.28 \pm 0.29) \times 10^{-4} \text{ s}^{-1}$. The inferred atmospheric lifetime for these cases is 2.17 ± 0.49 h,
99 independent of particle size.

100 **S3.2 VL at 500 mM (concentrated)**

101 For particles containing VL of 500 mM, the f_{abs} value for 100-nm particles is 0.04 as calculated
102 by Eq. S9 and thus there is little shadowing effect, similar to the “dilute” scenario in Section S3.1
103 above. Therefore, the Φ_e value is close to that derived from experiments in dilute bulk solutions
104 (0.05 mM), being 0.002 ± 0.0004 . Using Eq. S7 (Method 1), the j value for 500-mM VL in 100-
105 nm particles (radius) was calculated to be $(1.24 \pm 0.25) \times 10^{-4} \text{ s}^{-1}$, and the inferred atmospheric
106 lifetime was estimated to be 2.24 ± 0.44 h, similar to that in the 0.05-mM scenario.

107 For 1000-nm particles, however, the f_{abs} value was calculated to be 0.28 using Eq. S9.
108 Therefore, there is only partial shadowing (light absorbed partly but not depleted) and the Φ_e value
109 is still similar to that in dilute bulk solution (0.002 ± 0.0004). Considering the longer light path for
110 1000-nm particles, the j value was calculated by Eq. S8 (Method 2), where the volume-normalized
111 solar intensity ($I(\lambda)$, Einstein $\text{L}^{-1} \text{ s}^{-1} \text{ nm}^{-1}$) is converted from solar flux ($F(\lambda)$, photon $\text{cm}^{-2} \text{ s}^{-1} \text{ nm}^{-1}$)
112 with particle size considered. The j value for 1000-nm particles with 500-mM VL was calculated
113 to be $(9.72 \pm 1.94) \times 10^{-5} \text{ s}^{-1}$. The atmospheric lifetime was thus estimated to be 2.86 ± 0.57 h, 32%
114 longer than that for the scenario with 0.05 mM VL and 1000-nm particles, which is mainly caused
115 by the shadowing effect due to a lower volume-normalized photon flux.

116 For 10- μm VL particles, the f_{abs} value is 0.65 as calculated by Eq. S9. The shadowing effect
117 is significant as the light is almost depleted, and thus the Φ_e value should be similar to that derived
118 from experiments using 500-mM bulk solutions (1.48 ± 0.6). The j value for 10- μm particles with

119 500-mM VL was calculated by Eq. S8 (Method 2) to be $(2.66 \pm 1.08) \times 10^{-2} \text{ s}^{-1}$. The atmospheric
120 lifetime was estimated to be $0.01 \pm 0.004 \text{ h}$, two orders of magnitude less than that for 10- μm
121 particles with 0.05 mM VL, which is mainly caused by the significant sensitizing effect under the
122 light depletion condition. Note that although the sensitizing effect might play a major role in the
123 accelerated degradation of VL, shadowing might also contribute indirectly because a high f_{abs} value
124 will leaves a great portion of VL molecules in the ground state and react with photosensitization-
125 generated reactive intermediates.

126 Tables

127 Table S1 Experimental conditions of aqueous-phase BrC photolysis.

BrC	Concentration (mM)	Standalone	+ VA (mM)		+ VL (mM)		+ 4NC (mM)		+ 4NP (mM)	
			0.05	0.5	0.05	0.5	0.05	0.5	0.05	0.5
VA	0.02	+								
	0.05	+			+	+	+	+	+	
	0.5	+			+	+	+	+	+	
	2	+								
	5	+								
VL	0.02	+								
	0.05	+	+	+				+	+	
	0.5	+	+	+				+	+	
	2	+								
	5	+								
4NC	0.02	+								
	0.05	+	+	+	+	+			+	+
	0.5	+	+	+	+	+			+	+
	2	+								
	5	+								
4NP	0.02	+								
	0.05	+			+	+	+	+	+	
	0.5	+			+	+	+	+	+	
	2	+								
	5	+								

Note: Each “+” represents an experiment conducted under air-saturated condition.

128

129 Table S2 Experimental conditions of BrC photolysis in isopropanol (IPA) solutions.

BrC	Concentration (mM)	Standalone	+ VL (mM)		+ 4NC (mM)	
			0.05	5	0.05	0.5
VL	0.05	+			+	+
	5	+				+
	500	+				
4NC	0.05	+	+			
	0.5	+	+		+	
	5	+				

Note: Each “+” represents an experiment conducted under air-saturated condition.

130

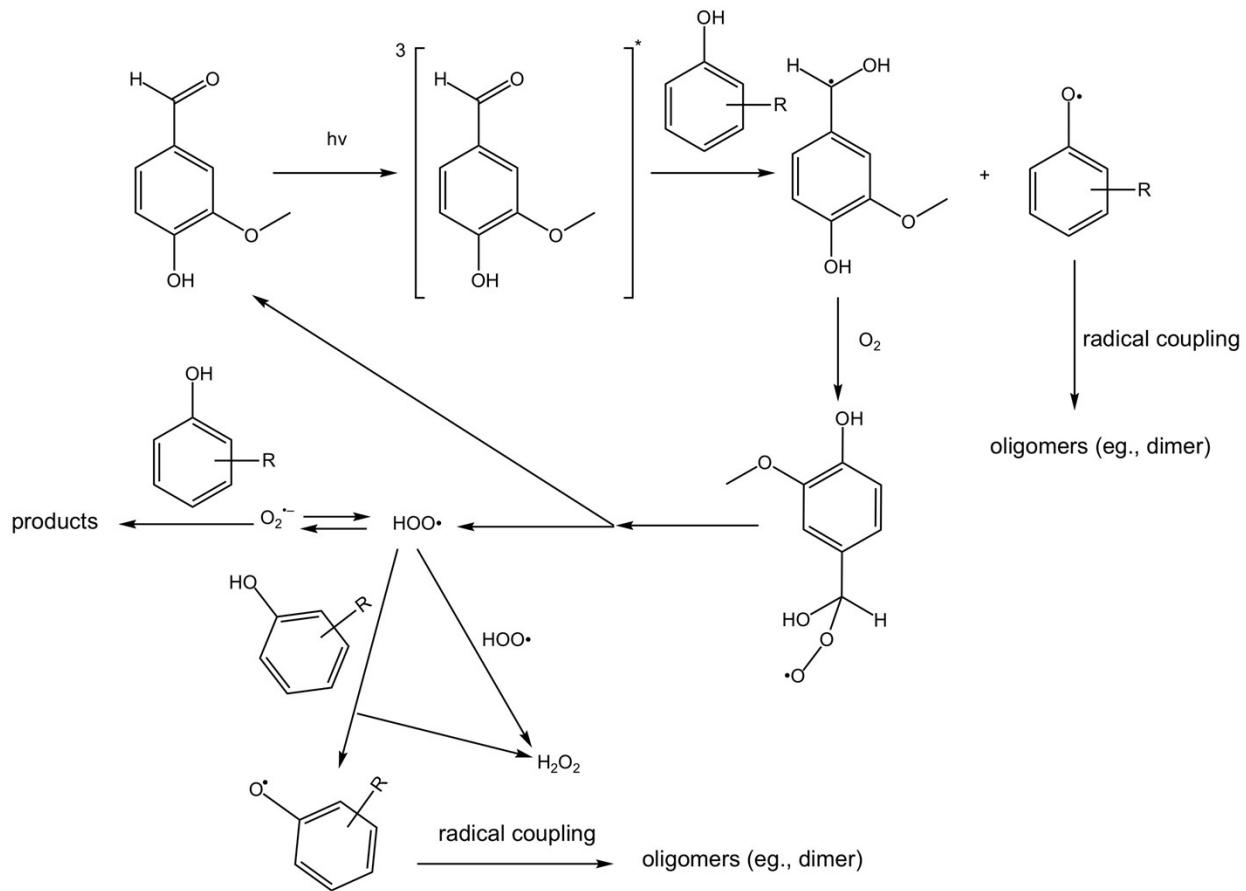
131 Table S3 Experimental conditions of aqueous-phase BrC photolysis under N₂-saturated conditions.

BrC	Concentration (mM)	Standalone	+ VL (mM)		+ 4NC (mM)	
			0.05	0.5	0.05	0.5
VA	0.05	+				
	0.5	+				
	5	+				
VL	0.05	+			+	+
	0.5	+			+	+
	5	+				
4NC	0.05	+	+	+	+	
	0.5	+	+	+	+	
	5	+				
4NP	0.05	+				
	0.5	+				
	5	+				

Note: Each “+” represents an experiment conducted under N₂-saturated condition.

132

133


134 Table S4 Main products of VL photolysis alone or co-photolysis with 4NC.

135

VL photolysis	Formula	Pathway	Ion peak	m/z calculated	m/z measured	Δ (mDa)
Alone or mixed	C ₈ H ₈ O ₄	Hydroxylation	C ₈ H ₇ O ₄ ⁻	167.0344	167.0348	0.4
Alone or mixed	C ₁₆ H ₁₄ O ₆	Dimerization	C ₁₆ H ₁₃ O ₆ ⁻	301.0712	301.0713	0.1
Mixed	C ₁₄ H ₁₁ NO ₇	Cross-reaction	C ₁₄ H ₁₀ NO ₇ ⁻	304.0457	304.0462	0.5

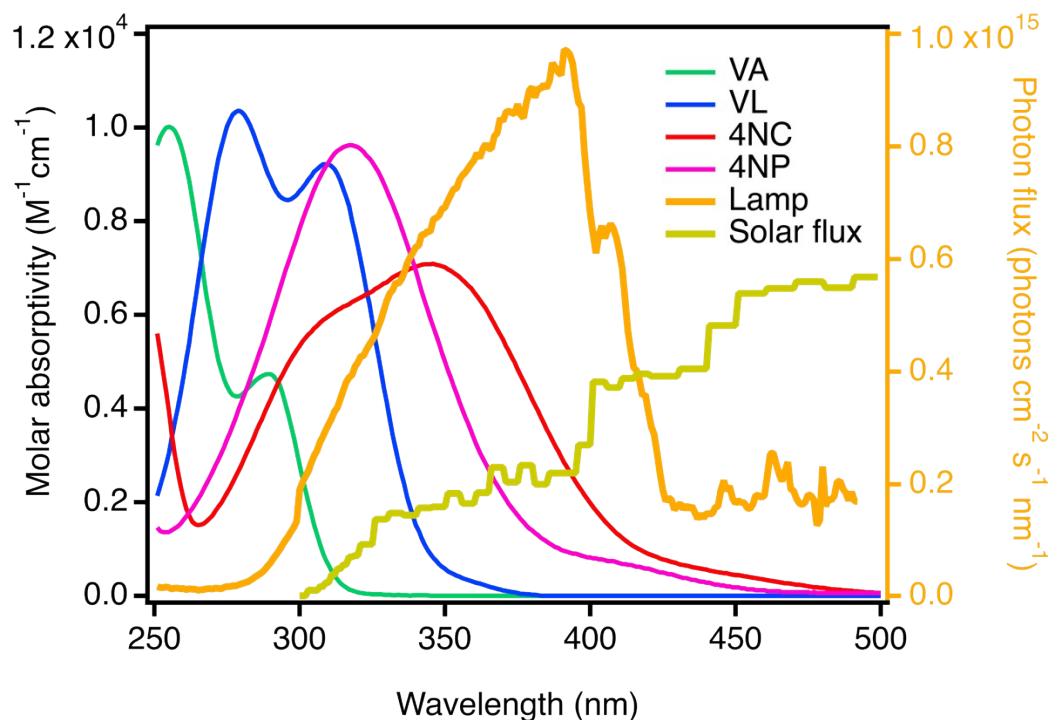
136

137 Scheme

138

139 Scheme S1 Possible mechanisms in the photosensitization reactions by vanillin (VL) with phenols,
140 including itself, and other phenols such as vanillic acid (VA), 4-nitrocatechol (4NC), 4-nitrophenol
141 (4NP) used in this study, which are all denoted with an unspecific “-R” group on the phenolic ring.

142 Figures



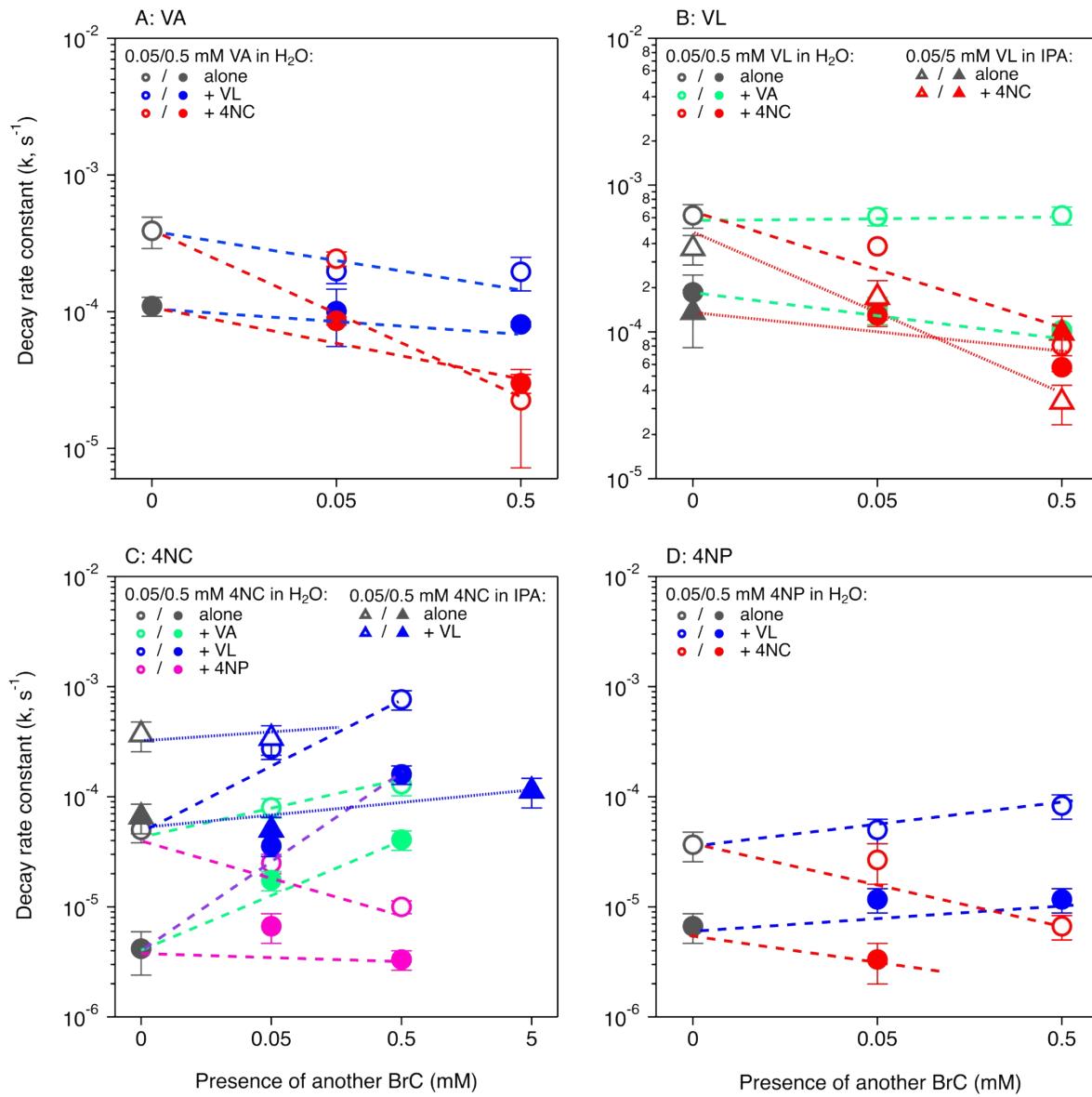
143

144 Fig. S1 Structures of the BrC model compounds used in this work.

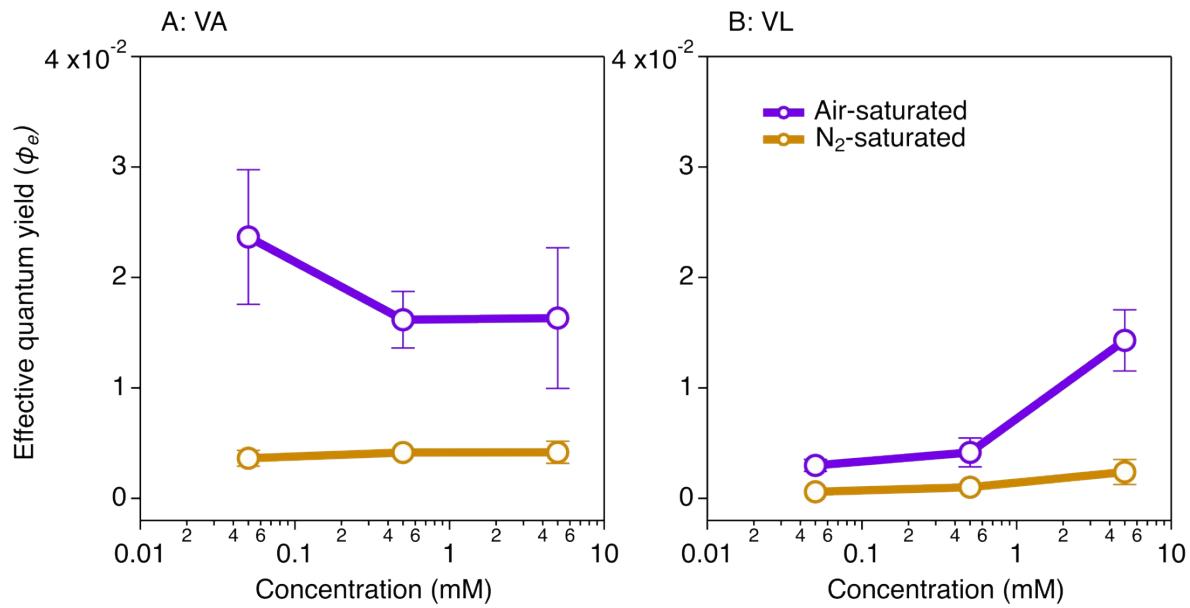
145

146

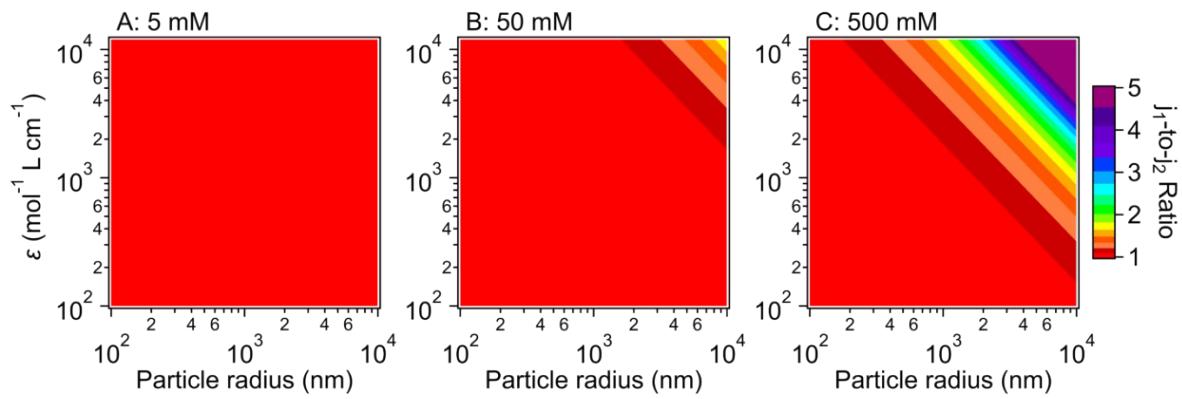
147


148

149 Fig. S2 Molar absorptivity of vanillic acid (VA), vanillin (VL), 4-nitrocatechol (4NC), and 4-
150 nitrophenol (4NP) and the photon flux of our lamp (orange line) and solar flux³ (yellow line).

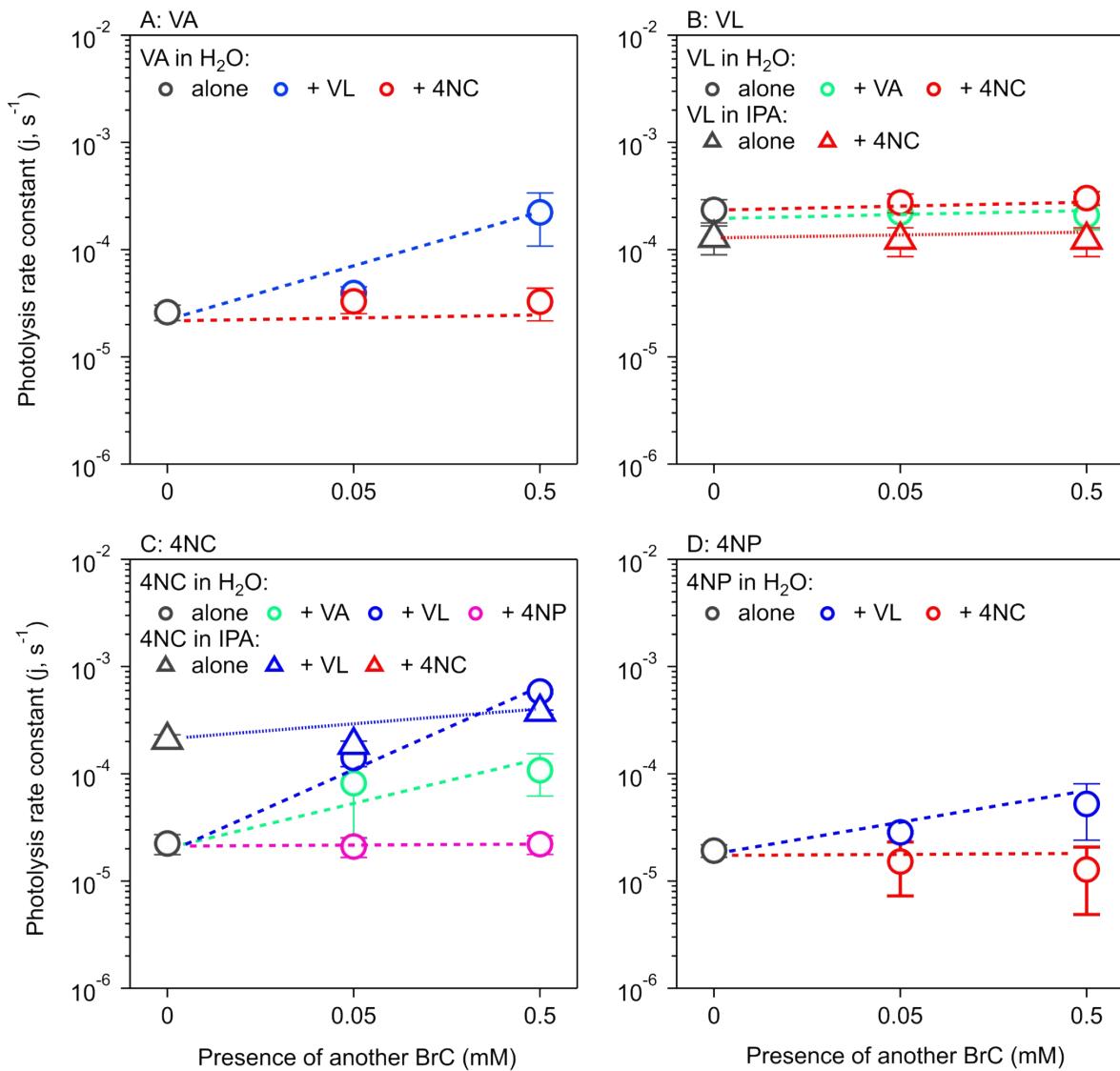

151

152

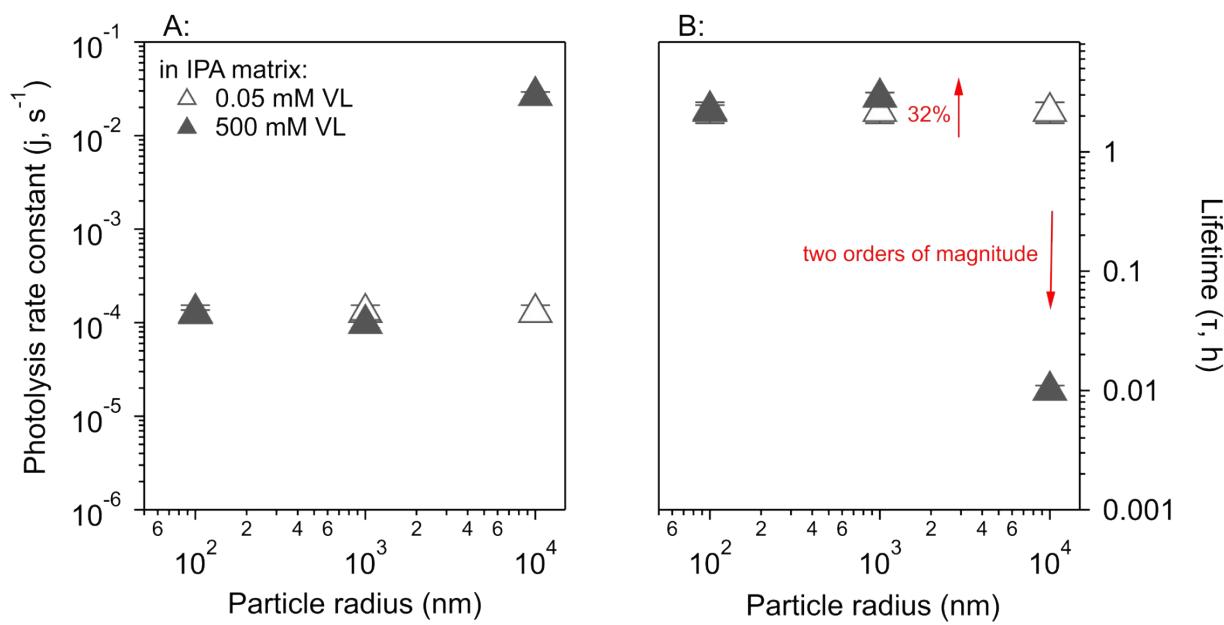

153

157 Fig. S3 Decay rate constant (k, s^{-1}) of (A) vanillic acid (VA), (B) vanillin (VL), (C) 4-nitrocatechol
 158 (4NC), and (D) 4-nitrophenol (4NP) under three mixing conditions: MP + MP, NP+ NP, and MP
 159 + NP. The circles are data from experiments in aqueous solutions, while triangles are data from
 160 experiments in isopropanol (IPA) solutions. The hollow and solid symbols represent the data for
 161 lower concentration (0.05 mM) and higher concentration (0.5 or 5 mM), respectively. The dashed
 162 and dotted lines are not fitting results and are merely to guide the eyes. The error bars represent
 163 the standard deviations from the results of triplicate experiments.

168 Fig. S4 Effective quantum yield (Φ_e) of (A) vanillic acid (VA) and (B) vanillin (VL) as a function
 169 of concentration under air- or N_2 -saturated conditions.



174


175 Fig. S5 Ratio of j_1 value to j_2 value for BrC concentrations at (A) 0.05 mM, (B) 50 mM, and (C)

176 500 mM.

177

180 Fig. S6 Photolysis rate constant (j , s^{-1}) of (A) vanillic acid (VA), (B) VL (vanillin), (C) 4-
 181 nitrocatechol (4NC), and (D) 4-nitrophenol (4NP) in aqueous solutions (in hollow black) under
 182 three mixing cases: MP + MP, NP+ NP, and MP + NP. The estimation assumes particles of 100-
 183 nm radius and concentration of 0.02–0.5mM. The circles are data from experiments in aqueous
 184 solutions, while the triangles are data from experiments isopropanol (IPA) solutions. The dashed
 185 and dotted lines are not fitting results and are merely to guide the eyes.

187

188 Fig. S7 Estimation of (A) photolysis rate constant (j, s^{-1}) and (B) atmospheric lifetime (τ, h) of VL
 189 in IPA matrix with different particle sizes. The error bars represent the standard deviations from
 190 the results of triplicate experiments.

191

192 **References**

- 193 1. Galbavy, E. S.; Ram, K.; Anastasio, C., 2-Nitrobenzaldehyde as a chemical actinometer
194 for solution and ice photochemistry. *J. Photoch. Photobio. A* 2010, 209, (2), 186-192.
- 195 2. Lignell, H.; Epstein, S. A.; Marvin, M. R.; Shemesh, D.; Gerber, B.; Nizkorodov, S.,
196 Experimental and Theoretical Study of Aqueous cis-Pinonic Acid Photolysis. *J. Phys. Chem. A*
197 2013, 117, (48), 12930-12945.
- 198 3. Finlayson-Pitts, B. J.; Pitts, J. N., CHAPTER 3 - Spectroscopy and Photochemistry:
199 Fundamentals. In *Chemistry of the Upper and Lower Atmosphere*, Finlayson-Pitts, B. J.; Pitts, J.
200 N., Eds. Academic Press: San Diego, 2000; pp 43-85.
- 201