## Supplementary materials

## Urban and Remote cheMistry modELLing with the new chemical mechanism URMELL: Part I gas-phase mechanism development

M. L. Luttkus\*<sup>a</sup>, E. H. Hoffmann<sup>b</sup>, A. Tilgner<sup>b</sup>, R. Wolke<sup>a</sup>, H. Herrmann<sup>b</sup>, I. Tegen<sup>a</sup>

<sup>a</sup> Department Modelling of Atmospheric Processes, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

<sup>b</sup> Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

\* Correspondence: luttkus@tropos.de

## Supplement S1 – Gas-phase chemical mechanism URMELL

The chemical mechanism URMELL contains of 313 species (listed in Table S1-1), 733 chemical reactions (listed in Table S1-2) and 183 photolysis reactions (listed in Table S1-3). Table S1-1 contains species name, chemical and structural formula, a short description and the Alias set for the deposition scheme. Table S1-2 lists all chemical reactions, the rate coefficient as well as references and comments. Table S1-3 summarizes all photo-dissociation reactions and photolysis parameters are given in Table S1-4. Images for the chemical structures are e.g. taken from the MCM3.3.1 (http://mcm.york.ac.uk/home.htt), Wennberg *et al.*<sup>1</sup>, Vereecken *et al.*<sup>2</sup> or are created using GECKO-A (http://geckoa.lisa.u-pec.fr/index.php).

| Table   | S1-1:   | List  | of 308  | species  | used i  | n 1  | URMELL       | chemistry   | mechanism   | including   | chemical | & |
|---------|---------|-------|---------|----------|---------|------|--------------|-------------|-------------|-------------|----------|---|
| structu | ral for | mula, | descrip | tion and | assigne | ed A | Alias for de | position sc | heme (new s | pecies bolo | ł).      |   |

| URMELL species | Chemical<br>formula | Structural formula | Description                                                    | Alias<br>for<br>depos. |
|----------------|---------------------|--------------------|----------------------------------------------------------------|------------------------|
| ACBZO2         | С7Н5О3              |                    | Acylperoxy radical from<br>benzaldehyde                        | RO2                    |
| АСВΖООН        | С7Н6О3              | Je-o               | Perbenzoic acid                                                | PAA                    |
| ALKNO3         | C5H11NO3            |                    | Alkyl nitrates from<br>BIGALK oxidation<br>(shown is SC4H9NO3) | ORA                    |
| ALKO2          | C5H11O2             | ↓ °~₀.             | Peroxy radicals from<br>BIGALK (shown is<br>SC4H9O2)           | RO2                    |
| ALKOH          | C5H12               | ОН                 | Lumped alcohol from<br>BIGALK (shown is<br>BUT2OL)             |                        |

| ALKOOH   | C5H12O2   | Он                 | Organic hydroperoxides<br>from BIGALK (shown is<br>SC4H9OOH)               | OP    |
|----------|-----------|--------------------|----------------------------------------------------------------------------|-------|
| APIN     | C10H16    |                    | α-Pinene                                                                   |       |
| BCARY    | C15H24    |                    | β-Caryophyllene and other sesquiterpenes                                   |       |
| BCNO3    | C15H25NO4 |                    | Organonitrate from<br>β-caryophyllene OH/O <sub>3</sub> +<br>NO chemistry  | ORA   |
| BCO2     | C15H25O3  | . o x <sup>o</sup> | Peroxy radical from<br>β-caryophyllene OH/O <sub>3</sub><br>chemistry      | RO2   |
| всоо     | C15H24O3  |                    | Peroxy radical from<br>β-caryophyllene O <sub>3</sub><br>chemistry         | RO2   |
| всоон    | C15H26O3  | ного               | Hydroperoxide from<br>β-caryophyllene OH/O <sub>3</sub> +<br>HO2 chemistry | OP    |
| BENZ     | С6Н6      | $\bigcirc$         | Benzene                                                                    |       |
| BENZ=O   | С6Н6О4    | HO                 | Bicyclic carbonyl<br>oxidation product from<br>benzene chemistry           | ORA   |
| BENZN    | C6H7NO6   |                    | Bicyclic hydroxynitrate from benzene chemistry                             | ORA   |
| BENZO2   | С6Н7О5    | HO                 | Bicyclic peroxy radical from benzene chemistry                             | RO2   |
| BENZOOH  | С6Н8О5    | HO                 | Bicyclic hydroperoxide<br>from benzene chemistry                           | OP    |
| BEPOMUC  | С6Н6О3    |                    | Unsaturated epoxide-<br>dialdehyde from OH +<br>benzene                    | МеСНО |
| ВІАСЕТОН | С4Н6О3    | одон               | 1-Hydroxy-2,3-<br>butanedione                                              | ORA   |
| BIGACID1 | C4H4O3    | 0<br>0<br>         | 4-Oxo-2-butenoic acid, a<br>product of aromatic<br>oxidation               | ORA   |
| BIGACID2 | С5Н6О3    | ∘=<                | 4-Oxo-2-pentenoic acid, a<br>product of aromatic<br>oxidation              | ORA   |
| BIGACID3 | С6Н8О3    | о = С он           | 3-methyl-4-oxo-2-<br>pentenoic acid, a product<br>of xylene oxidation      | ORA   |
| BIGALD1  | C4H4O2    | °                  | 1,4-Butenedial, a ring-<br>opening product of<br>aromatic chemistry        | МеСНО |

| BIGALD2    | С5Н6О2 | ∘=∕∘                                    | Unsaturated dicarbonyl, a product of aromatic oxidation                                | МеСНО |
|------------|--------|-----------------------------------------|----------------------------------------------------------------------------------------|-------|
| BIGALD3    | С5Н6О2 |                                         | Unsaturated dialdehyde, a<br>product of aromatic<br>oxidation                          | МеСНО |
| BIGALD4    | С6Н8О2 | °=<                                     | Lumped unsaturated<br>dicarbonyls, products of<br>xylene oxidation                     | МеСНО |
| BIGALK     | C5H12  | $\langle$                               | Lumped alkanes C>3                                                                     |       |
| BIGENE     | C4H8   | ~                                       | Lumped alkenes C>3                                                                     |       |
| BPIN       | C10H16 |                                         | β-Pinene                                                                               |       |
| BZALD      | С7Н6О  |                                         | Benzaldehyde                                                                           | MeCHO |
| BZFUO      | C4H4O4 |                                         | BZFUO ring-opening<br>product from BZFUONE<br>chemistry                                | МеСНО |
| BZFUONE    | C4H4O2 |                                         | 2(5H)-Furanone, reaction<br>product from aromatic<br>chemistry                         | МеСНО |
| BZFUONEO2  | C4H6O5 | о , о<br>о , о он                       | Peroxy radical from<br>2(5H)-Furanone OH/NO <sub>3</sub><br>chemistry                  | RO2   |
| BZFUONEOOH | C4H6O5 |                                         | Hydroperoxide from<br>2(5H)-Furanone OH/NO <sub>3</sub><br>+ HO <sub>2</sub> chemistry | PAA   |
| BZQCO      | С6Н5О4 | ° H o o o o o o o o o o o o o o o o o o | 3-Hydroxycyclohex-5-ene-<br>1,2,4-trione from quinone<br>chemistry                     | ORA   |
| BZQO2      | С6Н5О5 |                                         | Peroxy radical from quinone chemistry                                                  | RO2   |
| BZQONE     | С6Н4О2 | °<br>L<br>L<br>L                        | Quinone, reaction product from phenol chemistry                                        | МеСНО |
| вzqоон     | С6Н6О5 | HO O<br>O                               | Hydroperoxide from quinone chemistry                                                   | PAA   |
| С          | CH4    |                                         | Methane                                                                                |       |
| C2H2       | C2H2   |                                         | Ethyne (acetylene)                                                                     |       |
| C2H4       | C2H4   | —                                       | Ethene/ ethylene                                                                       |       |
| C33CO      | C3H2O3 | °                                       | Oxopropanedial, reaction<br>procuct of quinone<br>chemistry                            | МеСНО |
| СЗН6       | СЗН6   |                                         | Propene                                                                                |       |

| C3MDIALO2  | C4H5O4  | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | Peroxy radical from<br>MACR                                      | RO2   |
|------------|---------|-------------------------------------------|------------------------------------------------------------------|-------|
| C3MDIALOH  | C4H6O3  | ОН                                        | Hydroxy dialdehyde from<br>MACR chemistry                        | ORA   |
| C3MDIALOOH | C4H6O4  | OH<br>OH                                  | Hydroperxy dialdehyde<br>from MACR chemistry                     | PAA   |
| C4PAN5     | C4H7NO6 | °≈№°о в                                   | Peroxynitrate from MBO chemistry                                 | PAN   |
| C59O2      | С5Н9О5  | ноо.                                      | peroxy radical from<br>ISOPOOH, IEPOX,<br>HPALD                  | RO2   |
| C5DIALOOH  | С5Н6О4  |                                           | Hydroperxy dialdehyde<br>from BEPOMUC<br>chemistry               | PAA   |
| C5DIALO2   | С5Н5О4  | °                                         | Peroxy radical from<br>BEPOMUC chemistry                         | RO2   |
| С5Н8       | С5Н8    |                                           | Isoprene                                                         |       |
| C615CO2O2  | С6Н7О4  |                                           | Peroxy radical from<br>TEPOMUC chemistry                         | RO2   |
| С615СО2ООН | С6Н8О4  | HO <sup>PO</sup>                          | Hydroperxy dialdehyde<br>from TEPOMUC<br>chemistry               | PAA   |
| C6CO4DB    | С6Н4О4  | ۵<br>پ                                    | Reaction product of quinone chemistry                            | MeCHO |
| С6Н5О      | С6Н5О   | · • – <                                   | Phenoxy radical                                                  |       |
| С6Н5О2     | С6Н5О2  | ,°                                        | Phenylperoxy radical                                             | RO2   |
| С6Н5ООН    | С6Н6О2  |                                           | Phenyl hydroperoxide                                             | OP    |
| CATEC1O    | С6Н5О2  | HO                                        | (2-Hydroxyphenyl)<br>oxidanyl radical from<br>catechol chemistry |       |
| CATEC1O2   | С6Н5О3  | HO                                        | Peroxy radical from catechol                                     | RO2   |
| CATEC100H  | С6Н6О3  | HOO                                       | Hydroperoxide from catechol                                      | OP    |
| CATECHOL   | С6Н6О2  | HO                                        | Catechol                                                         |       |
| CC         | С2Н6    |                                           | Ethane                                                           |       |

| CC(=O)COO    | С3Н6О3 | ° o o                                                                                       | Acetone hydroperoxide                                       | PAA   |
|--------------|--------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------|
| CC(=O)CO[O]  | С3Н5О3 | °                                                                                           | Propyldioxy, peroxy radical from acetone                    | RO2   |
| ССС          | СЗН8   | $\left\langle \right\rangle$                                                                | Propane                                                     |       |
| ССОО         | C2H6O2 | ∽∽о∼он                                                                                      | Ethyl hydroperoxide                                         | OP    |
| СН2ОНСН2ОН   | C2H6O2 | но                                                                                          | Ethylene glycol                                             |       |
| СН2ОНСООН    | С2Н4О3 | но он                                                                                       | Glycolic acid                                               | ORA   |
| CH3C(O)O2    | C2H3O3 | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | Acetylperoxy radical                                        | RO2   |
| CH3CH(OH)OO  | C2H5O3 | <sup>но</sup> Ҳ <sub>о</sub> , о,                                                           | (1-Hydroxyethyl)<br>dioxidanyl from ozone<br>C3H6 chemistry | RO2   |
| СНЗСН(ОН)ООН | С2Н6О3 | но∖о,он                                                                                     | 1-Hydroperoxyethanol<br>from ozone C3H6<br>chemistry        | OP    |
| СНЗСНО       | С2Н4О  |                                                                                             | Acetaldehyde                                                | МеСНО |
| СН3СОСН2ОН   | С3Н6О2 | ОН                                                                                          | Hydroxyacetone                                              | ORA   |
| СНЗСОСНЗ     | СЗН6О  |                                                                                             | Acetone                                                     | МеСНО |
| СНЗСОСООН    | С3Н4О3 | но                                                                                          | Pyruvic acid                                                | ORA   |
| СНЗСООН      | C2H4O2 | но                                                                                          | Acetic acid                                                 | ORA   |
| СНЗСОООН     | С2Н4О3 | € ОН                                                                                        | Peracetic acid                                              | PAA   |
| СН3О2        | CH3O2  | ∕₀∕° <sup>.</sup>                                                                           | Methylperoxy radical                                        | RO2   |
| CH3O2NO2     | CH3NO4 |                                                                                             | (nitroperoxy)Methane                                        | PAN   |
| СНЗОН        | CH4O   | но —                                                                                        | Methanol                                                    |       |
| СНЗООН       | CH4O2  | ∕₀∕ <sup>он</sup>                                                                           | Methyl hydroperoxide                                        | OP    |
| СО           | СО     |                                                                                             | Carbon monoxide                                             |       |

| СО2С3СНО  | C4H6O2    | 0 × ×                                       | 3-Oxobutanal                                                                                     | МеСНО |
|-----------|-----------|---------------------------------------------|--------------------------------------------------------------------------------------------------|-------|
| CO2C4DIAL | C4H2O4    | °<br>°                                      | 2,3-Dioxobutanedial,<br>reaction product of<br>quinone chemistry                                 | МеСНО |
| СО2Н3СНО  | C4H6O3    | ° – – – <sub>B</sub>                        | 2-Hydroxy-3-oxobutanal                                                                           | ORA   |
| CRESO2    | С7Н9О6    | HO OH O'O.                                  | Bicyclic peroxy radical from cresol chemistry                                                    | RO2   |
| CRESOL    | С7Н8О     | HO                                          | Lumped cresols from toluene oxidation                                                            |       |
| CRESOOH   | C7H10O6   | HO OH O'OH                                  | Bicyclic hydroperoxide<br>from cresol chemistry                                                  | OP    |
| DHHPEPOX  | C5H10O5   | но                                          | Lumped dihydroxy-<br>hydroperoxy-epoxide from<br>isoprene chemistry                              | PAA   |
| DHPMEK    | C4H8O5    | HO O OH                                     | Dihydroperoxy methyl<br>ketone from isoprene<br>chemmistry                                       | PAA   |
| DHPMPAL   | C4H8O5    | но-о_о_он                                   | Dihydroperoxy methyl<br>aldehyde from isoprene<br>chemistry                                      | PAA   |
| DICARBO2  | C5H5O4    | °°.                                         | Acylperoxy radical formed<br>from aromatic oxidation,<br>via unsaturated dicarbonyl<br>chemistry | RO2   |
| DICARBOOH | С5Н6О4    | ° O O O O O O O O O O O O O O O O O O O     | Acylhydroperoxide formed from aromatic oxidation                                                 | PAA   |
| DICARBPAN | C5H5NO6   |                                             | Hydroxy-peroxyacyl<br>nitrate from DICARBO2                                                      | PAN   |
| DNCATECO2 | C6H5N2O11 | OF H OF | Dinitro-peroxyradical from<br>nitrocatechol NO <sub>3</sub><br>chemistry                         | RO2   |
| ELVOC     |           |                                             | Extremely low volatile<br>organic compound from<br>monoterpene chemistry                         | PAA   |
| ENEO2     | С4Н7О3    | . о <sub>0</sub> он                         | Lumped hydroxy peroxide alkene C>3 from BIGENE                                                   | RO2   |
| ЕО        | C2H5O2    | H0,0.                                       | Hydroxyalkoxy radical from OH ethene chemistry                                                   |       |
| EO2       | С2Н5О3    | но о.                                       | Hydroxyperoxy radical from OH ethene chemistry                                                   | RO2   |
| ЕООН      | С2Н6О3    | но                                          | Hydroxyhydroperoxide<br>from OH ethene chemistry                                                 | OP    |
| EPOXDIALD | C4H4O3    | 0,00                                        | Epoxydialdehyde from<br>TEPOMUC chemistry                                                        | ORA   |

| ETHLN      | C2H3NO4 |                    | 2-Oxoethyl nitrate                                                                | ORA   |
|------------|---------|--------------------|-----------------------------------------------------------------------------------|-------|
| ETHPX      | C2H5O2  | ~~°~ <sub>°.</sub> | Ethylperoxy radical                                                               | RO2   |
| ЕТОН       | С2Н6О   | ∽он                | Ethanol                                                                           |       |
| FUONE      | С5Н6О2  |                    | 3-Methyl-2(5H)-furanone                                                           | МеСНО |
| FUONEO2    | С6Н7О5  | 0-0.<br>0-0.       | Peroxy radical from<br>FUONE chemistry                                            | RO2   |
| FUONEOOH   | С6Н8О5  | о с о он           | Hydroperoxide from from<br>FUONE chemistry                                        | РАА   |
| GLY        | C2H2O2  | °∕∕∕∕₀             | Glyoxal                                                                           | МеСНО |
| Н2         | H2      |                    | Hydrogen                                                                          |       |
| H2O2       | H2O2    |                    | Hydrogen peroxide                                                                 | H2O2  |
| НСНО       | CH2O    | •=                 | Formaldehyde                                                                      | НСНО  |
| HCOC5      | С5Н8О2  | ОН                 | 2-Hydroxy-3-methyl-3-<br>butenal, from isoprene<br>chemistry                      | ORA   |
| нсосн2оон  | C2H4O3  | HO-O-              | Hydroperoxyacetaldehyde                                                           | PAA   |
| нсосо      | С2НО2   | °≈∈∕∽₀             | Formyl(oxo)methylium,<br>product of glyoxal OH<br>chemistry                       |       |
| нсосонсоз  | C3H3O5  | он<br>остробото.   | Hydroxy dicarbonyl<br>peroxide                                                    | RO2   |
| нсосонсозн | C3H4O5  | ° → ↓ ° , он       | Hydroxy dicarbonyl<br>hydroperoxide                                               | PAA   |
| НСОСОНРАМ  | C3H3NO7 |                    | Hydroxy dicarbonyl<br>peroxynitrate                                               | PAN   |
| нсоон      | CH2O2   | но                 | Formic acid                                                                       | ORA   |
| HMML       | C4H6O3  | HO                 | 3-(Hydroxymethyl)-3-<br>methyloxirane-2-one<br>product from isoprene<br>chemistry | ORA   |
| HNO3       | HNO3    |                    | Nitric acid                                                                       | HNO3  |
| HNO4       | HNO4    |                    | Hydroxy nitrate                                                                   |       |

| HO2         | HO2      |                                           | Hydroperoxyl radical                                           |       |
|-------------|----------|-------------------------------------------|----------------------------------------------------------------|-------|
| носн200     | СНЗОЗ    | но∽о`о.                                   | Hydroxymethylperoxy<br>radical from formaldehyde<br>chemistry  | RO2   |
| носн2оон    | СН4О3    | но∽о`он                                   | Hydroperoxymethanol<br>from formaldehyde<br>chemistry          | OP    |
| HOCOC4DIAL  | C4H4O4   | ° CH                                      | 2-Hydroxy-3-<br>oxobutanedial, product of<br>quinone chemistry | MeCHO |
| HONO        | HONO     |                                           | Nitrous acid                                                   | HONO  |
| НООССНО     | C2H2O3   | оустон                                    | Glyoxylic acid                                                 | ORA   |
| HPALD       | С5Н8О3   | С                                         | Unsaturated<br>hydroperoxyaldehyde,<br>from isoprene chemistry | PAA   |
| НVМК        | C4H6O2   | HO                                        | 4-Hydroxy-3-buten-2-one<br>from IHNE chemistry                 | ORA   |
| IBUTALOH    | C4H8O2   | U OH                                      | Hydroxymethylpropanal,<br>OH+MBO product                       | ORA   |
| IBUTALOHO2  | C4H7O4   | от с.                                     | Peroxy radical from<br>IBUTALOH oxidation                      | RO2   |
| IBUTALOHOOH | C4H8O4   | от он                                     | hydroperoxide from<br>IBUTALOH oxidation                       | PAA   |
| IBUTALOOH   | C4H8O3   | OH OH                                     | 2-Hydroxyisobutyric acid<br>from IBUTALOH<br>oxidation         | ORA   |
| IDHNBOO     | C5H10NO7 | 0-0-0-N=0<br>II<br>N=0                    | Peroxy radical from isoprene NO3 chemistry                     | RO2   |
| IDHPOO1     | C5H11O6  | но_0,0,                                   | Peroxy radical from<br>ISOPBOOH/<br>LISOPACOOH OH<br>chemistry | RO2   |
| IDHPOO2     | C5H11O6  |                                           | Peroxy radical from<br>ISOPDOOH/<br>LISOPACOOH OH<br>chemistry | RO2   |
| IDHPOO3     | C5H11O6  | но он он                                  | Peroxy radical from<br>ISOPBOOH/ ISOPDOOH<br>OH chemistry      | RO2   |
| IHNC102     | C5H8NO7  |                                           | Peroxide from IHNE OH<br>chemistry                             | RO2   |
| IHNC2O2     | C5H8NO7  | он от | Peroxide from IHNE OH<br>chemistry                             | RO2   |
| IHNC3O2     | C5H8NO7  | 0'-0<br>0H<br>0<br>N<br>0<br>N<br>0       | Peroxide from IHNE OH<br>chemistry                             | RO2   |

| IHNC4O2    | C5H8NO7  | о<br>о<br>с<br>о<br>с<br>о<br>о<br>о<br>о<br>о<br>о<br>о<br>о<br>о<br>о                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peroxide from IHNE OH<br>chemistry                                   | RO2 |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----|
| IHNE       | C5H9NO5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hydroxynitrate epoxide from isoprene chemistry                       | ORA |
| ІНΝЕООН    | C5H9NO7  | о= N<br>о = N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hydroxy-<br>hydroperoxynitrate<br>epoxide from isoprene<br>chemistry | ORA |
| ISOPBNO3   | C5H9NO4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-hydroxynitrate from<br>OH+isoprene chemistry                     | ORA |
| ISOPBNO3O2 | C5H10NO7 | °≈ № ° ~ ~ он                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peroxy radical from<br>ISOPBNO3                                      | RO2 |
| ISOPBO2    | С5Н9О3   | он<br>о-о.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,-isomer of isoprene<br>peroxy radical                              | RO2 |
| ISOPBOOH   | C5H10O3  | он<br>Он<br>Он                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hydroxyhydroperoxide<br>from isoprene chemistry                      | OP  |
| ISOPDNO3   | 5H9NO4   | °≈ <sub>N</sub> ~°→↓<br>U<br>o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hydroxynitrate from isoprene chemistry                               | ORA |
| ISOPDNO3O2 | C5H10NO7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peroxy radical from<br>ISOPDNO3                                      | RO2 |
| ISOPDO2    | С5Н9О3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,-Isomer of isoprene<br>peroxy radical                              | RO2 |
| ISOPDOOH   | C5H10O3  | OH<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hydroxyhydroperoxide<br>from isoprene chemistry                      | OP  |
| LC578O2    | С5Н9О5   | 0 → ↓ 0,<br>но ↓ 0,0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dihydroxy aldehyde<br>peroxy radical from<br>isoprene chemistry      | RO2 |
| LC578OOH   | C5H10O5  | о страници с | Dihydroxy aldehyde<br>hydroperoxide from<br>isoprene chemistry       | PAA |
| LC5PAN1719 | C5H7NO6  | HO O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lumped hydroxy-<br>peroxyacyl nitrate for C=5                        | PAN |
| LHC4ACCHO  | С5Н8О2   | ° HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lumped hydroxyaldehyde<br>from isoprene chemistry                    | ORA |
| LHC4ACCO2H | С5Н8О3   | о=онон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lumped 4-hydroxy acid from isoprene chemistry                        | ORA |
| LHC4ACCO3  | С5Н7О4   | H0 0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lumped hydroxyl-<br>acylperoxy radical C=5                           | RO2 |
| LHC4ACCO3H | С5Н8О4   | H0 H0 OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lumped hydroxyl-<br>acylhydroperoxide                                | PAA |
| LHMVKABO2  | C4H7O4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lumped acetyl-hydroxy peroxide radical                               | RO2 |

| LHMVKABOOH    | C4H8O4    | OH<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>H | Lumped acetyl-hydroxy<br>hydroperoxide                                     | PAA   |
|---------------|-----------|-------------------------------------------------|----------------------------------------------------------------------------|-------|
| LHMVKNOOH     | C4H7NO6   | HO <sub>VO</sub> VO <sub>N</sub> SO             | Acetyl-hydroperoxy-<br>nitrate from isoprene NO3<br>chemistry              | ORA   |
| LIECHO        | С5Н8О3    | но                                              | Lumped hydroxy-epoxide<br>aldehyde from isoprene<br>chemistry IEOPX quelle | ORA   |
| LIECO3H       | С5Н8О5    | ° → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓         | Hydroperoxide from<br>LIECHO                                               | PAA   |
| LIEPOX        | C5H10O3   | HO<br>O OH                                      | Isoprene derived<br>epoxydiols 97% IOPOXB                                  | PAA   |
| LIMONENE      | C10H16    | $\rightarrow$                                   | Limonene                                                                   |       |
| LISOPACNO3    | C5H9NO4   |                                                 | Lumped hydroxynitrate from isoprene chemistry                              | ORA   |
| LISOPACNO3O2  | C5H10NO7  | о<br>  <br>  <br>но он                          | Peroxy radical from<br>LISOPACNO3                                          | RO2   |
| LISOPACO2     | С5Н9О3    | · O O OH                                        | Hydroxyl-peroxy radical from isoprene chemistry                            | RO2   |
| LISOPACOOH    | C5H10O3   | HO_0_OH                                         | Hydroxy-hydroperoxide<br>from isoprene chemistry                           | OP    |
| LISOPNO3NO3   | C5H10N2O8 |                                                 | Dihydroxy-dinitrate from<br>isoprene chemistry                             | ORA   |
| LISOPNO3NO3=O | C5H8N2O8  |                                                 | Dinitrate-hydroxyketone<br>from isoprene chemistry                         | ORA   |
| LISOPNO3OOH   | C5H11NO7  |                                                 | Dihydroxy-hydroperoxy<br>nitrate                                           | ORA   |
| LISOPOOHOOH   | C5H12O6   | но_0_0_0H                                       | Lumped dihydroperoxide<br>from isiprene OH<br>chemistry                    | OP    |
| MACO2H        | C4H6O2    | ОН                                              | Methacrylic acid                                                           | ORA   |
| МАСОЗН        | C4H6O3    | ОСОН                                            | Acylhydroperoxide from<br>MACR                                             | PAA   |
| MACR          | C4H6O     |                                                 | Methacrolein                                                               | МеСНО |
| MACR2N3OH     | C4H7NO5   |                                                 | Hydroxynitrate from<br>MACR chemistry                                      | ORA   |
| MACR2NOOH     | C4H7NO6   |                                                 | Acylhydroperoxide from<br>MACRNO2                                          | ORA   |
| MACRENOL      | C4H6O2    | 0Он                                             | Hydroxy methacrolein                                                       | ORA   |

| MACRN      | C4H7NO5  | OH<br>N - O                                                                                 | Hydroxynitrate from<br>isoprene NO <sub>3</sub> chemistry | ORA   |
|------------|----------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------|
| MACRNO2    | C4H6NO7  | · · · · · · · · · · · · · · · · · · ·                                                       | Acylperoxy radical from<br>MACR2N3OH chemistry            | RO2   |
| MACRNOOH   | C4H7NO6  |                                                                                             | Hydroperoxynitrate from<br>MACRN chemistry                | ORA   |
| MACRO2     | C4H7O4   | OH<br>OH<br>OH                                                                              | Hydroxy peroxy radical<br>from methacrolein<br>chemistry  | RO2   |
| MACROH     | C4H8O3   | он                                                                                          | Dihydroxy-acetyl from<br>MACR chemistry                   | ORA   |
| MACROOH    | C4H8O4   | OH<br>I<br>OH<br>OH                                                                         | Hydroxy-hydroperoxide<br>from methacrolein                | PAA   |
| MALANHY    | C4H2O3   | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | Maleic anhydride                                          | МеСНО |
| MALANHYCO  | C4H2O5   |                                                                                             | Hydroxy-ketone from<br>MALANHY                            |       |
| MALANHYO2  | C4H3O6   |                                                                                             | Hydroxy-peroxide from<br>MALANHY                          | RO2   |
| MALANHYOOH | C4H4O6   |                                                                                             | Hydroxy-hydroperoxide<br>from MALANHY                     | РАА   |
| MALO2      | C4H3O4   | · • • • • • • • • • • • • • • • • • • •                                                     | Acylperoxy radical from<br>OH reaction with<br>BIGALD1    | RO2   |
| MALOOH     | C4H4O4   | HO                                                                                          | Acylhydroperoxide from<br>MALO2                           | PAA   |
| MALPAN     | C4H3NO6  |                                                                                             | Acylperoxynitrate from MALO2                              | PAN   |
| МВО        | C5H10O   | Сн                                                                                          | 2-Methyl-3-buten-2-ol                                     |       |
| MBONO3O2   | C5H10NO6 | °≈ <sup>N ~</sup> °~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                      | Peroxy radical from NO <sub>3</sub> +MBO                  | RO2   |
| MBONO3OOH  | C5H11NO6 | °≈N~°∽ <sup>OH</sup><br>U                                                                   | Hydroperoxy-nitrate from<br>MBO chemistry                 | ORA   |
| MBOO2      | C5H11O4  | OH OH                                                                                       | Hydroxyl-peroxy radical from MBO chemistry                | RO2   |
| мвооон     | C5H12O4  | он он                                                                                       | Hydroxy-hydroperoxide<br>from MBO chemistry               | OP    |

| МСО3     | C4H5O3  | , °~0.                          | Acylperoxy radical from<br>OH abstraction reaction<br>with MACR | RO2   |
|----------|---------|---------------------------------|-----------------------------------------------------------------|-------|
| MDIALO2  | C5H5O4  |                                 | Peroxy radical from OH<br>addition to BIGALD3                   | RO2   |
| MDIALOOH | C5H6O4  | О ОН                            | Lumped Acyl-<br>hydroperoxy-aldehyde                            | РАА   |
| MDIALPAN | C5H5NO6 |                                 | Acylperoxynitrate from<br>MDIALO2                               | PAN   |
| МЕК      | C4H8O   | ,<br>,                          | Methyl ethyl ketone                                             | МеСНО |
| MEKANO3  | C4H7NO4 |                                 | Nitrate from MEK chemistry                                      | ORA   |
| МЕКАО2   | C4H7O3  | · ° ~ °                         | Peroxy radical from MEK chemistry                               | RO2   |
| МЕКАОН   | C4H8O2  | ОН                              | C4 Hydroxy butanone                                             | ORA   |
| МЕКАООН  | C4H8O3  | HONO                            | Hydroperoxide from MEK chemistry                                | PAA   |
| МЕКВО2   | C4H7O3  |                                 | Peroxy radical from MEK chemistry                               | RO2   |
| меквон   | C4H8O2  | ОН                              | C4 Hydroxy butanone                                             | ORA   |
| меквоон  | C4H8O3  |                                 | Hydroperoxide from MEK chemistry                                | PAA   |
| МЕКСО2   | C4H7O3  |                                 | Peroxy radical from MEK chemistry                               | RO2   |
| мексон   | C4H8O2  | ОН                              | C4 Hydroxy butanone                                             | ORA   |
| мексоон  | C4H8O3  | о о                             | Hydroperoxide from MEK<br>chemistry                             | PAA   |
| MGLY     | C3H4O2  | ° C                             | Methyl glyoxal                                                  | МеСНО |
| MPAN     | C4H5NO5 |                                 | Methacryloyl<br>peroxynitrate                                   | PAN   |
| MVK      | C4H6O   |                                 | Methyl vinyl ketone                                             | МеСНО |
| MVKN     | C4H7NO5 | °≈ <sub>N</sub> ~° ↓<br>U<br>OH | Hydroxy nitrate from<br>MVK chemistry                           | ORA   |
| мvкон    | C4H8O3  | отон                            | Dihydroxy-acetyl from<br>MVK chemistry                          | ORA   |

| MYRC       | C10H16    | )<br>)<br>)                                                                                 | Myrcene                                                                                                                                                        |     |
|------------|-----------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| N2O5       |           |                                                                                             | Dinitrogen pentoxide                                                                                                                                           |     |
| N2PHEN     | C6H4N2O5  |                                                                                             | 2,4-Dinitrophenol                                                                                                                                              | ORA |
| NAROMOLOOH |           |                                                                                             | Lumped peroxyhidrate<br>from phenols with one or<br>two nitro groups,<br>completely conversion to<br>SOA (structure shown for<br>NCATECO2 + $HO_2$<br>product) | ORA |
| NBZQO2     | C6H4NO7   |                                                                                             | Peroxy radical from quinone NO <sub>3</sub> chemistry                                                                                                          | RO2 |
| NBZQOOH    | C6H5NO7   |                                                                                             | Hydroperoxide from<br>quinone chemistry                                                                                                                        | ORA |
| NC4CHO     | C5H7NO4   |                                                                                             | Nitrooxy-aldehyde from<br>NO <sub>3</sub> +isoprene chemistry                                                                                                  | ORA |
| NCATECHOL  | C6H5NO4   | °,<br>°,<br>∠,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,             | 4-Nitrocatechol                                                                                                                                                | ORA |
| NCATECO2   | C6H6NO9   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Bicyclic peroxy radical<br>from 4-nitrocatechol OH<br>chemistry                                                                                                | RO2 |
| NCRESO2    | C7H8NO8   | ON OF OH                                                                                    | Bicyclic peroxy radical from cresol NO <sub>3</sub> chemistry                                                                                                  | RO2 |
| NCRESOOH   | C7H9NO8   | ON ON OH                                                                                    | Hydroperoxide from cresol chemistry                                                                                                                            | ORA |
| NDNPHENO2  | C6H4N3O12 |                                                                                             | Bicyclic eroxy radical from 2,4-Dinitrophenol $NO_3$ chemistry                                                                                                 | RO2 |
| NH3        |           |                                                                                             | Ammonia                                                                                                                                                        | NH3 |
| NISOPBO2   | C5H8NO5   |                                                                                             | Peroxy radical from isoprene NO <sub>3</sub> oxidation                                                                                                         | RO2 |
| NISOPBOO   | C5H11NO8  | H0 − 0<br>OH 0 - 0'<br>N ≈ 0                                                                | Peroxy radical from<br>isoprene NO <sub>3</sub> chemistry<br>with nitrate, hydroxyl,<br>hydroperoxy and inner<br>peroxy group                                  | RO2 |
| NISOPBOOH  | C5H9NO5   |                                                                                             | Hydroperoxy-nitrate from isoprene NO <sub>3</sub> chemistry                                                                                                    | ORA |
| NISOPDO2   | C5H8NO5   | i<br>i<br>v<br>v<br>v<br>u<br>v                                                             | Peroxy radical from isoprene NO <sub>3</sub> oxidation                                                                                                         | RO2 |

| NISOPDOO     | C5H11NO8  | 0'-0,<br>0H                                                                                 | Peroxy radical from<br>isoprene $NO_3$ chemistry<br>with nitrate, hydroxyl,<br>hydroperxy and terminal<br>peroxy group | RO2 |
|--------------|-----------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----|
| NISOPDOOH    | C5H9NO5   | HO''D'                                                                                      | Hydroperoxy-nitrate from isoprene NO <sub>3</sub> chemistry                                                            | ORA |
| NISOPEOO1E   | C5H8N1O6  | 0 <sub>2</sub> NO                                                                           | Peroxy-nitrate radical from<br>isoprene NO <sub>3</sub> chemistry<br>with cyclic ether ring                            | RO2 |
| NISOPEOO1Z   | C5H8N1O6  | 02NO                                                                                        | Peroxy-nitrate radical from<br>isoprene NO <sub>3</sub> chemistry<br>with cyclic ether ring                            | RO2 |
| NISOPN       | C5H8N2O6  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Lumped dinitrate from isoprene NO <sub>3</sub> chemistry                                                               | ORA |
| NISOPNOO     | C5H9N2O8  |                                                                                             | Lumped peroxy radical from NISOPN                                                                                      | RO2 |
| NISOPNOOH    | C5H10N2O9 | $HO \xrightarrow{0} V \xrightarrow{0} V \xrightarrow{0} V \xrightarrow{0} V$                | Lumped hydroxy-<br>hydroperoxy dinitrate from<br>isoprene chemistry                                                    | ORA |
| NISOPO       | C5H9NO4   | ° ≈ N ~ ° ~ ~ 0.,                                                                           | Nitrate-oxyradical from isoprene chemistry                                                                             |     |
| NISOPOH      | C5H9NO4   | o = N OH                                                                                    | Lumped Hydroxynitrate<br>from isoprene NO <sub>3</sub><br>chemistry                                                    | ORA |
| NISOPOHOH=O  | C5H9NO6   | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | Dihydroxy-nitrate-<br>aldehyde from isoprene<br>NO <sub>3</sub> chemistry                                              | ORA |
| NISOPOOHOH=O | C5H9NO7   |                                                                                             | Hydroperoxynitrate-<br>Hydroxy-aldehyde form<br>isoprene NO <sub>3</sub> chemistry                                     | ORA |
| NISOPOOHOOH  | C5H11NO8  | но-о, он остоя<br>о-он                                                                      | Hydroxynitrate<br>dihydrperoxide from<br>isoprene NO <sub>3</sub> chimistry                                            | ORA |
| NO           | NO        |                                                                                             | Nitric oxide                                                                                                           | NO  |
| NO2          | NO2       |                                                                                             | Nitrogen dioxide                                                                                                       | NO2 |
| NO3          | NO3       |                                                                                             | Nitrate radical                                                                                                        | NO3 |
| NO3CH2CO3    | C2H2NO6   | . 0 ~ <sup>0</sup> ~ 0 ~ <sup>0</sup>                                                       | Acylperoxyradical of 2-<br>oxoethyl nitrate                                                                            | RO2 |
| NO3CH2CO3H   | C2H2NO6   | HO O O N O                                                                                  | Acylhydroperoxy of 2-<br>oxoethyl nitrate                                                                              | ORA |
| NO3CH2PAN    | C2H2N2O8  |                                                                                             | Peroxyacetyl-dinitrate                                                                                                 | PAN |
| NOA          | C3H5NO4   |                                                                                             | 2-Oxopropyl-nitrate from NO <sub>3</sub> +propene chemistry                                                            | ORA |

| NPHEN            | C6H5NO3 | ° N≥°<br>H0 ↓ ↓ ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Nitrophenol                                                                 | ORA |
|------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|
| NPHENO           | C6H4NO3 | →<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Nitrophenoxyradical                                                         |     |
| NPHENO2          | C6H4NO4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Nitrophenperoxyradical                                                      | RO2 |
| NPHENOLO2        | C6H6NO8 | OF OF O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bicyclic peroxy radical<br>from phenol NO <sub>3</sub><br>chemistry           | RO2 |
| NPHENOLOOH       | C6H7NO8 | OH OH OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hydroperoxide from phenol chemistry                                           | ORA |
| NPHENOOH         | C6H5NO4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-Hydroperoxy-2-<br>nitrobenzene                                              | ORA |
| NTERPNO3         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Second generation<br>products from<br>monterpene+NO <sub>3</sub><br>chemistry | ORA |
| NTERPO2          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peroxy radical from<br>NO <sub>3</sub> +monoterpene<br>chemistry              | RO2 |
| NTERPOOH         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydroperoxide from<br>NO <sub>3</sub> +monoterpene<br>chemistry               | ORA |
| O1D              | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Excited oxygen atom                                                           |     |
| 03               | 03      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ozone                                                                         |     |
| O3PX             | O3PX    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ground-state oxygen atom                                                      |     |
| O=C(OO)C=O       | C2H2O4  | under the second secon | 2-Oxoethaneperoxoic acid                                                      | PAA |
| O=CC(=O)O[O]     | C2HO4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Glyoxyloylperoxyradical                                                       | RO2 |
| OCC(=O)OO        | C2H4O4  | он                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ethaneperoxoic acid                                                           | PAA |
| OCC(=0)OON(=0)=0 | C2H3NO6 | HO U O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Hydroxy-1-<br>(nitroperoxy)ethanone                                         | PAN |
| OCC(=O)O[O]      | C2H3O4  | OH<br>0 ~ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Hydroxyacetylperoxy-<br>radical                                             | RO2 |
| ОН               | ОН      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hydroxyl radical                                                              |     |
| ОНССН2ОН         | C2H4O2  | но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gglycolaldehyde                                                               | ORA |

| P1NO3     | C15H25NO6 |                                           | Higher generation Nitrate<br>from $\beta$ -caryophyllene<br>OH/O <sub>3</sub> chemistry                        | ORA   |
|-----------|-----------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|
| P1O2      | C15H25O5  | ° ↓ ↓ ° °.                                | Higher generation peroxy radical from $\beta$ -caryophyllene OH/O <sub>3</sub> chemistry                       | RO2   |
| РЅQТООН   | C15H26O5  | of to the                                 | Higher generation non-<br>volatile hydroperoxide<br>from $\beta$ -caryophyllene<br>OH/O <sub>3</sub> chemistry | РАА   |
| P2NO3     | C15H25NO7 |                                           | Higher generation non-<br>volatile Nitrate from<br>$\beta$ -caryophyllene OH/O <sub>3</sub><br>chemistry       | ORA   |
| P2O2      | C15H25O6  | о он он                                   | Higher generation peroxy<br>radical from<br>$\beta$ -caryophyllene O <sub>3</sub><br>chemistry                 | RO2   |
| PAN       | C2H3NO5   |                                           | Peroxy acetyl nitrate                                                                                          | PAN   |
| PBZNIT    | C7H5NO5   |                                           | Peroxy benzoyl nitrate                                                                                         | PAN   |
| РНСООН    | С7Н6О2    |                                           | Benzoic acid                                                                                                   | ORA   |
| PHENO2    | С6Н7О6    | HO OH O OH                                | Bicyclic peroxy radical from phenol                                                                            | RO2   |
| PHENOL    | С6Н6О     | <u> </u>                                  | Phenol, product of benzene chemistry                                                                           |       |
| PHENOOH   | С6Н8О6    | но он он                                  | Bicyclic hydroperoxide<br>from phenol                                                                          | OP    |
| PO2       | С3Н7О3    | ОН                                        | Propene-derived peroxy radical                                                                                 | RO2   |
| РООН      | СЗН8ОЗ    | он                                        | Propene-derived hydroxy<br>hydroperoxide                                                                       | OP    |
| PR2O2HNO3 | C3H7NO5   | HOYOYO                                    | Hydroperoxy-alkylnitrate<br>from propene NO <sub>3</sub><br>chemistry                                          | ORA   |
| PROD1     | C15H24O2  |                                           | Lumped second generation<br>products from<br>$\beta$ -caryophyllene OH/O <sub>3</sub><br>chemistry             | MeCHO |
| PROD2     | C15H24O3  | →<br>С<br>С<br>С<br>Н<br>С<br>Н<br>С<br>Н | Second generation acid<br>from $\beta$ -caryophyllene $O_3$<br>chemistry                                       | ORA   |
| PROD3     | C14H22O3  |                                           | Lumped hIgher generation<br>products from<br>$\beta$ -caryophyllene OH/O <sub>3</sub><br>chemistry             | МеСНО |

| PROD4     | C14H22O4 | рания страната с с с с с с с с с с с с с с с с с с                 | Higher generation acid<br>from $\beta$ -caryophyllene O <sub>3</sub><br>chemistry | ORA   |
|-----------|----------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------|
| PRONO3BO2 | C3H6NO5  | . 0 ~ ° ~ ~ 0 ~ <sup>0</sup> ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ | Alkylnitrate-peroxy radical<br>from propene NO <sub>3</sub><br>chemistry          | RO2   |
| PROPOOH   | С3Н8О2   | HO                                                                 | Propyl hydroperoxide                                                              | OP    |
| PROPPX    | С3Н7О2   | · • ~ • ~ • ~ • ~ • • • • • • • • • • •                            | Propylperoxy radical                                                              | RO2   |
| SO2       | SO2      |                                                                    | Sulfure dioxide                                                                   | SO2   |
| SULF      | H2SO4    |                                                                    | Sulfuric acid                                                                     | SULF  |
| TEPOMUC   | С7Н8О3   |                                                                    | Dialdehyde with cyclic<br>ether from toluene and<br>xylene chemistry              | МеСНО |
| TERP2O2   |          |                                                                    | Lumped peroxy radical<br>from second generation<br>monoterpene oxidation          | RO2   |
| TERP2OOH  |          |                                                                    | Lumped second generation<br>monoterpene<br>hydroperoxide                          | PAA   |
| TERPNO3   |          |                                                                    | Lumped hydroxynitrates<br>from monoterpene OH<br>chemistry                        | ORA   |
| TERPO2    |          |                                                                    | Lumped peroxy radical<br>from monoterpenes OH<br>chemistry                        | RO2   |
| TERPOOH   |          |                                                                    | Lumped hydroperoxide<br>from monoterpene OH<br>chemistry                          | OP    |
| TERPROD1  |          |                                                                    | Lumped first generation<br>monoterpene oxidation<br>products                      | МеСНО |
| TERPROD2  |          |                                                                    | Lumped second generation<br>monoterpene oxidation<br>product                      | МеСНО |
| TOL       | С7Н8     | $\langle \bigcirc -$                                               | Toluene                                                                           |       |
| TOL=O     | C7H8NO4  | HO                                                                 | Bicyclic carbonyl<br>oxidation product from<br>toluene chemistry                  | ORA   |
| TOLN      | C7H9NO6  |                                                                    | Bicyclic hydroxynitrate from toluene chemistry                                    | ORA   |
| TOLO2     | С7Н9О5   | HO                                                                 | Bicyclic peroxy radical from toluene                                              | RO2   |

| TOLOOH   | C7H10O5  | HO                     | Bicyclic hydroperoxide from toluene                | OP  |
|----------|----------|------------------------|----------------------------------------------------|-----|
| XYL      | C8H10    |                        | Lumped xylene species                              |     |
| XYLENO2  | C8H11O5  | HO O O.                | Bicyclic peroxy radical from xylene OH chemistry   | RO2 |
| XYLENOOH | C8H12O5  | Но обраните на селотон | Bicyclic hydroperoxide<br>from xylene OH chemistry | OP  |
| XYLNO3   | C8H11NO6 |                        | Bicyclic hydroxynitrate<br>from xylene chmeistry   | ORA |
| XYLOL    | C8H10O   | HO                     | Dimethyl-phenol from xylene chemistry              |     |

URMELL contains several complex rate coefficients, which are provided hereafter. The corresponding parameter values are given in Table S1-2 as well as the related references.

$$\begin{split} k_{03PX}(P_1,P_2) &= M \times P_1 \times \left(\frac{T}{300}\right)^{P_2} \\ k_{H0203}(P_1,P_2,P_3) &= P_1 \times \left(\frac{T}{300}\right)^{P_2} \times \exp\left(\frac{P_3}{T}\right) \\ k_{H02}(P_1,P_2,P_3,P_4) &= P_1 \times \exp\left(\frac{P_2}{T}\right) + M \times P_3 \times \exp\left(\frac{P_4}{T}\right) \\ k_{tro}(P_1,P_2,P_3,P_4,P_5,P_6,P_7) &= \frac{k_0 \times k_\infty}{k_0 + k_\infty} \times P_7^{\frac{1}{1+k_1}} \\ k_1 &= \left(\frac{\log 10\left(\frac{k_0}{k_\infty}\right)}{0.75 - 1.27 \times \log 10(P_7)}\right)^2 \\ k_0 &= M \times P_1 \times \left(\frac{T}{300}\right)^{P_2} \times \exp\left(\frac{P_3}{T}\right) \\ k_\infty &= P_4 \times \left(\frac{T}{300}\right)^{P_5} \times \exp\left(\frac{P_6}{T}\right) \\ k_{HNO3}(P_1,P_2,P_3,P_4,P_5,P_6) &= k_0 + \frac{k_2}{1 + k_2/k_1} \\ k_0 &= P_1 \times \exp\left(\frac{P_2}{T}\right) \\ k_1 &= P_3 \times \exp\left(\frac{P_4}{T}\right) \\ k_2 &= M \times P_5 \times \exp\left(\frac{P_6}{T}\right) \\ k_{iso}(P_1,P_2,P_3) &= P_1 \times \exp\left(-\frac{P_2}{T}\right) \times \exp\left(\frac{P_3}{T^3}\right) \end{split}$$

**Table S1-2:** Chemical reactions of URMELL, their reaction rate coefficient as well as references and comments. Complex rate coefficients are summarized beforehand. Next to the MCM3.3.1 and IUPAC data the following references have been used for the mechanism development: Schultz *et al.*<sup>3</sup>, Chen *et al.*<sup>4</sup>, Cox *et al.*<sup>5</sup>, Jenkin *et al.*<sup>6</sup>, Wennberg *et al.*<sup>1</sup>, Vereecken *et al.*<sup>2</sup>, Sheps *et al.*<sup>7</sup>, Teng *et al.*<sup>8</sup>, Müller *et al.*<sup>9</sup>, Jenkin *et al.*<sup>10</sup>, Khan *et al.*<sup>11</sup>, Jenkin *et al.*<sup>12</sup> and Bates *et al.*<sup>13</sup>. All reaction equations marked with an X or a number from 1 to 5 deviate from original JAMv2b formula.

| Reaction                 |                                    | Rate coefficient                           | Reference & comments |   |
|--------------------------|------------------------------------|--------------------------------------------|----------------------|---|
| O <sub>x</sub> chemistry |                                    |                                            |                      | 1 |
| ОЗРХ                     | $\stackrel{O_2}{\rightarrow}$ O3   | $k_{O3PX}(6.0 \times 10^{-34}, -2.6)$      | IUPAC                | X |
| O3PX + O3                | $\rightarrow$                      | $8.0 \times 10^{-12} \times \exp(-2060/T)$ | <sup>3</sup> , IUPAC |   |
| O1D                      | $\stackrel{o_2}{\rightarrow}$ O3PX | $3.2 \times 10^{-11} \times \exp(67/T)$    | IUPAC                | Х |
| O1D                      | $\stackrel{N_2}{\rightarrow}$ O3PX | $2.15 \times 10^{-11} \times \exp(110/T)$  | <sup>3</sup> , IUPAC |   |
| O1D                      | $\xrightarrow{H_2O} OH + OH$       | $2.14 \times 10^{-10}$                     | IUPAC                | Х |

| HO <sub>x</sub> chemistry |                                  |                                                                                          |   |
|---------------------------|----------------------------------|------------------------------------------------------------------------------------------|---|
| H2 + OH                   | $\rightarrow$ HO2                | $7.7 \times 10^{-12} \times \exp(-2100/T)$ IUPAC, MCM                                    | X |
| OH + O3                   | $\rightarrow$ HO2                | $1.7 \times 10^{-12} \times \exp(-940/T)$ <sup>3</sup> , IUPAC                           |   |
| HO2 + O3                  | $\rightarrow$ OH                 | $k_{H0203}(2.03 \times 10^{-16}, 4.57, 6.93)^{-3}$ , IUPAC                               |   |
| HO2 + HO2                 | $\stackrel{M}{\rightarrow}$ H2O2 | $k_{HO2}(2.2 \times 10^{-13}, 600, 3, \text{IUPAC})$<br>1.93×10 <sup>-13</sup> , 980)    |   |
| HO2 + HO2                 | $\xrightarrow{H_2O}$ H2O2        | $k_{HO2}(3.08 \times 10^{-34}, 2800, 3, \text{IUPAC})$<br>2.66×10 <sup>-54</sup> , 3180) |   |
| H2O2 + OH                 | $\rightarrow$ HO2                | $2.9 \times 10^{-12} \times \exp(-160/T)$ IUPAC                                          | X |
| OH + HO2                  | $\rightarrow$                    | $4.8 \times 10^{-11} \times \exp(250/T)$ <sup>3</sup> , IUPAC                            |   |

| NO <sub>x</sub> chemistry |                                 |                                                                                      |   |
|---------------------------|---------------------------------|--------------------------------------------------------------------------------------|---|
| NO +O3PX                  | $\stackrel{M}{\rightarrow}$ NO2 | $k_{tro}(1 \times 10^{-31}, -1.6, 0, $ IUPAC<br>5×10 <sup>-11</sup> , -0.3, 0, 0.85) | X |
| NO2 + O3PX                | $\rightarrow$ NO                | $5.1 \times 10^{-12} \times \exp(198/T)$ IUPAC                                       | Х |

| NO2 + O3PX | $\stackrel{M}{\rightarrow}$ N   | 103       | $k_{tro}(1.3 \times 10^{-31}, -1.5, 0, 2.3 \times 10^{-11}, 0.24, 0, 0.6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IUPAC                | X |
|------------|---------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|
| NO + NO    | $\stackrel{O_2}{\rightarrow}$ N | IO2 + NO2 | $4.25 \times 10^{-39} \times \exp(663.5/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IUPAC                | Х |
| NO2 + NO3  | → N                             | {O + NO2  | $4.5 \times 10^{-14} \times \exp(-1260/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MCM                  | Х |
| NO2 + NO3  | $\stackrel{M}{\rightarrow}$ N   | 1205      | $k_{tro}(3.6 \times 10^{-30}, -4.1, 0, 1.9 \times 10^{-12}, 0.2, 0, 0.35)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IUPAC                | Х |
| HO2 + NO   | $\rightarrow$ 0                 | )H + NO2  | $3.45 \times 10^{-12} \times \exp(270/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IUPAC                | Х |
| NO + O3    | $\rightarrow$ N                 | 102       | $2.07 \times 10^{-12} \times \exp(-1400/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IUPAC                | Х |
| NO2 + O3   | $\rightarrow$ N                 | 103       | $1.4 \times 10^{-13} \times \exp(-2470/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IUPAC                | Х |
| NO3 + HO2  | $\rightarrow$ 0                 | )H + NO2  | $4.0 \times 10^{-12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IUPAC, MCM           | Х |
| N2O5       | $\stackrel{M}{\rightarrow}$ N   | IO2 + NO3 | $k_{tro}(1.3 	imes 10^{-3}, -3.5, -11000, 9.7 	imes 10^{14}, 0.1, -11080, 0.35)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IUPAC                | Х |
| NO + OH    | $\stackrel{M}{\rightarrow}$ H   | IONO      | $k_{tro}(7.4 \times 10^{-31}, -2.4, 0, 3.3 \times 10^{-11}, -0.3, 0, 0.81)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IUPAC                | Х |
| HONO + OH  | $\rightarrow$ N                 | 102       | $2.5 \times 10^{-12} \times \exp(260/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IUPAC                | Х |
| NO2 + OH   | $\stackrel{M}{\rightarrow}$ H   | INO3      | $k_{tro}(3.2 \times 10^{-30}, -4.5, 0, 3 \times 10^{-11}, 0, 0, 0.41)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IUPAC                | Х |
| HNO3 + OH  | $\rightarrow$ N                 | 103       | $k_{HNO3}(2.4 \times 10^{-14}, 460, 2.7 \times 10^{-17}, 2199, 460, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17}, 10^{-17$ | <sup>3</sup> , IUPAC |   |
|            |                                 |           | 6.5×10 <sup>-34</sup> , 1335)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |   |
| NO + NO3   | $\rightarrow$ N                 | O2 + NO2  | $1.8 \times 10^{-11} \times \exp((110/T))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IUPAC                | Х |
| NO2 + HO2  | $\stackrel{M}{\rightarrow}$ H   | INO4      | $k_{tro}(1.4 \times 10^{-31}, -3.1, 0, 4 \times 10^{-12}, 0, 0, 0.4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IUPAC                | Х |
| HNO4 + OH  | $\rightarrow$ N                 | 102       | $3.2 \times 10^{-13} \times \exp(690/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IUPAC                | Х |
| HNO4       | $\stackrel{M}{\rightarrow}$ H   | IO2 + NO2 | $k_{tro}(4.1 \times 10^{-5}, 0, -10650, 6 \times 10^{15}, 0, -11170, 0.4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IUPAC                | Х |
| NO3 + OH   | $\rightarrow$ H                 | 1O2 + NO2 | $2.0 \times 10^{-11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IUPAC                | X |
| NH3 + OH   | $\rightarrow$                   |           | $3.5 \times 10^{-12} \times \exp(-925/T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>3</sup> , IUPAC | X |

| Sulfur chemistry  |                   |                                                                                 |                                                                               |                             |   |
|-------------------|-------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|---|
| SO2 + OH          | $\xrightarrow{M}$ | SULF                                                                            | $k_{tro}(2.8 \times 10^{-31}, -2.6, 0, 2 \times 10^{-12}, 0, 0, 0.53)$        | IUPAC with $F_c$ for 298K   | X |
|                   |                   |                                                                                 |                                                                               |                             |   |
| C1 chemistry      |                   |                                                                                 |                                                                               |                             |   |
| CH4 + OH          | $\rightarrow$     | CH3O2                                                                           | $1.85 \times 10^{-12} \times \exp(-1690/T)$                                   | MCM                         | Х |
| CH3O2 + NO        | $\rightarrow$     | HCHO + HO2 + NO2                                                                | $2.3 \times 10^{-12} \times \exp(360/T)$                                      | IUPAC                       | Х |
| CH3O2 + CH3O2     | $\rightarrow$     | HCHO + HO2 + HCHO + HO2                                                         | $7.4 \times 10^{-13} \times \exp(-520/T)$                                     | <sup>3</sup> , IUPAC        |   |
| CH3O2 + CH3O2     | $\rightarrow$     | HCHO + CH3OH                                                                    | $2.33 \times 10^{-14} \times \exp(678/T)$                                     | <sup>3,</sup> IUPAC         |   |
| СН3О2 + ОН        | $\rightarrow$     | 0.95 HCHO + 1.9 HO2 + 0.0275 HOCH2OOH + 0.02 HCHO + 0.02<br>H2O2 + 0.0025 HCOOH | $3.7 \times 10^{-11} \times \exp(350/T)$                                      | IUPAC; for sCI see sec. 2.6 | Х |
| CH3O2 + HO2       | $\rightarrow$     | 0.9 CH3OOH + 0.1 HCHO                                                           | $3.8 \times 10^{-13} \times \exp(780/T)$                                      | IUPAC                       | Х |
| CH3O2 + NO2       | $\xrightarrow{M}$ | CH3O2NO2                                                                        | $k_{tro}(2.5 \times 10^{-30}, -5.5, 0,$<br>$1.8 \times 10^{-11}, 0, 0, 0.36)$ | IUPAC                       | X |
| CH3O2 + NO3       | $\rightarrow$     | HCHO + HO2 + NO2                                                                | $1.2 \times 10^{-12}$                                                         | IUPAC                       | Х |
| CH3O2NO2          | $\xrightarrow{M}$ | CH3O2 + NO2                                                                     | $k_{tro}(9 \times 10^{-5}, 0, -9690, 1.1 \times 10^{16}, 0, -10560, 0.36)$    | IUPAC                       | X |
| CH3OOH + OH       | $\rightarrow$     | 0.6 CH3O2 + 0.4 HCHO + 0.4 OH                                                   | $5.3 \times 10^{-12} \times \exp(190/T)$                                      | MCM                         | Х |
| HCHO + OH         | $\rightarrow$     | HO2 + CO                                                                        | $1.25 \times 10^{-17} \times T^2 \times \exp(615/T)$                          | IUPAC                       | Х |
| HCHO + HO2        | $\rightarrow$     | HOCH2OO                                                                         | $9.7 \times 10^{-15} \times \exp(625/T)$                                      | <sup>3</sup> , IUPAC        |   |
| HCHO + NO3        | $\rightarrow$     | HNO3 + CO + HO2                                                                 | $5.5 \times 10^{-16}$                                                         | IUPAC                       | Х |
| CO + OH           | $\rightarrow$     | HO2                                                                             | $k_{CO}(1.44 \times 10^{-13}, 4.2 \times 10^{19})$                            | IUPAC                       | Х |
| CH3OH + OH        | $\rightarrow$     | HCHO + HO2                                                                      | $6.38 \times 10^{-18} \times T^2 \times \exp(144/T)$                          | IUPAC                       | Х |
| HCOOH + OH        | $\rightarrow$     | HO2                                                                             | $4.5 \times 10^{-13}$                                                         | MCM                         | Х |
| HOCH2OO           | $\rightarrow$     | HO2 + HCHO                                                                      | $2.4 \times 10^{12} \times \exp(-7000/T)$                                     | <sup>3</sup> , IUPAC        |   |
| HOCH2OO + NO      | $\rightarrow$     | HO2 + HCOOH + NO2                                                               | $5.6 \times 10^{-12}$                                                         | IUPAC                       | Х |
| HOCH2OO + HO2     | $\rightarrow$     | 0.5 HCOOH + 0.2 OH + 0.5 HOCH2OOH + 0.2 HO2                                     | $5.6 \times 10^{-15} \times \exp(2300/T)$                                     | IUPAC; see text sect. 2.2   | Х |
| HOCH2OO + HOCH2OO | $\rightarrow$     | 2 HCOOH + 2 HO2                                                                 | 5.5×10 <sup>-12</sup>                                                         | IUPAC; see text sect. 2.2   | Х |
| HOCH2OOH + OH     | $\rightarrow$     | HOCH2OO                                                                         | 2.9×10 <sup>-11</sup>                                                         | 4                           | Х |

| C2 chemistry      |                     |                                                                                                 |                                                                            |                                                                      |   |
|-------------------|---------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|---|
| С2Н2 + ОН         | $\xrightarrow{M}$   | 0.636 GLY + 0.636 OH + 0.364 HCOOH + 0.364 CO + 0.364 HO2                                       | $k_{tro}(5 \times 10^{-30}, -1.5, 0, 1 \times 10^{-12}, 0, 0, 0.37)$       | MCM, IUPAC                                                           | X |
| С2Н4 + ОН         | $\xrightarrow{M}$   | EO2                                                                                             | $k_{tro}(8.6 \times 10^{-29}, -3.1, 0, 9 \times 10^{-12}, -0.85, 0, 0.48)$ | MCM, IUPAC                                                           | X |
| C2H4 + O3         | $\rightarrow$       | 1.168 HCHO + 0.168 H2O2 + 0.27 HO2 + 0.17 OH + 0.35 CO + 0.021 HCOOH + 0.18 H2 + 0.231 HOCH2OOH | $6.82 \times 10^{-15} \times \exp(-2500/T)$                                | IUPAC, <sup>5</sup>                                                  | 4 |
| EO2 + HO2         | $\rightarrow$       | ЕООН                                                                                            | $1.3 \times 10^{-11}$                                                      | MCM, IUPAC                                                           | Х |
| EOOH + OH         | $\rightarrow$       | 0.21 EO2 + 0.79 OHCCH2OH + 0.79 OH                                                              | $1.45 \times 10^{-12} \times \exp(684/T)$                                  | <sup>12</sup> , MCM                                                  | Х |
| EO2 + NO          | $\rightarrow$       | EO + NO2                                                                                        | $8.7 \times 10^{-12}$                                                      | IUPAC, only dominant path                                            | X |
| EO2 + CH3O2       | $\rightarrow$       | 0.5 EO + 0.75 HCHO + 0.5 HO2 + 0.25 CH3OH + 0.25<br>OHCCH2OH + 0.25 CH2OHCH2OH                  | $4.0 \times 10^{-11} \times \exp(1000/T)$                                  | <sup>3</sup> ; but considering $R_{-H}O + R'OH$ and $ROH + R'_{-H}O$ | X |
| EO2 + CH3C(O)O2   | $\rightarrow$       | CH3O2 + EO                                                                                      | $1.0 \times 10^{-11}$                                                      | 3                                                                    |   |
| EO                | $\rightarrow$       | HO2 + HCHO + HCHO                                                                               | $1.6 \times 10^{11} \times \exp(-4150/T)$                                  | 3                                                                    |   |
| EO                | $\xrightarrow{O_2}$ | HO2 + OHCCH2OH                                                                                  | $1.0 \times 10^{-14}$                                                      | 3                                                                    |   |
| CH2OHCH2OH + OH   | $\rightarrow$       | OHCCH2OH + HO2                                                                                  | $1.45 \times 10^{-11}$                                                     | МСМ                                                                  | Х |
| CC + OH           | $\rightarrow$       | ETHPX                                                                                           | $1.49 \times 10^{-17} \times T^2 \times \exp(-499/T)$                      | IUPAC, MCM                                                           | Х |
| ETHPX + NO        | $\rightarrow$       | CH3CHO + NO2 + HO2                                                                              | $2.55 \times 10^{-12} \times \exp(380/T)$                                  | <sup>3</sup> , IUPAC                                                 | Х |
| ETHPX + HO2       | $\rightarrow$       | CCOO                                                                                            | $6.4 \times 10^{-13} \times \exp(710/T)$                                   | <sup>3</sup> , IUPAC                                                 | X |
| ETHPX + CH3O2     | $\rightarrow$       | 0.7 HCHO + 0.8 CH3CHO + HO2 + 0.3 CH3OH + 0.2 ETOH                                              | $2.0 \times 10^{-13}$                                                      | 3                                                                    |   |
| ETHPX + CH3C(O)O2 | $\rightarrow$       | CH3CHO + HO2 + CH3O2                                                                            | $1.8 \times 10^{-12} \times \exp(500/T)$                                   | 3                                                                    |   |
| ETHPX + ETHPX     | $\rightarrow$       | 1.6 CH3CHO + 1.2 HO2 + 0.4 ETOH                                                                 | $7.6 \times 10^{-14}$                                                      | 3                                                                    |   |
| CCOO + OH         | $\rightarrow$       | 0.5 ETHPX + 0.5 CH3CHO + 0.5 OH                                                                 | $1.94 \times 10^{-12} \times \exp(339/T)$                                  | 3,12                                                                 | X |
| CH3CHO + OH       | $\rightarrow$       | CH3C(O)O2                                                                                       | $4.7 \times 10^{-12} \times \exp(345/T)$                                   | <sup>3</sup> , IUPAC                                                 | X |
| CH3CHO + NO3      | $\rightarrow$       | HNO3 + CH3C(O)O2                                                                                | $1.4 \times 10^{-12} \times \exp(-1860/T)$                                 | <sup>3</sup> , IUPAC                                                 | Х |
| CH3C(O)O2 + NO    | $\rightarrow$       | NO2 + CH3O2                                                                                     | $7.5 \times 10^{-12} \times \exp(290/T)$                                   | 3                                                                    |   |

| CH3C(O)O2 + NO2            | $\xrightarrow{M}$           | PAN                                                                     | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$  | IUPAC               | 1 |
|----------------------------|-----------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|---|
| CH3C(0)O2 + NO3            | $\rightarrow$               | NO2 + CH3O2                                                             | $4.0 \times 10^{-12}$                                                             | МСМ                 | Х |
| CH3C(O)O2 + HO2            | $\rightarrow$               | 0.13 CH3COOH + 0.13 O3 + 0.37 CH3COOOH + 0.5 CH3O2 + 0.5<br>OH          | $1.73 \times 10^{-12} \times \exp(730/T)$                                         | IUPAC               | 2 |
| CH3C(O)O2 + CH3O2          | $\rightarrow$               | 0.9 CH3O2 + HCHO + 0.9 HO2 + 0.1 CH3COOH                                | $2.0 \times 10^{-12} \times \exp(500/T)$                                          | 3                   |   |
| CH3COOOH + OH              | $\rightarrow$               | CH3C(O)O2                                                               | $3.0 \times 10^{-14}$                                                             | IUPAC main path     | Х |
| PAN + OH                   | $\rightarrow$               | HCHO + CO + NO2                                                         | $3.0 \times 10^{-14}$                                                             | MCM                 | Х |
| PAN                        | $\xrightarrow{M}$           | CH3C(O)O2 + NO2                                                         | $k_{tro}(1.1 \times 10^{-5}, 0, -10100,$<br>$1.9 \times 10^{17}, 0, -14100, 0.3)$ | IUPAC               | X |
| CH3C(0)O2 +<br>CH3C(0)O2   | $\rightarrow$               | CH3O2 + CH3O2                                                           | $2.9 \times 10^{-12} \times \exp(500/T)$                                          | 3                   |   |
| OHCCH2OH + OH              | $\rightarrow$               | 0.2 GLY + 0.2 HO2 + 0.8 OCC(=O)O[O]                                     | $1.0 \times 10^{-11}$                                                             | 3                   |   |
| OHCCH2OH + NO3             | $\rightarrow$               | OCC(=O)O[O] + HNO3                                                      | $1.44 \times 10^{-12} \times \exp(-1862/T)$                                       | 3                   |   |
| OCC(=O)O[O] + HO2          | $\rightarrow$               | 0.5 HO2 + 0.5 HCHO + 0.5 OH + 0.13 CH2OHCOOH + 0.13 O3 + 0.37 OCC(=0)OO | $2.11 \times 10^{-12} \times \exp(730/T)$                                         | 6                   | 2 |
| OCC(=O)OO + OH             | $\rightarrow$               | OCC(=0)0[0]                                                             | 1.13×10 <sup>-12</sup> ×exp (497/ <i>T</i> )                                      | 3,12                |   |
| OCC(=0)0[0] + NO           | $\rightarrow$               | NO2 + HO2 + HCHO                                                        | $7.5 \times 10^{-12} \times \exp(290/T)$                                          | MCM                 | 2 |
| OCC(=0)0[0] + NO3          | $\rightarrow$               | NO2 + HO2 + HCHO                                                        | $4.0 \times 10^{-12}$                                                             | 3                   |   |
| OCC(=O)O[O] + NO2          | $\stackrel{M}{\rightarrow}$ | OCC(=0)OON(=0)=0                                                        | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$  | МСМ                 | 1 |
| OCC(=O)OON(=O)=O +<br>OH   | $\rightarrow$               | HCHO + CO + NO2                                                         | $1.12 \times 10^{-12}$                                                            | МСМ                 | X |
| OCC(=0)OON(=0)=0           | $\xrightarrow{M}$           | OCC(=0)O[0] + NO2                                                       | $k_{tro}(1.1 \times 10^{-5}, 0, -10100,$<br>$1.9 \times 10^{17}, 0, -14100, 0.3)$ | MCM, IUPAC          | Х |
| OCC(=0)0[0] + CH3O2        | $\rightarrow$               | 1.9 HCHO + 1.8 HO2 + 0.1 CH2OHCOOH                                      | $2.0 \times 10^{-12} \times \exp(500/T)$                                          | Analog to CH3C(O)O2 | 2 |
| OCC(=0)O[O] +<br>CH3C(0)O2 | $\rightarrow$               | HCHO + HO2 + CH3O2                                                      | $2.9 \times 10^{-12} \times \exp(500/T)$                                          | Analog to CH3C(O)O2 | 2 |
| CH2OHCOOH + OH             | $\rightarrow$               | HCHO + HO2                                                              | $2.73 \times 10^{-12}$                                                            | МСМ                 | Х |
| GLY + OH                   | $\rightarrow$               | НСОСО                                                                   | $6.6 \times 10^{-18} \times T^2 \times \exp(820/T)$                               | IUPAC               | 4 |

| GLY + NO3                   | $\rightarrow$               | HCOCO + HNO3                                                            | $4.0 \times 10^{-16}$                                                                 | IUPAC                            | 4 |
|-----------------------------|-----------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------|---|
| НСОСО                       | 02                          | 0.12 O=CC(=O)O[O] + 0.64 OH + 1.12 CO + 0.24 HO2                        | $2.1 \times 10^{-11}$                                                                 | MCM for T=298K                   | 4 |
| НСОСО                       | $\rightarrow$               | 2 CO + HO2                                                              | $7 \times 10^{11} \times \exp(-3160/T)$                                               | МСМ                              | 4 |
| O=CC(=O)O[O] + HO2          | $\rightarrow$               | 0.13 HOOCCHO + 0.13 O3 + 0.37 O=C(OO)C=O + 0.5 HO2 + 0.5<br>CO + 0.5 OH | $2.11 \times 10^{-12} \times \exp(730/T)$                                             | 6                                | 2 |
| O=C(OO)C=O+OH               | $\rightarrow$               | O=CC(=O)O[O]                                                            | $2.13 \times 10^{-11} \times \exp(600/T)$                                             | <sup>12</sup> , MCM              | Х |
| O=CC(=O)O[O] + NO           | $\rightarrow$               | HO2 + CO + NO2                                                          | $7.5 \times 10^{-12} \times \exp(290/T)$                                              | MCM                              | 2 |
| O=CC(=O)O[O] + NO3          | $\rightarrow$               | HO2 + CO + NO2                                                          | $4.0 \times 10^{-12}$                                                                 | 3                                |   |
| O=CC(=O)O[O] + NO2          | $\xrightarrow{M}$           | HO2 + CO + NO3                                                          | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0,$<br>$1.125 \times 10^{-11}, -1.105, 0, 0.3)$ | MCM                              | 1 |
| O=CC(=O)O[O] + CH3O2        | $\rightarrow$               | 0.9 CO + 1.8 HO2 + HCHO + 0.1 HOOCCHO                                   | $2.0 \times 10^{-12} \times \exp(500/T)$                                              | Analog to CH3C(O)O2              | 2 |
| O=CC(=O)O[O] +<br>CH3C(O)O2 | $\rightarrow$               | CO + HO2 + CH3O2                                                        | $2.9 \times 10^{-12} \times \exp(500/T)$                                              | Analog to CH3C(O)O2              | 2 |
| HOOCCHO + OH                | $\rightarrow$               | CO + HO2                                                                | $1.81 \times 10^{-12} \times \exp(588/T)$                                             | <sup>15</sup> , MCM              | Х |
| HCOCH2OOH + OH              | $\rightarrow$               | 0.76 GLY + 0.76 OH + 0.24 CO + 0.24 HO2 + 0.24 HCHO                     | $7.24 \times 10^{-12} \times \exp(178/T)$                                             | <sup>12</sup> , MCM              | Х |
| CH3COOH + OH                | $\rightarrow$               | CH3O2                                                                   | $8.4 \times 10^{-20} \times T^2 \times \exp(1356/T)$                                  | IUPAC, MCM                       | Х |
| ETOH + OH                   | $\rightarrow$               | 0.95 CH3CHO + 0.95 HO2 + 0.05 EO2                                       | $6.7 \times 10^{-18} \times T^2 \times \exp(511/T)$                                   | IUPAC, MCM                       | Х |
| ETHLN + OH                  | $\rightarrow$               | NO3CH2CO3                                                               | $3.4 \times 10^{-12}$                                                                 | 1                                | Х |
| ETHLN + NO3                 | $\rightarrow$               | NO3CH2CO3 + HNO3                                                        | $1.4 \times 10^{-12} \times \exp(-1860/T)$                                            | 1                                | Х |
| NO3CH2CO3 + NO              | $\rightarrow$               | HCHO + 2 NO2                                                            | $7.5 \times 10^{-12} \times \exp(920/T)$                                              | 1                                | Х |
| NO3CH2CO3 + NO3             | $\rightarrow$               | HCHO + 2 NO2                                                            | $4.0 \times 10^{-12}$                                                                 | 1                                | Х |
| NO3CH2CO3 + NO2             | $\stackrel{M}{\rightarrow}$ | NO3CH2PAN                                                               | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$      | MCM                              | 1 |
| NO3CH2CO3 + HO2             | $\rightarrow$               | 0.63 HCHO + 0.63 NO2 + 0.37 OH + 0.13 O3 + 0.37<br>NO3CH2CO3H           | $2.8 \times 10^{-12} \times \exp(730/T)$                                              | 6                                | Х |
| NO3CH2CO3 + CH3O2           | $\rightarrow$               | 2 HCHO + NO2 + 0.9 HO2                                                  | $2.0 \times 10^{-12} \times \exp(500/T)$                                              | Analog to CH3C(O)O2<br>chemistry | Х |
| NO3CH2CO3 +<br>CH3C(O)O2    | $\rightarrow$               | HCHO + 2 NO2 + CH3O2                                                    | $2.9 \times 10^{-12} \times \exp(500/T)$                                              | Analog to CH3C(O)O2<br>chemistry | Х |
| NO3CH2CO3H + OH             | $\rightarrow$               | NO3CH2CO3                                                               | $3.63 \times 10^{-12}$                                                                | 1                                | Х |

| NO3CH2PAN      | $\stackrel{M}{\rightarrow}$ | NO3CH2CO3 + NO2   | $k_{tro}(1.1 	imes 10^{-5}, 0, -10100,$  | MCM | Х |
|----------------|-----------------------------|-------------------|------------------------------------------|-----|---|
|                |                             |                   | $1.9 \times 10^{17}$ , 0, $-14100$ , 0.3 | )   |   |
| NO3CH2PAN + OH | $\rightarrow$               | HCHO + CO + 2 NO2 | $1.12 \times 10^{-14}$                   | MCM | Х |

| C3 chemistry                 |                   |                                                                                                                                                                                                    |                                                                      |                                           | Τ |
|------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|---|
| С3Н6 + ОН                    | $\xrightarrow{M}$ | PO2                                                                                                                                                                                                | $k_{tro}(8 \times 10^{-27}, -3.5, 0, 3 \times 10^{-11}, -1, 0, 0.5)$ | <sup>3</sup> , IUPAC                      |   |
| C3H6 + O3                    | $\rightarrow$     | 1.02384 HCHO + 0.3246 OH + 0.432 CH3CHO + 0.523 CO +<br>0.4426 HO2 + 0.0684 H2 + 0.08778 HOCH2OOH + 0.11584 H2O2<br>+ 0.00798 HCOOH + 0.1 C + 0.05 CH3OH + 0.0715<br>CH3CH(OH)OOH + 0.0065 CH3COOH | $5.77 \times 10^{-15} \times \exp(-1880/T)$                          | 5                                         | 4 |
| C3H6 + NO3                   | $\rightarrow$     | PRONO3BO2                                                                                                                                                                                          | $4.6 \times 10^{-13} \times \exp(-1156/T)$                           | 3                                         |   |
| CH3CH(OH)OOH + OH            | $\rightarrow$     | CH3CH(OH)OO                                                                                                                                                                                        | $2.8 \times 10^{-11}$                                                | <sup>2</sup> for T=298                    | Х |
| CH3CH(OH)OO                  | $\rightarrow$     | HO2 + CH3CHO                                                                                                                                                                                       | $2.4 \times 10^{12} \times \exp(-7000/T)$                            | Analog to HOCH2OO                         | Х |
| CH3CH(OH)OO + NO             | $\rightarrow$     | CH3O2 + HCOOH + NO2                                                                                                                                                                                | $5.6 \times 10^{-12}$                                                | Analog to HOCH2OO                         | Х |
| CH3CH(OH)OO + HO2            | $\rightarrow$     | 0.3 CH3COOH + 0.2 OH + 0.2 HCOOH + 0.2 CH3O2 + 0.5<br>CH3CH(OH)OOH                                                                                                                                 | $5.6 \times 10^{-15} \times \exp(2300/T)$                            | Analog to HOCH2OO                         | Х |
| CH3CH(OH)OO +<br>CH3CH(OH)OO | $\rightarrow$     | 2 HCOOH + 2 CH3O2                                                                                                                                                                                  | $5.5 \times 10^{-12}$                                                | Analog to HOCH2OO                         | Х |
| PO2 + NO                     | $\rightarrow$     | CH3CHO + HCHO + HO2 + NO2                                                                                                                                                                          | $8 \times 10^{-12}$                                                  | 3                                         |   |
| PO2 + NO3                    | $\rightarrow$     | CH3CHO + HCHO + HO2 + NO2                                                                                                                                                                          | $2.3 \times 10^{-12}$                                                | MCM                                       | Х |
| PO2 + HO2                    | $\rightarrow$     | РООН                                                                                                                                                                                               | $7.5 \times 10^{-13} \times \exp(700/T)$                             | 3                                         |   |
| PO2 + CH3O2                  | $\rightarrow$     | 0.5 CH3CHO + 1.25 HCHO + HO2 + 0.5 CH3COCH2OH + 0.25<br>CH3OH                                                                                                                                      | 8.3×10 <sup>-13</sup>                                                | 3                                         |   |
| PO2 + CH3C(O)O2              | $\rightarrow$     | CH3CHO + HCHO + HO2 + CH3O2                                                                                                                                                                        | $1.0 \times 10^{-11}$                                                | 3                                         |   |
| POOH + OH                    | $\rightarrow$     | 0.14 PO2 + 0.86 OH + 0.86 CH3COCH2OH                                                                                                                                                               | $7.24 \times 10^{-13} \times \exp(1011/T)$                           | 3,12                                      | Х |
| CCC + OH                     | $\rightarrow$     | PROPPX                                                                                                                                                                                             | $1.65 \times 7 \times T^2 \times \exp(-87/T)$                        | <sup>3,</sup> IUPAC                       | Х |
| PROPPX + NO                  | $\rightarrow$     | 0.727 CH3COCH3 + NO2 + HO2 + 0.4095 CH3CHO                                                                                                                                                         | $2.7 \times 10^{-12} \times \exp(360/T)$                             | MCM (main path), ratios based on CCC + OH | Х |

|                            |               |                                                                               |                                              |                                                                                                 | - |
|----------------------------|---------------|-------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------|---|
|                            |               |                                                                               |                                              | distribution, C <sub>2</sub> H <sub>5</sub> CHO<br>approximated with 1.5<br>CH <sub>3</sub> CHO |   |
| PROPPX + HO2               | $\rightarrow$ | PROPOOH                                                                       | $7.5 \times 10^{-13} \times \exp(700/T)$     | 3                                                                                               |   |
| PROPPX + CH3O2             | $\rightarrow$ | HCHO + 2 HO2 + 0.727 CH3COCH3 + 0. 4095 CH3CHO                                | $3.75 \times 10^{-13} \times \exp(-40/T)$    | <sup>3</sup> , yields adopted from NO reaction                                                  | X |
| PROPPX + CH3C(O)O2         | $\rightarrow$ | CH3O2 + HO2 + 0.727 CH3COCH3 + 0. 4095 CH3CHO                                 | $1.0 \times 10^{-11}$                        | <sup>3</sup> , yields adopted from NO reaction                                                  | X |
| PROPOOH + OH               | $\rightarrow$ | 0.26 PROPPX + 0.55 CH3COCH3 + 0.74 OH + 0.285 CH3CHO                          | $2.27 \times 10^{-12} \times \exp(493/T)$    | <sup>12</sup> , MCM                                                                             | Х |
| CH3COCH3 + OH              | $\rightarrow$ | CC(=O)CO[O]                                                                   | $8.8 \times 10^{-12} \times \exp(-1320/T)$   | МСМ                                                                                             | Х |
| CH3COCH3 + OH              | $\rightarrow$ | CC(=O)CO[O]                                                                   | $1.7 \times 10^{-14} \times \exp(423/T)$     | MCM                                                                                             | Х |
| CC(=O)CO[O] + NO           | $\rightarrow$ | CH3C(O)O2 + HCHO + NO2                                                        | $2.9 \times 10^{-12} \times \exp(300/T)$     | <sup>3</sup> , IUPAC, MCM                                                                       |   |
| CC(=0)CO[0] + NO3          | $\rightarrow$ | CH3C(O)O2 + HCHO + NO2                                                        | $2.3 \times 10^{-12}$                        | МСМ                                                                                             | Х |
| CC(=O)CO[O] + HO2          | $\rightarrow$ | 0.15 CH3C(O)O2 + 0.15 HCHO + 0.15 OH + 0.85 CC(=O)COO                         | $1.36 \times 10^{-13} \times \exp(1250/T)$   | MCM                                                                                             | Х |
| CC(=O)CO[O] + CH3O2        | $\rightarrow$ | 0.3 CH3C(O)O2 + 0.2 CH3COCH2OH + 0.8 HCHO + 0.5 CH3OH + 0.3 HO2 + 0.5 MGLY    | $3.8 \times 10^{-12}$                        | IUPAC                                                                                           | X |
| CC(=O)CO[O] +<br>CH3C(O)O2 | $\rightarrow$ | 0.5 CH3COOH + 0.5 MGLY + 0.5 CH3O2 + 0.5 CH3C(O)O2 + 0.5<br>HCHO              | $5.0 \times 10^{-12}$                        | IUPAC                                                                                           | X |
| CC(=O)COO + OH             | $\rightarrow$ | 0.52 CC(=O)CO[O] + 0.48 MGLY + 0.48 OH                                        | $1.12 \times 10^{-12} \times \exp(500/T)$    | <sup>12</sup> , MCM                                                                             | Х |
| CH3COCOOH + OH             | $\rightarrow$ | CH3C(O)O2                                                                     | $4.9 \times 10^{-14} \times \exp(280/T)$     | IUPAC, MCM                                                                                      | Х |
| MGLY + OH                  | $\rightarrow$ | CH3C(O)O2 + CO                                                                | $1.9 \times 10^{-12} \times \exp(575/T)$     | MCM                                                                                             | Х |
| MGLY + NO3                 | $\rightarrow$ | CH3C(O)O2 + CO + HNO3                                                         | $5.0 \times 10^{-16}$                        | IUPAC, MCM                                                                                      | Х |
| CH3COCH2OH + OH            | $\rightarrow$ | MGLY + HO2                                                                    | $1.083 \times 10^{-12} \times \exp(307/T)$   | <sup>12</sup> , MCM                                                                             | Х |
| PRONO3BO2 + NO             | $\rightarrow$ | 0.83 HO2 + 0.83 NOA + 0.17 HCHO + 0.17 CH3CHO + 1.17 NO2                      | $2.7 \times 10^{-12} \times \exp(360/T)$     | <sup>3</sup> , MCM                                                                              | Х |
| PRONO3BO2 + NO3            | $\rightarrow$ | 0.83 HO2 + 0.83 NOA + 0.17 HCHO + 0.17 CH3CHO + 1.17 NO2                      | $2.3 \times 10^{-12}$                        | <sup>3</sup> , MCM                                                                              | Х |
| PRONO3BO2 + HO2            | $\rightarrow$ | PR2O2HNO3                                                                     | $1.5132 \times 10^{-13} \times \exp(1300/T)$ | <sup>3</sup> , MCM                                                                              | Х |
| PRONO3BO2 + CH3O2          | $\rightarrow$ | 0.915 HO2 + 0.915 NOA + 0.835 HCHO + 0.085 CH3CHO + 0.25<br>CH3OH + 0.085 NO2 | $1.0 \times 10^{-12}$                        | <sup>3</sup> added NO2                                                                          | Х |
| PRONO3BO2 +<br>CH3C(O)O2   | $\rightarrow$ | 0.83 HO2 + 0.83 NOA + 0.17 HCHO + 0.17 CH3CHO + 0.17 NO2 + CH3O2              | $1.0 \times 10^{-11}$                        | 3                                                                                               |   |

| PR2O2HNO3 + OH           | $\rightarrow$     | 0.5 PRONO3BO2 + 0.5 NOA + 0.5 OH            | $7.0 \times 10^{-12}$                                                            | 3                   |   |
|--------------------------|-------------------|---------------------------------------------|----------------------------------------------------------------------------------|---------------------|---|
| NOA + OH                 | $\rightarrow$     | MGLY + NO2                                  | $8.24 \times 10^{-13} \times \exp(-351/T)$                                       | 3,12                | Х |
| HCOCOHCO3 + HO2          | $\rightarrow$     | 0.5 HO2 + 0.5 OH + 0.5 GLY + 0.5 HCOCOHCO3H | $2.62 \times 10^{-12} \times \exp(730/T)$                                        | <sup>6</sup> , MCM  | Х |
| HCOCOHCO3 + NO           | $\rightarrow$     | HO2 + GLY + NO2                             | $7.5 \times 10^{-12} \times \exp(290/T)$                                         | MCM                 | Х |
| HCOCOHCO3 + NO2          | $\xrightarrow{M}$ | HCOCOHPAN                                   | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$ | MCM                 | 1 |
| HCOCOHCO3 + NO3          | $\rightarrow$     | HO2 + GLY + NO2                             | $4.0 \times 10^{-12}$                                                            | MCM                 | Х |
| HCOCOHCO3 + CH3O2        | $\rightarrow$     | HCHO + 2 HO2 + GLY                          | $2.0 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2 | Х |
| HCOCOHCO3 +<br>CH3C(O)O2 | $\rightarrow$     | HO2 + GLY + CH3O2                           | $2.9 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2 | Х |
| HCOCOHCO3H + OH          | $\rightarrow$     | НСОСОНСО3                                   | $5.44 \times 10^{-12} \times \exp(406/T)$                                        | <sup>12</sup> , MCM | Х |
| HCOCOHPAN + OH           | $\rightarrow$     | GLY + CO + NO2                              | $6.97 \times 10^{-11}$                                                           | MCM                 | Х |
| HCOCOHPAN                | $\xrightarrow{M}$ | HCOCOHCO3 + NO2                             | $k_{tro}(1.1 \times 10^{-5}, 0, -10100, 1.9 \times 10^{17}, 0, -14100, 0.3)$     | MCM                 | Х |
| C33CO + OH               | $\rightarrow$     | 3 CO + HO2                                  | $3.55 \times 10^{-12} \times \exp(591/T)$                                        | <sup>12</sup> , MCM | Х |

| C4 chemistry      |               |                                                                                |                                          |                                                                                  |   |
|-------------------|---------------|--------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|---|
| BIGENE + OH       | $\rightarrow$ | ENEO2                                                                          | $5.4 \times 10^{-11}$                    | 3                                                                                |   |
| ENEO2 + NO        | $\rightarrow$ | CH3CHO + 0.5 HCHO + 0.5 CH3COCH3 + HO2 + NO2                                   | $4.2 \times 10^{-12} \times \exp(180/T)$ | 3                                                                                |   |
| ENEO2 + HO2       | $\rightarrow$ | 1.333 POOH                                                                     | $7.5 \times 10^{-13} \times \exp(700/T)$ | 3                                                                                |   |
| ENEO2 + CH3O2     | $\rightarrow$ | 0.665 CH3COCH2OH + 0.5 CH3OH + 0.5 CH3CHO + 0.25<br>CH3COCH3 + 0.75 HCHO + HO2 | $1.0 \times 10^{-12}$                    | 3                                                                                |   |
| ENEO2 + CH3C(O)O2 | $\rightarrow$ | CH3CHO + 0.5 HCHO + 0.5 CH3COCH3 + HO2 + CH3O2                                 | $1.0 \times 10^{-11}$                    | 3                                                                                |   |
| MEK + OH          | $\rightarrow$ | 0.294 MEKAO2 + 0.62 MEKBO2 + 0.086 MEKCO2                                      | $1.5 \times 10^{-12} \times \exp(-90/T)$ | <sup>12</sup> , IUPAC, MCM                                                       | Х |
| MEKAO2 + NO3      | $\rightarrow$ | NO2 + 0.5 HCHO + 0.5 HO2 + 0.5 CO2C3CHO + 0.5 EO2                              | $2.3 \times 10^{-12}$                    | MCM                                                                              | Х |
| MEKBO2 + NO3      | $\rightarrow$ | CH3CHO + CH3C(O)O2 + NO2                                                       | $2.3 \times 10^{-12}$                    | MCM                                                                              | Х |
| MEKCO2 + NO3      | $\rightarrow$ | NO2 + HCHO + 1.5 CH3C(O)O2                                                     | 2.3×10 <sup>-12</sup>                    | MCM, $C_2H_5CO_3$<br>approximated with 1.5<br>CH <sub>3</sub> C(O)O <sub>2</sub> | Х |

| MEKAO2 + NO        | $\rightarrow$ | 0.967 NO2 + 0.4835 HCHO + 0.4835 HO2 + 0.4835 CO2C3CHO + 0.4835 EO2 + 0.033 MEKANO3 | $2.7 \times 10^{-12} \times \exp(360/T)$      | МСМ                                                                                                                                                                 | X |
|--------------------|---------------|-------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| MEKBO2 + NO        | $\rightarrow$ | CH3CHO + CH3C(O)O2 + NO2                                                            | $2.7 \times 10^{-12} \times \exp(360/T)$      | MCM                                                                                                                                                                 | Х |
| MEKCO2 + NO        | $\rightarrow$ | NO2 + HCHO + 1.5 CH3C(O)O2                                                          | $2.7 \times 10^{-12} \times \exp(360/T)$      | MCM, $C_2H_5CO_3$<br>approximated with 1.5<br>CH <sub>3</sub> C(O)O <sub>2</sub>                                                                                    | Х |
| MEKANO3 + OH       | $\rightarrow$ | NO2 + CO2C3CHO                                                                      | $1.5 \times 10^{-12}$                         | <sup>12</sup> , MCM                                                                                                                                                 | Х |
| MEKAO2 + HO2       | $\rightarrow$ | MEKAOOH                                                                             | $1.81875 \times 10^{-13} \times \exp(1300/T)$ | MCM                                                                                                                                                                 | Х |
| MEKBO2 + HO2       | $\rightarrow$ | MEKBOOH                                                                             | $1.81875 \times 10^{-13} \times \exp(1300/T)$ | MCM                                                                                                                                                                 | Х |
| MEKCO2 + HO2       | $\rightarrow$ | MEKCOOH                                                                             | $1.81875 \times 10^{-13} \times \exp(1300/T)$ | MCM                                                                                                                                                                 | Х |
| MEKAOOH + OH       | $\rightarrow$ | OH + CO2C3CHO                                                                       | $1.1 \times 10^{-13} \times \exp(1359/T)$     | <sup>12</sup> , MCM                                                                                                                                                 | Х |
| MEKAOOH + OH       | $\rightarrow$ | MEKAO2                                                                              | $0.368 \times 10^{-12} \times \exp(635/T)$    | <sup>12</sup> , MCM                                                                                                                                                 | Х |
| MEKBOOH + OH       | $\rightarrow$ | OH + 2 CH3C(O)O2                                                                    | $6.08 \times 10^{-13} \times \exp(678/T)$     | <sup>12</sup> , MCM                                                                                                                                                 | Х |
| MEKBOOH + OH       | $\rightarrow$ | MEKBO2                                                                              | $0.368 \times 10^{-12} \times \exp(635/T)$    | <sup>12</sup> , MCM                                                                                                                                                 | Х |
| MEKCOOH + OH       | $\rightarrow$ | CO + 1.33 MGLY                                                                      | 1.46×10 <sup>-12</sup> ×exp (298/ <i>T</i> )  | <sup>12</sup> , MCM; EGLYOX<br>approximated with 1.33<br>MGLY                                                                                                       | Х |
| MEKCOOH + OH       | $\rightarrow$ | MEKCO2                                                                              | $0.368 \times 10^{-12} \times \exp(635/T)$    | <sup>12</sup> , MCM                                                                                                                                                 | Х |
| MEKAO2 + CH3O2     | $\rightarrow$ | 0.2 CH3OH + 0.6 HO2 + 0.8 HCHO + 0.2 MEKAOH + 0.5<br>CO2C3CHO + 0.3 HCHO + 0.3 EO2  | $1.0 \times 10^{-12}$                         | RO <sub>2</sub> chemistry                                                                                                                                           | Х |
| MEKBO2 + CH3O2     | $\rightarrow$ | 0.2 CH3OH + 0.6 HO2 + 0.2 MEKBOH + 0.8 HCHO + CH3C(O)O2 + 0.6 CH3CHO                | $1.0 \times 10^{-12}$                         | RO <sub>2</sub> chemistry                                                                                                                                           | Х |
| MEKCO2 + CH3O2     | $\rightarrow$ | 0.5 CH3OH + 0.3 HO2 + 0.2 MEKCOH + 0.8 HCHO + 0.67 MGLY<br>+ 0.45 CH3C(O)O2         | 3.8×10 <sup>-12</sup>                         | Analog to CC(=O)CO[O],<br>EGLYOX approximated<br>with 1.33 MGLY and<br>C <sub>2</sub> H <sub>5</sub> CO <sub>3</sub> with 1.5<br>CH <sub>3</sub> C(O)O <sub>2</sub> | X |
| MEKAO2 + CH3C(O)O2 | $\rightarrow$ | 0.4 EO2 + 0.4 HCHO + 0.6 CO2C3CHO + 0.4 HO2 + 0.8 CH3O2 + 0.2 CH3COOH               | $1.0 \times 10^{-11}$                         | RO <sub>2</sub> chemistry                                                                                                                                           | Х |
| MEKBO2 + CH3C(O)O2 | $\rightarrow$ | 0.8 CH3CHO + 1.2 CH3C(O)O2 + 0.8 CH3O2 + 0.2 CH3COOH                                | $1.0 \times 10^{-11}$                         | RO <sub>2</sub> chemistry                                                                                                                                           | Х |
| MEKCO2 + CH3C(O)O2 | $\rightarrow$ | 0.5 HCHO + 0.75 CH3C(O)O2 + 0.67 MGLY + 0.5 CH3O2 + 0.5<br>CH3COOH                  | $5.0 \times 10^{-12}$                         | Analog to CC(=O)CO[O],<br>EGLYOX approximated                                                                                                                       | X |

|                 |                   |                                                                                                            |                                                                                  | with 1.33 MGLY and $C_2H_5CO_3$ with 1.5 $CH_3C(O)O_2$        |   |
|-----------------|-------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|---|
| MEKAOH + OH     | $\rightarrow$     | HO2 + CO2C3CHO                                                                                             | $1.334 \times 10^{-13} \times \exp(1334/T)$                                      | <sup>12</sup> , MCM                                           | Х |
| MEKBOH + OH     | $\rightarrow$     | HO2 + 2 CH3C(O)O2                                                                                          | $7.3 \times 10^{-13} \times \exp(628/T)$                                         | <sup>12</sup> , MCM                                           | Х |
| MEKCOH + OH     | $\rightarrow$     | HO2 + 1.33 MGLY                                                                                            | $1.66 \times 10^{-12} \times \exp(270/T)$                                        | <sup>12</sup> , MCM, EGLYOX<br>approximated with 1.33<br>MGLY | X |
| CO2C3CHO + NO3  | $\rightarrow$     | CC(=O)CO[O] + HNO3                                                                                         | $5.76 \times 10^{-12} \times \exp(-1862/T)$                                      | MCM                                                           | Х |
| CO2C3CHO + OH   | $\rightarrow$     | CC(=O)CO[O]                                                                                                | $5.57 \times 10^{-12} \times \exp(-405/T)$                                       | <sup>12</sup> , MCM                                           | Х |
| MACR + O3       | $\rightarrow$     | 0.88 MGLY + 0.12 CH3C(O)O2 + 0.12 CO + 0.12 OH + 0.044<br>HCOOH + 0.472 HCHO + 0.352 H2O2 + 0.484 HOCH2OOH | $1.4 \times 10^{-15} \times \exp(-2100/T)$                                       | 1                                                             | 5 |
| MACR + OH       | $\rightarrow$     | 0.964 MACRO2 + 0.036 CC(=O)COO + 0.036 CO + 0.036 HO2                                                      | $4.4 \times 10^{-12} \times \exp(380/T)$                                         | 1                                                             | 5 |
| MACR + OH       | $\rightarrow$     | MCO3                                                                                                       | $2.7 \times 10^{-12} \times \exp(470/T)$                                         | 1                                                             | 5 |
| MACR + NO3      | $\rightarrow$     | 0.32 HNO3 + 0.32 MCO3 + 0.68 OH + 0.68 CO + 0.68 NOA                                                       | $1.8 \times 10^{-13} \times \exp(-1190/T)$                                       | 1                                                             | 5 |
| MACRO2 + NO     | $\rightarrow$     | 0.03 MACR2N3OH + 0.97 NO2 + 0.8342 CO + 0.8342<br>CH3COCH2OH + 0.1358 HCHO + 0.1358 MGLY + 0.8342 HO2      | $2.7 \times 10^{-12} \times \exp(360/T)$                                         | 1                                                             | 5 |
| MACRO2 + NO3    | $\rightarrow$     | NO2 + 0.85 CO + 0.85 CH3COCH2OH + 0.15 HCHO + 0.15 MGLY<br>+ HO2                                           | $2.3 \times 10^{-12}$                                                            | MCM                                                           | 5 |
| MACRN + OH      | $\rightarrow$     | NOA + OH                                                                                                   | $2.7 \times 10^{-12} \times \exp(470/T)$                                         | 1                                                             | 5 |
| MACR2N3OH + OH  | $\rightarrow$     | MACRNO2                                                                                                    | 1.39×10 <sup>-11</sup> ×exp (380/ <i>T</i> )                                     | 1                                                             | Х |
| MACRNO2 + HO2   | $\rightarrow$     | 0.63 CH3COCH2OH + 0.37 OH + 0.63 NO2 + 0.13 O3 + 0.37<br>MACR2NOOH                                         | $3.14 \times 10^{-12} \times \exp(580/T)$                                        | 1,6                                                           | Х |
| MACR2NOOH + OH  | $\rightarrow$     | MACRNO2                                                                                                    | $4.42 \times 10^{-12}$                                                           | 1                                                             | Х |
| MACRNO2 + NO    | $\rightarrow$     | CH3COCH2OH + 2NO2                                                                                          | $7.5 \times 10^{-12} \times \exp(290/T)$                                         | 1                                                             | Х |
| MACRNO2 + NO3   | $\rightarrow$     | CH3COCH2OH + 2NO2                                                                                          | $4.0 \times 10^{-12}$                                                            | 1                                                             | Х |
| MACRNO2 + NO2   | $\xrightarrow{M}$ | MPAN + NO2                                                                                                 | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$ | <sup>1</sup> (mini)                                           | 1 |
| MACRNO2 + CH3O2 | $\rightarrow$     | CH3COCH2OH + NO2 + 0.7 HO2 + HCHO                                                                          | $2.9 \times 10^{-12} \times \exp(500/T)$                                         | <sup>1</sup> , CH3C(O)O2 chemistry                            | Х |
| MACRO2 + HO2    | $\rightarrow$     | 0.41 MACROOH + 0.507 CO + 0.507 CH3COCH2OH + 0.507 HO2<br>+ 0.59 OH + 0.083 HCHO + 0.083 MGLY              | $2.12 \times 10^{-13} \times \exp(1300/T)$                                       | <sup>1</sup> , CH3C(O)O2 chemistry                            | 5 |

| MACROOH + OH       | $\rightarrow$               | CH3COCH2OH + OH + CO                                                                                                               | 3.77×10 <sup>-11</sup>                                                           | МСМ                 | 5 |
|--------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|---|
| MACRO2 + CH3O2     | $\rightarrow$               | 0.75 CO + 0.75 CH3COCH2OH + HCHO + 1.5 HO2 + 0.25<br>MACROH                                                                        | $9.2 \times 10^{-14}$                                                            | 3                   |   |
| MACROH + OH        | $\rightarrow$               | 0.16 C3MDIALOH + HO2 + 0.21 CH3COCH2OH + 0.84 CO + 0.63<br>OH + 0.63 CH3C(O)O2                                                     | $2.4 \times 10^{-11} \times \exp(70/T)$                                          | 1                   | 5 |
| MVKOH + OH         | $\rightarrow$               | 0.4 CO2C3CHO + 0.6 BIACETOH + HO2                                                                                                  | $8.7 \times 10^{-12} \times \exp(70/T)$                                          | 1                   | 5 |
| MACRO2 + CH3C(O)O2 | $\rightarrow$               | 0.85 CO + 0.85 CH3COCH2OH + 0.15 HCHO + 0.15 MGLY + HO2<br>+ CH3O2                                                                 | $1.0 \times 10^{-11}$                                                            | 3                   |   |
| MACRO2             | $\rightarrow$               | CO + CH3COCH2OH + OH                                                                                                               | $2.9 \times 10^7 \times \exp(-5297/T)$                                           | 1                   | 5 |
| MCO3 + NO          | $\rightarrow$               | NO2 + HCHO + 0.35 CH3C(O)O2 + 0.65 CH3O2 + 0.65 CO                                                                                 | $8.7 \times 10^{-12} \times \exp(290/T)$                                         | 1                   | 5 |
| MCO3 + NO3         | $\rightarrow$               | NO2 + HCHO + 0.35 CH3C(O)O2 + 0.65 CH3O2 + 0.65 CO                                                                                 | $4.0 \times 10^{-12}$                                                            | 3                   |   |
| MCO3 + HO2         | $\rightarrow$               | 0.37 MACO3H + 0.13 O3 + 0.13 MACO2H + 0.5 OH + 0.5 HCHO + 0.325 CH3O2 + 0.325 CO + 0.175 CH3C(O)O2                                 | $2.39 \times 10^{-12} \times \exp(730/T)$                                        | 1,6                 | 2 |
| MCO3 + CH3O2       | $\rightarrow$               | 0.1 MACO2H + 1.9 HCHO + 0.9 HO2 + 0.315 CH3C(O)O2 + 0.585<br>CH3O2 + 0.585 CO                                                      | $2.0 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2 | 2 |
| MCO3 + CH3C(O)O2   | $\rightarrow$               | HCHO + 0.35 CH3C(O)O2 + 1.65 CH3O2 + 0.65 CO                                                                                       | $2.9 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2 | 2 |
| MCO3 + NO2         | $\stackrel{M}{\rightarrow}$ | MPAN                                                                                                                               | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$ | МСМ                 | 1 |
| MPAN               | $\rightarrow$               | MCO3 + NO2                                                                                                                         | $1.58 \times 10^{16} \times \exp(-13500/T)$                                      | 1                   | 5 |
| MPAN + OH          | $\rightarrow$               | 0.25 CH3COCH2OH + NO3 + 0.25 CO + 0.75 HMML                                                                                        | $2.9 \times 10^{-11}$                                                            | 1                   | 5 |
| MPAN + O3          | $\rightarrow$               | HCHO + CH3C(O)O2 + NO3                                                                                                             | $8.2 \times 10^{-18}$                                                            | MCM                 | 5 |
| MACO2H + OH        | $\rightarrow$               | HCHO + CH3C(O)O2                                                                                                                   | $1.51 \times 10^{-11}$                                                           | 3                   |   |
| MACO3H + OH        | $\rightarrow$               | 0.212 MCO3 + 0.134 HMML + 0.654 CH3COCH2OH + 0.654 CO + 0.788 OH                                                                   | $1.66 \times 10^{-11}$                                                           | МСМ                 | 5 |
| HMML + OH          | $\rightarrow$               | 0.3 CH3C(O)O2 + 0.3 HCOOH + 0.7 OH + 0.7 MGLY                                                                                      | $4.33 \times 10^{-12}$                                                           | 1                   | 5 |
| MVK + O3           | $\rightarrow$               | 0.545 MGLY + 0.38 CH3C(O)O2 + 0.1 HO2 + 0.08 OH + 0.18 CO + 0.075 CH3COCOOH + 0.8 HCHO + 0.245 H2O2 + 0.275 HOCH2OOH + 0.025 HCOOH | $8.5 \times 10^{-16} \times \exp(-1520/T)$                                       | 1,7                 | 5 |
| MVK + OH           | $\rightarrow$               | LHMVKABO2                                                                                                                          | $2.6 \times 10^{-12} \times \exp(610/T)$                                         | 1                   | 5 |
| LHMVKABO2 + NO     | $\rightarrow$               | 0.04 MVKN + 0.96 NO2 + 0.23232 HCHO + 0.23232 MGLY + 0.23232 HO2 + 0.72768 CH3C(O)O2 + 0.72768 OHCCH2OH                            | $2.7 \times 10^{-12} \times \exp(360/T)$                                         | <sup>1</sup> (mini) | 5 |

| MVKN + OH                | $\rightarrow$     | 0.449 MGLY + 0.449 HCOOH + 0.69 NO3 + 0.241 HCHO + 0.241<br>CH3COCOOH + 0.29 CO2H3CHO + 0.31 NO2 + 0.04 MCO3 + 0.02<br>OH     | $1.24 \times 10^{-12} \times \exp(380/T)$                                        | <sup>1</sup> (mini)                                              | 5 |
|--------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|---|
| LHMVKABO2 + NO3          | $\rightarrow$     | NO2 + 0.242 HCHO + 0.242 MGLY + 0.242 HO2 + 0.758<br>CH3C(O)O2 + 0.758 OHCCH2OH                                               | $2.5 \times 10^{-12}$                                                            | MCM                                                              | 5 |
| LHMVKABO2 + HO2          | $\rightarrow$     | 0.335 LHMVKABOOH + 0.36 CH3C(O)O2 + 0.665 OH + 0.36<br>OHCCH2OH + 0.305 HO2 + 0.05 MGLY + 0.05 HCHO + 0.255<br>BIACETOH       | $2.12 \times 10^{-13} \times \exp(1300/T)$                                       | <sup>1</sup> (mini)                                              | 5 |
| LHMVKABOOH + OH          | $\rightarrow$     | OH + 0.53 BIACETOH + 0.47 CO2H3CHO                                                                                            | $5.77 \times 10^{-11}$                                                           | <sup>1</sup> (mini)                                              | 5 |
| LHMVKABO2 + CH3O2        | $\rightarrow$     | 0.9 HCHO + 0.35 OHCCH2OH + 0.65 HO2 + 0.35 CH3C(O)O2 + 0.175 BIACETOH + 0.25 CH3OH + 0.25 MACROH + 0.25 MGLY + 0.075 CO2H3CHO | $1.0 \times 10^{-12}$                                                            | 3                                                                |   |
| LHMVKABO2 +<br>CH3C(O)O2 | $\rightarrow$     | 0.3 HCHO + 0.3 MGLY + 0.3 HO2 + 0.7 CH3C(O)O2 + 0.7<br>OHCCH2OH + CH3O2                                                       | $1.0 \times 10^{-11}$                                                            | 3                                                                |   |
| BIACETOH + OH            | $\rightarrow$     | HO2 + CH3C(O)O2 + 2 CO                                                                                                        | $2.0 \times 10^{-12} \times \exp(70/T)$                                          | 1                                                                | 5 |
| CO2H3CHO + OH            | $\rightarrow$     | HO2 + MGLY                                                                                                                    | $5.0 \times 10^{-12} \times \exp(470/T)$                                         | <sup>1</sup> (for sens. study<br>CO2H3CO3 pathways are<br>added) | 5 |
| CO2H3CHO + NO3           | $\rightarrow$     | HO2 + MGLY + HNO3                                                                                                             | $5.6 \times 10^{-12} \times \exp(-1860/T)$                                       | MCM                                                              | 5 |
| MALO2 + NO               | $\rightarrow$     | 0.4 GLY + HO2 + 0.4 CO + 0.6 MALANHY + NO2                                                                                    | $7.5 \times 10^{-12} \times \exp(290/T)$                                         | MCM                                                              | Х |
| MALO2 + HO2              | $\rightarrow$     | 0.2 GLY + 0.3 MALANHY + 0.5 HO2 + 0.2 CO + 0.5 OH + 0.13 O3<br>+ 0.13 BIGACID1 + 0.37 MALOOH                                  | $2.62 \times 10^{-12} \times \exp(730/T)$                                        | 6                                                                | 2 |
| MALOOH + OH              | $\rightarrow$     | MALO2                                                                                                                         | $4.0 \times 10^{-11}$                                                            | MCM                                                              | Х |
| MALO2 + NO2              | $\xrightarrow{M}$ | MALPAN                                                                                                                        | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$ | MCM                                                              | 1 |
| MALPAN + OH              | $\rightarrow$     | GLY + 2 CO + NO2                                                                                                              | $3.7 \times 10^{-11}$                                                            | MCM                                                              | Х |
| MALPAN                   | $\xrightarrow{M}$ | NO2 + MALO2                                                                                                                   | $k_{tro}(1.1 \times 10^{-5}, 0, -10100, 1.9 \times 10^{17}, 0, -14100, 0.3)$     | MCM                                                              | Х |
| MALO2 + NO3              | $\rightarrow$     | 0.4 GLY + HO2 + 0.4 CO + 0.6 MALANHY + NO2                                                                                    | $4.0 \times 10^{-12}$                                                            | MCM                                                              | Х |
| MALO2 + CH3O2            | $\rightarrow$     | 0.36 GLY + 0.9 HO2 + 0.9 HO2 + 0.36 CO + 0.54 MALANHY +<br>HCHO + 0.1 BIGACID1                                                | $2.0 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2                                              | 2 |
| MALO2 + CH3C(O)O2        | $\rightarrow$     | 0.4 GLY + HO2 + 0.4 CO + 0.6 MALANHY + CH3O2                                                                                  | $2.9 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2                                              | 2 |

| MALANHY + OH              | $\rightarrow$     | MALANHYO2                                                              | $1.4 \times 10^{-12}$                                                            | MCM                   | Х |
|---------------------------|-------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|---|
| MALANHYO2 + HO2           | $\rightarrow$     | MALANHYOOH                                                             | $1.8125 \times 10^{-13} \times \exp(1300/T)$                                     | MCM                   | Х |
| MALANHYO2 + NO            | $\rightarrow$     | NO2 + HCOCOHCO3                                                        | $2.7 \times 10^{-12} \times \exp(360/T)$                                         | MCM                   | Х |
| MALANHYO2 + NO3           | $\rightarrow$     | NO2 + HCOCOHCO3                                                        | $2.3 \times 10^{-12}$                                                            | MCM                   | Х |
| MALANHYO2 + CH3O2         | $\rightarrow$     | 0.3 HCOCOHCO3 + 0.3 HO2 + 0.5 HCHO + 0.5 CH3OH + 0.8<br>MALANHYCO      | $3.8 \times 10^{-12}$                                                            | Analog to CC(=O)C=[O] | X |
| MALANHYO2 +<br>CH3C(O)O2  | $\rightarrow$     | 0.5 HCOCOHCO3 + 0.5 CH3O2 + 0.5 CH3COOH + 0.5<br>MALANHYCO             | $5.0 \times 10^{-12}$                                                            | Analog to CC(=O)CO[O] | Х |
| MALANHYCO + OH            | $\rightarrow$     | 3 CO + HO2                                                             | $5.68 \times 10^{-12}$                                                           | MCM                   | Х |
| MALANHYOOH + OH           | $\rightarrow$     | MALANHYCO + OH                                                         | $4.66 \times 10^{-11}$                                                           | MCM                   | Х |
| IBUTALOH + OH             | $\rightarrow$     | IBUTALOHO2                                                             | $1.4 \times 10^{-11}$                                                            | 3                     |   |
| IBUTALOHO2 + NO           | $\rightarrow$     | HO2 + CH3COCH3 + NO2                                                   | $7.5 \times 10^{-12} \times \exp(290/T)$                                         | MCM                   | Х |
| IBUTALOHO2 + NO3          | $\rightarrow$     | HO2 + CH3COCH3 + NO2                                                   | $4.0 \times 10^{-12}$                                                            | MCM                   | Х |
| IBUTALOHO2 + HO2          | $\rightarrow$     | 0.37 IBUTALOHOOH + 0.5 CH3COCH3 + 0.5 OH + 0.13<br>IBUTALOOH + 0.13 O3 | $2.62 \times 10^{-12} \times \exp(730/T)$                                        | 6                     | Х |
| IBUTALOOH + OH            | $\rightarrow$     | CH3COCH3 + HO2                                                         | $4.66 \times 10^{-13} \times \exp(326/T)$                                        | <sup>12</sup> , MCM   | Х |
| IBUTALOHOOH + OH          | $\rightarrow$     | IBUTALOHO2                                                             | $7.513 \times 10^{-13} \times \exp(494/T)$                                       | <sup>12</sup> , MCM   | Х |
| IBUTALOHO2 + CH3O2        | $\rightarrow$     | HCHO + 1.8 HO2 + 0.9 CH3COCH3 + 0.1 IBUTALOOH                          | $2.0 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2   | Х |
| IBUTALOHO2 +<br>CH3C(O)O2 | $\rightarrow$     | HO2 + CH3COCH3 + CH3O2                                                 | $2.9 \times 10^{-12} \times \exp(500/T)$                                         | Analog to CH3C(O)O2   | Х |
| IBUTALOHO2 + NO2          | $\xrightarrow{M}$ | C4PAN5                                                                 | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$ | MCM                   | 1 |
| C4PAN5 + OH               | $\rightarrow$     | CH3COCH3 + CO + NO2                                                    | $4.75 \times 10^{-13}$                                                           | MCM                   | Х |
| C4PAN5                    | $\xrightarrow{M}$ | IBUTALOHO2 + NO2                                                       | $k_{tro}(1.1 \times 10^{-5}, 0, -10100, 1.9 \times 10^{17}, 0, -14100, 0.3)$     | MCM                   | Х |
| HVMK + OH                 | $\rightarrow$     | 0.25 CO2H3CHO + 0.25 HO2 + 0.75 OH + 0.75 MGLY + 0.75<br>HCOOH         | $3.35 \times 10^{-12} \times \exp(983/T)$                                        | 1                     | X |
| MACRENOL + OH             | $\rightarrow$     | CO + 0.87 CH3COCOOH + 0.87 HO2 + 0.13 OH + 0.13<br>CH3C(O)O2           | $3.83 \times 10^{-12} \times \exp(983/T)$                                        | 1                     | Х |
| C3MDIALOH + OH            | $\rightarrow$     | OH + CO + HO2 + CH3C(O)O2                                              | $5.0 \times 10^{-12} \times \exp(470/T)$                                         | 1                     | Х |

| BIGALD1 + OH             | $\rightarrow$ | 0.83 MALO2 + 0.34 GLY + 0.17 HO2                                                       | $5.2 \times 10^{-11}$                        | MCM                 | Х |
|--------------------------|---------------|----------------------------------------------------------------------------------------|----------------------------------------------|---------------------|---|
| BIGALD1 + NO3            | $\rightarrow$ | MALO2 + HNO3                                                                           | $5.6 \times 10^{-12} \times \exp(-1862/T)$   | MCM                 | Х |
| BIGALD1 + O3             | $\rightarrow$ | 1.0675 GLY + 0.125 HCHO + 0.57 OH + 0.82 HO2 + 1.265 CO + 0.1125 HOOCCHO + 0.0675 H2O2 | $2.0 \times 10^{-18}$                        | МСМ                 | Х |
| HOCOC4DIAL + OH          | $\rightarrow$ | HO2 + CO2C4DIAL                                                                        | $3.67 \times 10^{-11}$                       | MCM                 | Х |
| CO2C4DIAL + OH           | $\rightarrow$ | HO2 + 4 CO                                                                             | $3.55 \times 10^{-12} \times \exp(591/T)$    | <sup>12</sup> , MCM | Х |
| BIGACID1 + OH            | $\rightarrow$ | 0.4 GLY + HO2 + 0.4 CO + 0.6 MALANHY                                                   | 3.7×10 <sup>-11</sup>                        | MCM                 | Х |
| BZFUONE + NO3            | $\rightarrow$ | HNO3 + BZFUONEO2                                                                       | $3.0 \times 10^{-13}$                        | MCM                 | Х |
| BZFUONE + OH             | $\rightarrow$ | BZFUONEO2                                                                              | $4.45 \times 10^{-11}$                       | MCM                 | Х |
| BZFUONEO2 + HO2          | $\rightarrow$ | BZFUONEOOH                                                                             | $2.05 \times 10^{-13} \times \exp(1300/T)$   | MCM                 | Х |
| BZFUONEO2 + NO           | $\rightarrow$ | NO2 + BZFUO + HO2                                                                      | $2.7 \times 10^{-12} \times \exp(360/T)$     | MCM                 | Х |
| BZFUONEO2 + NO3          | $\rightarrow$ | NO2 + BZFUO + HO2                                                                      | $2.3 \times 10^{-12}$                        | MCM                 | Х |
| BZFUONEO2 + CH3O2        | $\rightarrow$ | BZFUO + 2 HO2 + HCHO                                                                   | $1.0 \times 10^{-12}$                        | MCM, RO2 chemistry  | Х |
| BZFUONEO2 +<br>CH3C(O)O2 | $\rightarrow$ | BZFUO + HO2 + CH3O2                                                                    | $1.0 \times 10^{-11}$                        | MCM, RO2 chemistry  | Х |
| BZFUONEOOH + OH          | $\rightarrow$ | BZFUONEO2                                                                              | $3.68 \times 10^{-11}$                       | MCM                 | Х |
| BZFUO + NO3              | $\rightarrow$ | HNO3 + 2 CO + HO2 + HCHO                                                               | $11.52 \times 10^{-12} \times \exp(-1862/T)$ | MCM                 | Х |
| BZFUO + OH               | $\rightarrow$ | 2  CO + HO2 + HCHO                                                                     | $3.44 \times 10^{-11}$                       | MCM                 | Х |

| C5 chemistry  |                                                                                                                                                                                                 |                                                    |   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---|
| MDIALO2 + NO  | → $0.825 \text{ HO2} + 0.175 \text{ MGLY} + 0.35 \text{ CO} + 0.175 \text{ CH3O2} + 0.175 \text{ GLY}$ $7.5 \times 10^{-12} \times \exp(290/T)$<br>+ NO2 + 0.65 MALANHY                         | MCM (ratio 50:50 for<br>C3MCODBCO3:<br>MC3CODBCO3) | Х |
| MDIALO2 + NO3 | → 0.825 HO2 + 0.175 MGLY + 0.35 CO + 0.175 CH3O2 + 0.175 GLY 4.0×10 <sup>-12</sup><br>+ NO2 + 0.65 MALANHY                                                                                      | MCM                                                | Х |
| MDIALO2 + HO2 | → 0.5 OH + 0.4125 HO2 + 0.37 MDIALOOH + 0.0875 MGLY + 0.175 2.8×10 <sup>-12</sup> ×exp (730/ <i>T</i> )<br>CO + 0.0875 CH3O2 + 0.0875 GLY + 0.325 MALANHY + 0.13<br>BIGACID2 + 0.13 O3          | 6                                                  | 2 |
| MDIALOOH + O3 | $ \rightarrow 0.365 \text{ O}=C(\text{OO})\text{C}=\text{O} + 0.17515 \text{ MGLY} + 0.37056875 \text{ GLY} + 2.4 \times 10^{-17} $<br>0.82485 CH3C(O)O2 + 1.08 OH + 0.12015 HO2 + 0.56515 CO + | MCM                                                | X |

|                     |                             | 0.000556875 H2O2 + 0.135 O=CC(=O)O[O] + 0.00928125<br>HOOCCHO                                            |                                                                                   |                     |   |
|---------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|---|
| MDIALOOH + OH       | $\rightarrow$               | 0.5 GLY + 0.5 MGLY + HO2 + 0.5 O=C(OO)C=O + 0.5 OH + 0.5<br>CH3C(O)O2                                    | $4.72 \times 10^{-11}$                                                            | МСМ                 | Х |
| MDIALO2 + CH3O2     | $\rightarrow$               | 1.6425 HO2 + 0.1575 MGLY + 0.315 CO + 0.1575 CH3O2 + 0.1575<br>GLY + HCHO + 0.585 MALANHY + 0.1 BIGACID2 | $2.0 \times 10^{-12} \times \exp(500/T)$                                          | Analog to CH3C(O)O2 | 2 |
| MDIALO2 + CH3C(O)O2 | $\rightarrow$               | 0.825 HO2 + 0.175 MGLY + 0.35 CO + 0.175 GLY + 1.175 CH3O2<br>+ 0.65 MALANHY                             | $2.9 \times 10^{-12} \times \exp(500/T)$                                          | Analog to CH3C(O)O2 | 2 |
| MDIALO2 + NO2       | $\stackrel{M}{\rightarrow}$ | MDIALPAN                                                                                                 | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$  | МСМ                 | 1 |
| MDIALPAN + OH       |                             | 0.5 GLY + 0.5 HCHO + 1.5 CO + NO2 + 0.5 MGLY                                                             | $4.37 \times 10^{-11}$                                                            | MCM                 | Х |
| MDIALPAN            | $\stackrel{M}{\rightarrow}$ | NO2 + MDIALO2                                                                                            | $k_{tro}(1.1 \times 10^{-5}, 0, -10100,$<br>$1.9 \times 10^{17}, 0, -14100, 0.3)$ | МСМ                 | Х |
| BIGALK + OH         | $\rightarrow$               | ALKO2                                                                                                    | $3.5 \times 10^{-12}$                                                             | 3                   |   |
| ALKO2 + NO          | $\rightarrow$               | 0.36 CH3CHO + 0.225 HCHO + 0.225 CH3COCH3 + 0.9 HO2 + 0.72 MEK + 0.9 NO2 + 0.1 ALKNO3                    | $4.2 \times 10^{-12} \times \exp(180/T)$                                          | 3                   |   |
| ALKNO3 + OH         | $\rightarrow$               | 0.4 CH3CHO + 0.25 HCHO + 0.25 CH3COCH3 + HO2 + 0.8 MEK<br>+ NO2                                          | $2.0 \times 10^{-12}$                                                             | 3                   |   |
| ALKO2 + HO2         | $\rightarrow$               | ALKOOH                                                                                                   | $7.5 \times 10^{-13} \times \exp(700/T)$                                          | 3                   |   |
| ALKOOH + OH         | $\rightarrow$               | ALKO2                                                                                                    | $3.8 \times 10^{-12} \times \exp(200/T)$                                          | 3                   |   |
| ALKO2 + CH3O2       | $\rightarrow$               | 0.3 CH3CHO + 1.1875 HCHO + 0.1875 CH3COCH3 + 0.75 HO2 + 0.6 MEK + 0.25ALKOH                              | $1.0 \times 10^{-12}$                                                             | 3                   |   |
| ALKOH + OH          | $\rightarrow$               | 1.25 MEK + HO2                                                                                           | $5.0 \times 10^{-12}$                                                             | 3                   |   |
| ALKO2 + CH3C(O)O2   | $\rightarrow$               | 0.4 CH3CHO + 0.25 HCHO + 0.25 CH3COCH3 + HO2 + 0.8 MEK<br>+ CH3O2                                        | $1.0 \times 10^{-11}$                                                             | 3                   |   |
| MBO + OH            | $\rightarrow$               | MBOO2                                                                                                    | $8.1 \times 10^{-12} \times \exp(610/T)$                                          | 3                   |   |
| MBO + O3            | $\rightarrow$               | 0.35 CO + 0.5 HCHO + 0.1 CH3COCH3 + 0.9 IBUTALOH + 0.25<br>HCOOH + 0.06 HO2 + 0.06 OH                    | $1.0 \times 10^{-17}$                                                             | 3                   |   |
| MBO + NO3           | $\rightarrow$               | MBONO3O2                                                                                                 | $4.6 \times 10^{-14} \times \exp(-400/T)$                                         | 3                   |   |
| MBOO2 + NO          | $\rightarrow$               | HO2 + 0.67 CH3COCH3 + 0.67 OHCCH2OH + 0.33 HCHO + 0.33<br>IBUTALOH + NO2                                 | $2.6 \times 10^{-12} \times \exp(365/T)$                                          | 3                   |   |
| MBOO2 + HO2         | $\rightarrow$               | МВОООН                                                                                                   | $7.5 \times 10^{-13} \times \exp(700/T)$                                          | 3                   |   |

| MBOOOH + OH             | $\rightarrow$               | 0.5 MBOO2 + 0.625 MACROH + 0.5 OH                                                                                         | $3.8 \times 10^{-12} \times \exp(200/T)$                                         | 3                           |   |
|-------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------|---|
| MBOO2 + CH3O2           | $\rightarrow$               | 0.9165 HCHO + 0.625 MACROH + 0.25 CH3OH + HO2 + 0.3335<br>CH3COCH3 + 0.3335 OHCCH2OH + 0.1665 IBUTALOH                    | $3.7 \times 10^{-13} \times \exp(-40/T)$                                         | 3                           |   |
| MBOO2 + CH3C(O)O2       | $\rightarrow$               | HO2 + 0.67 CH3COCH3 + 0.67 OHCCH2OH + 0.33 HCHO + 0.33<br>IBUTALOH + CH3O2                                                | $1.0 \times 10^{-11}$                                                            | 3                           |   |
| MBONO3O2 + NO           | $\rightarrow$               | 0.35 HCHO + 0.35 IBUTALOH + 1.35 NO2 + 0.43 NOA + 0.65<br>CH3COCH3 + 0.65 HO2                                             | $2.6 \times 10^{-12} \times \exp(365/T)$                                         | <sup>3</sup> , MCM          | Х |
| MBONO3O2 + NO3          | $\rightarrow$               | 0.35 HCHO + 0.35 IBUTALOH + 1.35 NO2 + 0.43 NOA + 0.65<br>CH3COCH3 + 0.65 HO2                                             | $2.3 \times 10^{-12}$                                                            | МСМ                         | Х |
| MBONO3O2 + HO2          | $\rightarrow$               | MBONO3OOH                                                                                                                 | $4.3 \times 10^{-13} \times \exp(1040/T)$                                        | <sup>3</sup> , MCM          | Х |
| MBONO3O2 + CH3O2        | $\rightarrow$               | 0.875 HCHO + 0.125 IBUTALOH + 0.12 5NO2 + 0.25 NOA + 0.375<br>CH3COCH3 + 0.875 HO2 + 0.25 CH3OH + 0.625 MACROH            | $1.0 \times 10^{-12}$                                                            | 3                           |   |
| MBONO3O2 +<br>CH3C(O)O2 | $\rightarrow$               | 0.35 HCHO + 0.35 IBUTALOH + 0.35 NO2 + 0.43 NOA + 0.65<br>CH3COCH3 + 0.65 HO2 + CH3O2                                     | $1.0 \times 10^{-11}$                                                            | Analog to NO3               | Х |
| MBONO3OOH + OH          | $\rightarrow$               | MBONO3O2                                                                                                                  | $1.9 \times 10^{-12} \times \exp(910/T)$                                         | 3                           |   |
| DICARBO2 + NO           | $\rightarrow$               | 0.17 MGLY + 0.17 HO2 + 0.17 CO + 0.83 MALANHY + 0.83<br>CH3O2 + NO2                                                       | $7.5 \times 10^{-12} \times \exp(290/T)$                                         | МСМ                         | Х |
| DICARBO2 + NO3          | $\rightarrow$               | 0.17 MGLY + 0.17 HO2 + 0.17 CO + 0.83 MALANHY + 0.83<br>CH3O2 + NO2                                                       | $4.0 \times 10^{-12}$                                                            | МСМ                         | Х |
| DICARBO2 + NO2          | $\stackrel{M}{\rightarrow}$ | DICARBPAN                                                                                                                 | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$ | МСМ                         | 1 |
| DICARBO2 + HO2          | $\rightarrow$               | 0.085 MGLY + 0.085 HO2 + 0.085 CO + 0.415 MALANHY + 0.415<br>CH3O2 + 0.5 OH + 0.37 DICARBOOH + 0.13 BIGACID2 + 0.13<br>O3 | $2.8 \times 10^{-12} \times \exp(730/T)$                                         | MCM, <sup>6</sup>           | 2 |
| DICARBPAN               | $\stackrel{M}{\rightarrow}$ | DICARBO2 + NO2                                                                                                            | $k_{tro}(1.1 \times 10^{-5}, 0, -10100, 1.9 \times 10^{17}, 0, -14100, 0.3)$     | МСМ                         | Х |
| DICARBPAN + OH          | $\rightarrow$               | MGLY + 2 CO + NO2                                                                                                         | $5.43 \times 10^{-11}$                                                           | MCM                         | Х |
| DICARBO2 + CH3O2        | $\rightarrow$               | 0.153 MGLY + 1.053 HO2 + 0.153 CO + 0.747 CH3O2 + 0.747<br>MALANHY + HCHO + 0.1 BIGACID2                                  | $2.0 \times 10^{-12} \times \exp(500/T)$                                         | MCM, CH3C(O)O2<br>chemistry | 2 |
| DICARBO2 + CH3C(O)O2    | $\rightarrow$               | 0.17 MGLY + 0.17 HO2 + 0.17 CO + 0.83 CH3O2 + 0.83<br>MALANHY + CH3O2                                                     | $2.9 \times 10^{-12} \times \exp(500/T)$                                         | MCM, CH3C(O)O2<br>chemistry | 2 |
| DICARBOOH + OH          | $\rightarrow$               | DICARBO2                                                                                                                  | $3.59 \times 10^{-12}$                                                           | MCM                         | Х |
| BIGACID2 + OH        | $\rightarrow$ | 0.17 MGLY + 0.17 HO2 + 0.17 CO + 0.83 CH3O2 + 0.83<br>MALANHY                                                                                                          | $5.44 \times 10^{-11}$                      | МСМ                | X |
|----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|---|
| BIGALD2 + OH         | $\rightarrow$ | 0.48 DICARBO2 + 0.52 MGLY + 0.52 GLY + 0.52 HO2                                                                                                                        | $6.2 \times 10^{-11}$                       | MCM                | Х |
| BIGALD2 + NO3        | $\rightarrow$ | DICARBO2 + HNO3                                                                                                                                                        | $3.85 \times 10^{-12} \times \exp(-1862/T)$ | MCM                | Х |
| BIGALD2 + O3         | $\rightarrow$ | 0.5675 GLY + 0.3475 CH3C(O)O2 + 0.0625 CH3CHO + 0.9175 CO<br>+ 0.57 OH + 0.4725 HO2 + 0.0675 H2O2 + 0.05625 CH3COCOOH<br>+ 0.5675 MGLY + 0.0625 HCHO + 0.05625 HOOCCHO | $2.0 \times 10^{-18}$                       | МСМ                | X |
| BIGALD3 + OH         | $\rightarrow$ | 0.77 MDIALO2 + 0.23 GLY + 0.23 MGLY + 0.23 HO2                                                                                                                         | $4.41 \times 10^{-11}$                      | MCM                | Х |
| BIGALD3 + NO3        | $\rightarrow$ | MDIALO2 + HNO3                                                                                                                                                         | $5.95 \times 10^{-12} \times \exp(-1862/T)$ | MCM                | Х |
| BIGALD3 + NO3        | $\rightarrow$ | MDIALO2 + HNO3                                                                                                                                                         | $5.95 \times 10^{-12} \times \exp(-1862/T)$ | MCM                | Х |
| BIGALD3 + O3         | $\rightarrow$ | 0.89 OH + 1.335 CO + 0.445 CH3C(O)O2 + 0.555 MGLY + 0.075625 H2O2 + 0.520625 GLY + 0.445 HO2 + 0.034375 HOOCCHO                                                        | 5.0×10 <sup>-18</sup>                       | МСМ                | X |
| FUONE + NO3          | $\rightarrow$ | NO2 + FUONEO2                                                                                                                                                          | $1.0 \times 10^{-12}$                       | MCM                | Х |
| FUONE + OH           | $\rightarrow$ | FUONEO2                                                                                                                                                                | $2.42 \times 10^{-11}$                      | MCM (for PXFUONE)  | Х |
| FUONEO2 + HO2        | $\rightarrow$ | FUONEOOH                                                                                                                                                               | $2.05 \times 10^{-13} \times \exp(1300/T)$  | MCM                | Х |
| FUONEO2 + NO         | $\rightarrow$ | NO2 + HO2 + CH3C(O)O2 + HCHO                                                                                                                                           | $2.7 \times 10^{-12} \times \exp(360/T)$    | MCM                | Х |
| FUONEO2 + NO3        | $\rightarrow$ | NO2 + HO2 + CH3C(O)O2 + HCHO                                                                                                                                           | $5.08 \times 10^{-11}$                      | MCM                | Х |
| FUONEO2 + CH3O2      | $\rightarrow$ | HO2 + CH3C(O)O2 + HCHO + HO2 + HCHO                                                                                                                                    | $1.0 \times 10^{-12}$                       | MCM, RO2 chemistry | Х |
| FUONEO2 + CH3C(O)O2  | $\rightarrow$ | HO2 + CH3C(O)O2 + HCHO + CH3O2                                                                                                                                         | $1.0 \times 10^{-11}$                       | MCM, RO2 chemistry | Х |
| FUONEOOH + OH        | $\rightarrow$ | FUONEO2                                                                                                                                                                | $2.78 \times 10^{-11}$                      | MCM                | Х |
| C5DIALO2 + NO        | $\rightarrow$ | BIGALD1 + CO + HO2 + NO2                                                                                                                                               | $2.7 \times 10^{-12} \times \exp(360/T)$    | MCM                | Х |
| C5DIALO2 + NO3       | $\rightarrow$ | BIGALD1 + CO + HO2 + NO2                                                                                                                                               | $2.3 \times 10^{-12}$                       | MCM                | Х |
| C5DIALO2 + HO2       | $\rightarrow$ | C5DIALOOH                                                                                                                                                              | $2.05 \times 10^{-13} \times \exp(1300/T)$  | MCM                | Х |
| C5DIALOOH + OH       | $\rightarrow$ | OH + MALO2 + CO + HO2                                                                                                                                                  | $7.25 \times 10^{-11}$                      | MCM                | Х |
| C5DIALO2 + CH3O2     | $\rightarrow$ | 0.6 HO2 + 0.8 HCHO + 0.2 CH3OH + 0.7 BIGALD1 + CO + 1.2<br>HO2 + 0.3 MALO2                                                                                             | $1.0 \times 10^{-12}$                       | MCM, RO2 chemistry | Х |
| C5DIALO2 + CH3C(O)O2 | $\rightarrow$ | 0.8 CH3O2 + 0.2 CH3COOH + 0.8 BIGALD1 + CO + HO2 + 0.2<br>MALO2                                                                                                        | $1.0 \times 10^{-11}$                       | MCM, RO2 chemistry | X |

| C5 isoprene chemistry    |               |                                                                                                                                     |                                             |                                                                                                                                                     | Τ |
|--------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|
| C5H8 + OH                | $\rightarrow$ | 0.05 LISOPACO2 + 0.6 ISOPBO2 + 0.35 ISOPDO2                                                                                         | $2.1 \times 10^{-11} \times \exp(465/T)$    | <sup>1</sup> , <sup>8</sup> , IUPAC                                                                                                                 | 5 |
| C5H8 + O3                | $\rightarrow$ | 0.407 CH3O2 + 0.407 CO + 0.416 MACR + 0.16 HO2 + 1.059<br>HCHO + 0.28 OH + 0.177 MVK + 0.245 H2O2 + 0.319<br>HOCH2OOH + 0.029 HCOOH | $1.05 \times 10^{-14} \times \exp(-2000/T)$ | <sup>1</sup> , <sup>7</sup> , IUPAC                                                                                                                 | 5 |
| C5H8 + NO3               | $\rightarrow$ | 0.465 NISOPBO2 + 0.535 NISOPDO2                                                                                                     | $2.95 \times 10^{-12} \times \exp(-450/T)$  | <sup>1</sup> (for sens. study<br>NISOPO2 pathways asre<br>added)                                                                                    | 5 |
| LISOPACO2 + NO           | $\rightarrow$ | 0.4 HO2 + 0.88 NO2 + 0.12 LISOPACNO3 + 0.4 LHC4ACCHO + 0.48 CO + 0.48 OH + 0.29 LHMVKABOOH + 0.19 MACROOH                           | $2.7 \times 10^{-12} \times \exp(360/T)$    | <sup>1</sup> (60% ISOP1CO4OH,<br>40% ISOP1OH4CO)                                                                                                    |   |
| LISOPACO2 + NO3          |               | 0.45 HO2 + NO2 + 0.45 LHC4ACCHO + 0.55 CO + 0.55 OH + 0.33<br>LHMVKABOOH + 0.22 MACROOH                                             | $2.3 \times 10^{-12}$                       | $^{3}, k_{\rm RO2NO3}$                                                                                                                              | Х |
| LISOPACNO3 + OH          | $\rightarrow$ | 0.94 LISOPACNO3O2 + 0.06 LIEPOX + 0.06 NO2                                                                                          | $2.74 \times 10^{-11} \times \exp(390/T)$   | 1                                                                                                                                                   | Х |
| LISOPACNO3 + OH          | $\rightarrow$ | 0.4 NC4CHO + 0.4 HO2 + 0.24 MACRNOOH + 0.6 CO + 0.6 OH + 0.36 LHMVKNOOH                                                             | $7.5 \times 10^{-12} \times \exp(20/T)$     | 1                                                                                                                                                   | X |
| LISOPACO2 + HO2          | $\rightarrow$ | LISOPACOOH                                                                                                                          | $2.12 \times 10^{-13} \times \exp(1300/T)$  | 1                                                                                                                                                   | Х |
| LISOPACOOH + OH          | $\rightarrow$ | 0.46 LIEPOX + 0.46 OH + 0.42 IDHPOO1 + 0.12 IDHPOO2                                                                                 | $3.0 \times 10^{-11} \times \exp(390/T)$    | 1                                                                                                                                                   | Х |
| LISOPACOOH + OH          | $\rightarrow$ | LISOPACO2                                                                                                                           | $2.0 \times 10^{-12} \times \exp(200/T)$    | 1                                                                                                                                                   | Х |
| LISOPACOOH + OH          | $\rightarrow$ | 0.8 OH + 0.5 LHC4ACCHO + 0.2 HPALD + 0.18 HO2 + 0.3 CO + 0.18 DHPMEK + 0.12 DHPMPAL                                                 | $1.5 \times 10^{-11} \times \exp(20/T)$     | 1                                                                                                                                                   | X |
| LISOPACO2 + CH3O2        | $\rightarrow$ | HCHO + 0.725 LHC4ACCHO + 0.275 CO + 0.275 OH + 0.165<br>LHMVKABOOH + 0.11 MACROOH + 0.725 HO2                                       | $2.0 \times 10^{-12}$                       | 1                                                                                                                                                   | X |
| LISOPACO2 +<br>CH3C(O)O2 | $\rightarrow$ | HO2 + LHC4ACCHO + CH3O2                                                                                                             | $1.0 \times 10^{-11}$                       | 3                                                                                                                                                   |   |
| LISOPACO2 + ISOPBO2      | $\rightarrow$ | MVK + HCHO + 0.557 LHC4ACCHO + 0.443 CO + 0.443 OH + 0.266 LHMVKABOOH + 0.177 MACROOH + 1.167 HO2                                   | 2.49×10 <sup>-12</sup>                      | <sup>1</sup> ; including subsequent<br>reactions according to<br>MCM3.3.1 and the<br>recommendation for the<br>reduced mechanism see<br>sect. 2.5.2 | X |
| LISOPACO2 + ISOPDO2      | $\rightarrow$ | 0.705 MACR + 0.705 HCHO + 0.295 HCOC5 + 0.612<br>LHC4ACCHO + 0.388 CO + 0.388 OH + 0.233 LHMVKABOOH +<br>0.155 MACROOH + 1.022 HO2  | 3.94×10 <sup>-12</sup>                      | <sup>1</sup> ; including subsequent<br>reactions according to<br>MCM3.3.1 and the                                                                   | X |

|                  |               |                                                                                                                               |                                                        | recommendation for the                                                                                   |   |
|------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---|
|                  |               |                                                                                                                               |                                                        | sect. 2.5.2                                                                                              |   |
| LISOPACO2        | $\rightarrow$ | 0.4 HO2 + 0.4 HPALD + 0.6 DHPMEK + 0.6 CO + 0.6 OH                                                                            | $k_{iso}(1.63 \times 10^{14}, 12200, 1 \times 10^{8})$ | 1                                                                                                        | 5 |
| LISOPACO2        | $\rightarrow$ | 0.4 HO2 + 0.4 HPALD + 0.6 DHPMPAL + 0.6 CO + 0.6 OH                                                                           | $k_{iso}(4.34 \times 10^7, 7160, 1 \times 10^8)$       | 1                                                                                                        | 5 |
| DHPMPAL + OH     | $\rightarrow$ | 0.32 C3MDIALOOH + 0.68 CO + OH + 0.68 CC(=O)COO                                                                               | 2.62×10 <sup>-12</sup> ×exp (713/ <i>T</i> )           | <sup>12</sup> , MCM                                                                                      | Х |
| DHPMEK + OH      | $\rightarrow$ | CH3C(0)O2 + 2 CO                                                                                                              | $6.6 \times 10^{-13} \times \exp(1057/T)$              | <sup>12</sup> , MCM, only dominant pathways                                                              | X |
| C3MDIALOOH + OH  | $\rightarrow$ | C3MDIALO2                                                                                                                     | $1.402 \times 10^{-10} \times \exp(227/T)$             | <sup>12</sup> , MCM                                                                                      | Х |
| C3MDIALO2 + HO2  | $\rightarrow$ | C3MDIALOOH                                                                                                                    | $1.82 \times 10^{-13} \times \exp(1300/T)$             | MCM                                                                                                      | Х |
| C3MDIALO2 + NO   | $\rightarrow$ | NO2 + MGLY + CO + HO2                                                                                                         | $2.7 \times 10^{-12} \times \exp(360/T)$               | MCM                                                                                                      | Х |
| C3MDIALO2 + NO3  | $\rightarrow$ | NO2 + MGLY + CO + HO2                                                                                                         | $2.3 \times 10^{-12}$                                  | MCM                                                                                                      | Х |
| ISOPBO2          | $\rightarrow$ | OH + HCHO + MVK                                                                                                               | $1.04 \times 10^{11} \times \exp(-9746/T)$             | 1                                                                                                        | 5 |
| ISOPDO2          | $\rightarrow$ | OH + HCHO + MACR                                                                                                              | $1.88 \times 10^{11} \times \exp(-9752/T)$             | 1                                                                                                        | 5 |
| LIEPOX + OH      | $\rightarrow$ | 0.8 LC578O2 + 0.2 LIECHO + 0.2 HO2                                                                                            | $4.4 \times 10^{-11} \times \exp(-400/T)$              | 1,9                                                                                                      | Х |
| LIECHO + OH      | $\rightarrow$ | 0.28 OH + 1.28 CO + 0.28 CH3COCH2OH + 0.72 LHMVKABO2                                                                          | $1.5 \times 10^{-11}$                                  | 9                                                                                                        | Х |
| LIECHO + OH      | $\rightarrow$ | CO + HO2 + 0.28 C3MDIALOOH + 0.72 MDIALOOH                                                                                    | $2.2 \times 10^{-11} \times \exp(-400/T)$              | 9                                                                                                        | Х |
| LIECO3H + OH     | $\rightarrow$ | 0.888 CO + 0.444 OH + 0.444 HO2 + 0.318 CO2H3CHO + 0.112<br>LC578O2 + 0.126 C3MDIALOH + 0.444 LHMVKABOOH                      | $2.25 \times 10^{-11}$                                 | 1                                                                                                        | X |
| ISOPBO2 + NO     | $\rightarrow$ | 0.86 HO2 + 0.86 NO2 + 0.86 HCHO + 0.86 MVK + 0.14<br>ISOPBNO3                                                                 | $2.7 \times 10^{-12} \times \exp(360/T)$               | 1                                                                                                        | X |
| ISOPBNO3 + OH    | $\rightarrow$ | 0.15 LIEPOX + 0.15 NO2 + 0.85 ISOPBNO3O2                                                                                      | $8.4 \times 10^{-12} \times \exp(390/T)$               | 9                                                                                                        | Х |
| ISOPBNO3O2 + NO  | $\rightarrow$ | 0.26 HCHO + 0.26 HO2 + 0.26 MACR2N3OH + 0.69 OHCCH2OH<br>+ 0.69 CH3COCH2OH + 1.64 NO2 + 0.05 LISOPNO3NO3                      | $2.7 \times 10^{-12} \times \exp(360/T)$               | 1                                                                                                        | X |
| ISOPBNO3O2 + NO3 | $\rightarrow$ | 0.272 HCHO + 0.272 HO2 + 0.272 MACR2N3OH + 0.728<br>OHCCH2OH + 0.728 CH3COCH2OH + 1.728 NO2                                   | 2.3×10 <sup>-12</sup>                                  | Products analog to reaction<br>with NO but no organic<br>nitrate formation, MCM<br>KRO2NO3 rate constant | X |
| ISOPBNO3O2 + HO2 | $\rightarrow$ | 0.482 LISOPNO3OOH + 0.059 MACR2N3OH + 0.059 HCHO +<br>0.459 OHCCH2OH + 0.459 CH3COCH2OH + 0.059 HO2 + 0.459<br>NO2 + 0.518 OH | 2.6×10 <sup>-13</sup> ×exp (1300/ <i>T</i> )           | I                                                                                                        | Х |

| ISOPBNO3O2          | $\rightarrow$ | NISOPOOHOH=O + HO2                                                                                      | $1.875 \times 10^{13} \times \exp(-10000/T)$           | 1                                                                                | Х |
|---------------------|---------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|---|
| ISOPBO2 + NO3       | $\rightarrow$ | NO2 + MVK + HO2 + HCHO                                                                                  | $2.3 \times 10^{-12}$                                  | See ISOPBNO3O2                                                                   | Х |
| ISOPBO2 + HO2       | $\rightarrow$ | 0.973 ISOPBOOH + 0.063 MVK + 0.063 OH + 0.063 HO2 + 0.063<br>HCHO                                       | $2.12 \times 10^{-13} \times \exp(1300/T)$             | 1                                                                                | X |
| ISOPBOOH + OH       | $\rightarrow$ | 0.75 ISOPBO2 + 0.125 MVK + 0.25 HO2 + 0.125 MVKOOH + 0.25 CO                                            | $6.1 \times 10^{-12} \times \exp(200/T)$               | 1                                                                                | X |
| ISOPBOOH + OH       | $\rightarrow$ | 0.855 LIEPOX + 0.855 OH + 0.095 IDHPOO3 + 0.05 IDHPOO1                                                  | $1.7 \times 10^{-11} \times \exp(390/T)$               | 1                                                                                | Х |
| ISOPBO2 + CH3O2     | $\rightarrow$ | 2 HCHO + MVK + 2 HO2                                                                                    | $2.0 \times 10^{-12}$                                  | 1                                                                                | Х |
| ISOPBO2 + CH3C(O)O2 | $\rightarrow$ | HO2 + HCHO + MVK + CH3O2                                                                                | $1.0 \times 10^{-11}$                                  | Analog to RO2 chemistry<br>with RO2+CH3C(O)O2<br>rate constant from <sup>1</sup> | X |
| ISOPBO2 + ISOPBO2   | $\rightarrow$ | 2 MVK + 2 HO2 + 2 HCHO                                                                                  | $6.92 \times 10^{-14}$                                 | 1                                                                                | Х |
| ISOPDO2 + ISOPDO2   | $\rightarrow$ | 1.6 MACR + 1.6 HO2 + 1.6 HCHO + 0.4 HCOC5                                                               | $5.74 \times 10^{-12}$                                 | <sup>1</sup> , MCM                                                               | Х |
| ISOPBO2 + ISOPDO2   | $\rightarrow$ | 0.9 MACR + 1.0 MVK + 1.9 HO2 + 1.9 HCHO + 0.1 HCOC5                                                     | $3.08 \times 10^{-12}$                                 | 1                                                                                | Х |
| IDHPOO1 + NO        | $\rightarrow$ | 0.82 NO2 + 0.82 HO2 + 0.15 MACROOH + 0.15 HCHO + 0.18<br>LISOPNO3OOH + 0.67 CH3COCH2OH + 0.67 HCOCH2OOH | $2.7 \times 10^{-12} \times \exp(360/T)$               | 1                                                                                | X |
| IDHPOO1 + HO2       | $\rightarrow$ | 0.03 MACROOH + 0.4 OH + 0.03 HCHO + 0.4 HO2 + 0.6<br>LISOPOOHOOH + 0.37 HCOCH2OOH + 0.37 CH3COCH2OH     | $2.47 \times 10^{-13} \times \exp(1300/T)$             | 1                                                                                | X |
| IDHPOO1             | $\rightarrow$ | DHHPEPOX + OH                                                                                           | $k_{iso}(6.8 \times 10^{12}, 11200, 8.46 \times 10^7)$ | 1                                                                                | X |
| IDHPOO3 + NO        | $\rightarrow$ | 0.9 NO2 + 0.9 OH + 0.9 CH3COCH2OH + 0.9 OHCCH2OH + 0.1<br>LISOPNO3OOH                                   | $2.7 \times 10^{-12} \times \exp(360/T)$               | 1                                                                                | X |
| IDHPOO3 + HO2       | $\rightarrow$ | 1.3 OH + 0.65 CH3COCH2OH + 0.65 OHCCH2OH + 0.35<br>LISOPOOHOOH                                          | $2.47 \times 10^{-13} \times \exp(1300/T)$             | 1                                                                                | X |
| IDHPOO3             | $\rightarrow$ | DHHPEPOX + OH                                                                                           | $k_{iso}(1.87 \times 10^{12}, 9630, 8.02 \times 10^7)$ | 1                                                                                | Х |
| DHHPEPOX + OH       | $\rightarrow$ | OH + 0.571 MACROOH + 0.429 LHMVKABOOH                                                                   | 3.0×10 <sup>-12</sup>                                  | 1                                                                                | Х |
| ISOPDO2 + NO        | $\rightarrow$ | 0.87 HO2 + 0.87 NO2 + 0.87 HCHO + 0.87 MACR + 0.13<br>ISOPDNO3                                          | $2.7 \times 10^{-12} \times \exp(360/T)$               | 1                                                                                | X |
| ISOPDNO3 + OH       | $\rightarrow$ | 0.874 ISOPDNO3O2 + 0.126 LIEPOX + 0.126 NO2                                                             | $1.17 \times 10^{-11} \times \exp(390/T)$              | 1                                                                                | Х |

| ISOPDNO3O2 + NO     | $\rightarrow$ | 0.96 HCHO + 0.96 HO2 + 0.96 MVKN + 0.96 NO2 + 0.04<br>LISOPNO3NO3                                                   | $2.7 \times 10^{-12} \times \exp(360/T)$                        | 1              | Х |
|---------------------|---------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|---|
| ISOPDNO3O2 + NO3    | $\rightarrow$ | HCHO + HO2 + MVKN + NO2                                                                                             | 2.3×10 <sup>-12</sup>                                           | See ISOPBNO3O2 | Х |
| ISOPDNO3O2 + HO2    | $\rightarrow$ | 0.401 LISOPNO3OOH + 0.599 MVKN + 0.599 HCHO + 0.599 HO2<br>+ 0.599 OH                                               | $2.6 \times 10^{-13} \times \exp(1300/T)$                       | 1              | Х |
| ISOPDNO3O2          | $\rightarrow$ | NISOPOOHOH=O + HO2                                                                                                  | $1.875 \times 10^{13} \times \exp(-10000/T)$                    | 1              | Х |
| ISOPDO2 + NO3       | $\rightarrow$ | HCHO + MACR + HO2 + NO2                                                                                             | $2.3 \times 10^{-12}$                                           | See ISOPBNO3O2 | Х |
| ISOPDO2 + HO2       | $\rightarrow$ | 0.937 ISOPDOOH + 0.063 MACR + 0.063 OH + 0.063 HO2 + 0.063<br>HCHO                                                  | $2.12 \times 10^{-13} \times \exp(1300/T)$                      | 1              | Х |
| ISOPDOOH + OH       | $\rightarrow$ | 0.855 LIEPOX + 0.855 OH + 0.095 IDHPOO3 + 0.05 IDHPOO2                                                              | $3.0 \times 10^{-11} \times \exp(390/T)$                        | 1              | Х |
| ISOPDOOH + OH       | $\rightarrow$ | 0.51 ISOPDO2 + 0.16 HCOC5 + 0.33 CO + 0.33 HO2 + 0.165<br>MACR + 0.165 MACROOH                                      | $4.1 \times 10^{-12} \times \exp(200/T)$                        | 1              | Х |
| IDHPOO2 + NO        | $\rightarrow$ | 0.87 NO2 + 0.87 HO2 + 0.13 OHCCH2OH + 0.13 CC(=O)COO + 0.13 LISOPNO3OOH + 0.74 LHMVKABOOH + 0.74 HCHO               | $2.7 \times 10^{-12} \times \exp(360/T)$                        | 1              | Х |
| IDHPOO2 + HO2       | $\rightarrow$ | 0.24 OH + 0.07 CC(=O)COO + 0.07 OHCCH2OH + 0.24 HO2 + 0.76 LISOPOOHOOH + 0.17 HCHO + 0.17 LHMVKABOOH                | $2.47 \times 10^{-13} \times \exp(1300/T)$                      | 1              | Х |
| IDHPOO2             | $\rightarrow$ | 0.32 LC578OOH + 0.68 DHHPEPOX + OH                                                                                  | $k_{iso}(3.73 \times 10^{12}, 10400,$<br>9.95×10 <sup>7</sup> ) | 1              | Х |
| ISOPDO2 + CH3O2     | $\rightarrow$ | 1.25 HCHO + 0.5 MACR + HO2 + 0.5 HCOC5 + 0.25 CH3OH                                                                 | 2.0×10 <sup>-12</sup>                                           | 1              | Х |
| ISOPDO2 + CH3C(O)O2 | $\rightarrow$ | HO2 + HCHO + MACR + CH3O2                                                                                           | $1.0 \times 10^{-11}$                                           | See ISOPBO2    | Х |
| NISOPBO2 + NO       | $\rightarrow$ | 0.97 NO2 + 0.65 NISOPEOO1E + 0.32 NISOPEOO1Z + 0.03<br>NISOPN                                                       | $2.7 \times 10^{-12} \times \exp(360/T)$                        | 2              | Х |
| NISOPDO2 + NO       | $\rightarrow$ | 0.1272 HO2 + 0.8 NO2 + 0.1272 NC4CHO + 0.6728 NISOPO + 0.2<br>NISOPN                                                | $2.7 \times 10^{-12} \times \exp(360/T)$                        | 1              | Х |
| NISOPBO2 + NO3      | $\rightarrow$ | NO2 + 0.68 NISOPEOO1E + 0.32 NISOPEOO1Z                                                                             | 2.3×10 <sup>-12</sup>                                           | 2              | Х |
| NISOPDO2 + NO3      | $\rightarrow$ | 0.159 HO2 + 0.159 NC4CHO + NO2 + 0.841 NISOPO                                                                       | $2.3 \times 10^{-12}$                                           | 1              | Х |
| NISOPBO2 + HO2      | $\rightarrow$ | 0.473 NISOPBOOH + 0.353 NISOPEOO1E + 0.174 NISOPEOO1Z<br>+ 0.527 OH                                                 | $2.47 \times 10^{-13} \times \exp(1300/T)$                      | 1,2            | Х |
| NISOPDO2 + HO2      | $\rightarrow$ | NISOPDOOH                                                                                                           | $2.47 \times 10^{-13} \times \exp(1300/T)$                      | 1              | Х |
| NISOPBO2 + CH3O2    | $\rightarrow$ | 0.355 NISOPOH + 0.966 HCHO + 0.034 NC4CHO + 0.19552<br>NISOPEOO1Z + 0.41548 NISOPEOO1E + 0.611 HO2 + 0.034<br>CH3OH | 2.8×10 <sup>-13</sup>                                           | 1,2            | X |

| NISOPDO2 + CH3O2          | $\rightarrow$ | 0.645 HCHO + 0.401 NC4CHO + 0.355 LISOPACNO3 + 0.244<br>NISOPBO + 0.336 HO2 + 0.355 CH3OH                                | 1.18×10 <sup>-12</sup>                      | 1                                                        | X |
|---------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|---|
| NISOPBO2 + CH3C(O)O2      | $\rightarrow$ | CH3O2 + 0.68 NISOPEOO1E + 0.32 NISOPEOO1Z                                                                                | $1.92 \times 10^{-12}$                      | 1,2                                                      | Х |
| NISOPDO2 + CH3C(O)O2      | $\rightarrow$ | 0.159 HO2 + 0.159 NC4CHO + CH3O2 + 0.84 NISOPBO                                                                          | $7.71 \times 10^{-12}$                      | 1                                                        | Х |
| NISOPEOO1E                | $\rightarrow$ | 2 CO + 0.35 NOA + 0.65 MGLY + 1.65 HO2 + 0.65 NO2 + OH                                                                   | 4.1×10 <sup>-6</sup>                        | <sup>2</sup> , ISOP1N23O4CO5OOH<br>treated as ICNE + HO2 | X |
| NISOPEOO1E + HO2          | $\rightarrow$ | IHNEOOH                                                                                                                  | $2.52 \times 10^{-13} \times \exp(1300/T)$  | 2                                                        | Х |
| NISOPEOO1E + CH3O2        | $\rightarrow$ | 0.76 HCHO + 0.686 HO2 + 0.4 CH3OH + 0.88 CO + 0.154 NOA + 0.286 MGLY + 0.286 NO2 + 0.4 IHNE + 0.16 MACRN                 | $1.0 \times 10^{-13} \times \exp(1139/T)$   | <sup>2</sup> , see sect. 2.5.1                           | X |
| NISOPEOO1E + NO3          | $\rightarrow$ | 1.13 HO2 + 0.4 CO + 0.07 NOA + 0.13 MGLY + 1.13 NO2 + 0.8<br>HCHO + 0.8 MACRN                                            | $1.9 \times 10^{-11} \times \exp(-390/T)$   | <sup>2</sup> , see sect. 2.5.1                           | X |
| NISOPEOO1E + NO           | $\rightarrow$ | 1.13 HO2 + 0.4 CO + 0.07 NOA + 0.13 MGLY + 1.13 NO2 + 0.8<br>HCHO + 0.8 MACRN                                            | $2.7 \times 10^{-12} \times \exp(360/T)$    | <sup>2</sup> , only main path, see sect. 2.5.1           | X |
| NISOPEOO1E +<br>CH3C(O)O2 | $\rightarrow$ | 1.13 HO2 + 0.4 CO + 0.07 NOA + 0.13 MGLY + 0.13 NO2 + 0.8<br>HCHO + 0.8 MACRN + CH3O2                                    | $1.0 \times 10^{-11}$                       | Analog to<br>RO2+CH3C(O)O2<br>chemistry                  | Х |
| NISOPEOO1Z                | $\rightarrow$ | LIECHO + NO2                                                                                                             | $3.6 \times 10^{-5}$                        | 2                                                        | Х |
| NISOPEOO1Z + HO2          | $\rightarrow$ | IHNEOOH                                                                                                                  | $2.52 \times 10^{-13} \times \exp(1300/T)$  | 2                                                        | Х |
| NISOPEOO1Z + CH3O2        | $\rightarrow$ | 0.6 HCHO + 0.46 HO2 + 0.2 LIECHO + 0.4 CH3OH + 0.8 CO + 0.14 NOA + 0.26 MGLY + 0.46 NO2 + 0.4 IHNE                       | $1.0 \times 10^{-13} \times \exp((1139/T))$ | <sup>2</sup> , ISOP1N23O4CO-><br>ICNE in Wennberg        | X |
| NISOPEOO1Z + NO3          | $\rightarrow$ | LIECHO + 2NO2                                                                                                            | $1.9 \times 10^{-11} \times \exp(-390/T)$   | 2                                                        | Х |
| NISOPEOO1Z + NO           | $\rightarrow$ | LIECHO + 2NO2                                                                                                            | $2.7 \times 10^{-12} \times \exp(360/T)$    | Analog to reaction with $NO_3$ , only main path          | X |
| NISOPEOO1Z +<br>CH3C(O)O2 | $\rightarrow$ | LIECHO + NO2 + CH3O2                                                                                                     | $1.0 \times 10^{-11}$                       | Analog to<br>RO2+CH3C(O)O2<br>chemistry                  | Х |
| NISOPBO2 + NISOPDO2       | $\rightarrow$ | 0.3808 NISOPEOO1E + 0.1792 NISOPEOO1Z + 0.089 HO2 + 0.038<br>LISOPACNO3 + 0.399 NISOPOH + 0.532 NC4CHO + 0.474<br>NISOPO | 2.56×10 <sup>-12</sup>                      | 1,2                                                      | X |
| NISOPDO2 + NISOPDO2       | $\rightarrow$ | 0.046 HO2 + 0.798 LISOPACNO3 + 0.861 NC4CHO + 0.34<br>NISOPO                                                             | 3.71×10 <sup>-12</sup>                      | 1                                                        | X |

| NISOPBO2 + NISOPBO2 | $\rightarrow$       | 1.3124 NISOPEOO1E + 0.6176 NISOPEOO1Z + 0.07 NISOPOH + 0.07 NC4CHO                                                                                                                                                                                  | 1.61×10 <sup>-12</sup>                        | 1,2 | X |
|---------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|---|
| NISOPBOOH + OH      | $\rightarrow$       | NISOPBO2                                                                                                                                                                                                                                            | $3.4 \times 10^{-12} \times \exp(200/T)$      | 1   | Х |
| NISOPBOOH + OH      | $\rightarrow$       | 0.49 OH + 0.49 IHNE + 0.51 NISOPBOO                                                                                                                                                                                                                 | $8.72 \times 10^{-12} \times \exp(390/T)$     | 1   | Х |
| NISOPBOO + NO       | $\rightarrow$       | NO2 + 0.233 HCHO + 0.408 OH + 0.055 LHMVKABOOH + 0.644<br>NOA + 0.36 OHCCH2OH + 0.063 NISOPNOOH + 0.47 HO2 +<br>0.159 MACRNOOH + 0.013 LHMVKNOOH + 0.048<br>CH3COCH2OH + 0.06 ETHLN + 0.012 CC(=O)COO + 0.006<br>MACROOH + 0.284 HCOCH2OOH          | 2.7×10 <sup>-12</sup> ×exp (360/ <i>T</i> )   | 1   | X |
| NISOPBOO + HO2      | $\rightarrow$       | 0.234 NISOPOOHOOH + 0.326 HO2 + 0.126 HCHO + 1.147 OH +<br>0.06 MACRNOOH + 0.589 NOA + 0.34 OHCCH2OH + 0.008<br>LHMVKNOOH + 0.042 CH3COCH2OH + 0.051 ETHLN + 0.058<br>NO2 + 0.004 MACROOH + 0.009 CC(=0)COO + 0.054<br>LHMVKABOOH + 0.249 HCOCH2OOH | 2.64×10 <sup>-13</sup> ×exp (1300/ <i>T</i> ) | 1   | X |
| NISOPBOO            | $\rightarrow$       | OH + 0.5 NISOPOOHOH=O + 0.5 IHNEOOH                                                                                                                                                                                                                 | $8.72 \times 10^{12} \times \exp(-10000/T)$   | 1   | Х |
| NISOPDOOH + OH      | $\rightarrow$       | NISOPDO2                                                                                                                                                                                                                                            | $3.4 \times 10^{-12} \times \exp(200/T)$      | 1   | Х |
| NISOPDOOH + OH      | $\rightarrow$       | 0.24 OH + 0.08 NO2 + 0.68 NISOPDOO + 0.24 IHNE + 0.08<br>LIECHO                                                                                                                                                                                     | $2.37 \times 10^{-11} \times \exp(390/T)$     | 1   | Х |
| NISOPDOOH + OH      | $\rightarrow$       | OH + NC4CHO                                                                                                                                                                                                                                         | $7.5 \times 10^{-12} \times \exp(20/T)$       | 1   | Х |
| NISOPDOO + NO       | $\rightarrow$       | 0.083 NISOPNOOH + 0.088 OH + 0.312 HCHO + 0.917 NO2 +<br>0.064 MACRN + 0.541 NOA + 0.541 HCOCH2OOH + 0.829 HO2 +<br>0.024 MVKN + 0.064 CC(=O)COO + 0.064 ETHLN + 0.021<br>LHMVKNOOH + 0.203 MACRNOOH                                                | $2.7 \times 10^{-12} \times \exp(360/T)$      | 1   | X |
| NISOPDOO + HO2      | $\rightarrow$       | 0.387 NISOPOOHOOH + 0.088 HCHO + 0.646 OH + 0.023<br>MACRN + 0.471 NOA + 0.471 HCOCH2OOH + 0.58 HO2 + 0.006<br>MVKN + 0.005 LHMVKNOOH + 0.05 MACRNOOH + 0.054<br>CC(=O)COO + 0.054 ETHLN                                                            | $2.64 \times 10^{-13} \times \exp(1300/T)$    | 1   | X |
| NISOPDOO            | $\rightarrow$       | OH + NISOPOOHOH=O                                                                                                                                                                                                                                   | $6.55 \times 10^{12} \times \exp(-10000/T)$   | 1   | Х |
| NISOPOOHOH=O + OH   | $\rightarrow$       | CO + NO2 + 0.75 MVKOOH + 0.25 MACROOH                                                                                                                                                                                                               | $1.0 \times 10^{-11}$                         | 1   | Х |
| NISOPOOHOOH + OH    | $\rightarrow$       | OH + NISOPOOHOH=O                                                                                                                                                                                                                                   | $2.0 \times 10^{-12}$                         | 1   | Х |
| NISOPO              | $\xrightarrow{O_2}$ | NC4CHO + HO2                                                                                                                                                                                                                                        | $2.5 \times 10^{-14} \times \exp(-300/T)$     | 1   | Х |
| NISOPO              | $\rightarrow$       | IDHNBOO                                                                                                                                                                                                                                             | $1.0 \times 10^{20} \times \exp(-10000/T)$    | 1   | Х |

| IDHNBOO + HO2  | $\rightarrow$ | 0.379 HO2 + 0.379 OH + 0.621 LISOPNO3OOH + 0.094 MACRN +<br>0.242 OHCCH2OH + 0.242 NOA + 0.010 MVKN + 0.033<br>CH3COCH2OH + 0.033 ETHLN + 0.104 HCHO           | $2.6 \times 10^{-13} \times \exp(1300/T)$  | 1                                                                              | X |
|----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|---|
| IDHNBOO + NO   | $\rightarrow$ | 0.302 MACRN + 0.464 NOA + 0.464 OHCCH2OH + 0.024 MVKN<br>+ 0.06 ETHLN + 0.06 CH3COCH2OH + 0.85 HO2 + 0.85 NO2 +<br>0.326 HCHO + 0.15 LISOPNO3NO3               | $2.7 \times 10^{-12} \times \exp(360/T)$   | 1                                                                              | Х |
| NISOPOH + OH   | $\rightarrow$ | IDHNBOO                                                                                                                                                        | $8.72 \times 10^{-12} \times \exp(390/T)$  | 1                                                                              | Х |
| NISOPN + OH    | $\rightarrow$ | 0.26 IHNE + 0.26 NO2 + 0.74 NISOPNOO                                                                                                                           | $2.37 \times 10^{-11} \times \exp(390/T)$  | 1                                                                              | Х |
| NISOPNOO + NO  | $\rightarrow$ | NOA + 1.11 NO2 + 0.11 OHCCH2OH + 0.89 ETHLN + 0.89 HO2                                                                                                         | $2.7 \times 10^{-12} \times \exp(360/T)$   | 1                                                                              | Х |
| NISOPNOO + HO2 | $\rightarrow$ | 0.82 NOA + 0.82 OH + 0.18 NISOPNOOH + 0.09 NO2 + 0.09<br>OHCCH2OH + 0.73 ETHLN + 0.73 HO2                                                                      | $2.71 \times 10^{-13} \times \exp(1300/T)$ | 1                                                                              | Х |
| MACRNOOH + OH  | $\rightarrow$ | CO + OH + NOA                                                                                                                                                  | $2.7 \times 10^{-12} \times \exp(470/T)$   | 1                                                                              | Х |
| LHMVKNOOH + OH | $\rightarrow$ | OH + MVKN                                                                                                                                                      | $5.77 \times 10^{-11}$                     | 1                                                                              | Х |
| IHNE + OH      | $\rightarrow$ | 0.19 IHNC1O2 + 0.35 IHNC2O2 + 0.02 IHNC3O2 + 0.14 IHNC4O2<br>+ 0.02 MACRENOL + 0.16 HVMK + 0.26 NO2 + 0.18 HCHO +<br>0.04 NOA + 0.08 HO2 + 0.08 MGLY + 0.24 CO | $3.22 \times 10^{-11} \times \exp(-400/T)$ | 1                                                                              | Х |
| IHNC1O2 + HO2  | $\rightarrow$ | 0.8 ICHNP + 0.2 NOA + 0.2 CO + 0.2 HO2 + 0.2 HCHO + 0.2 OH                                                                                                     | $2.6 \times 10^{-13} \times \exp(1300/T)$  | 1                                                                              | Х |
| IHNC1O2 + NO   | $\rightarrow$ | 0.0 2LISOPNO3NO3=O + 0.98 NOA + 0.98 CO + 0.98 HO2 + 0.98<br>HCHO + 0.98 NO2                                                                                   | $2.7 \times 10^{-12} \times \exp(360/T)$   | 1                                                                              | Х |
| IHNC2O2        | $\rightarrow$ | MACRN + CO + OH                                                                                                                                                | $1.\times 10^7 \times \exp(5000/T)$        | 1                                                                              | Х |
| IHNC2O2 + HO2  | $\rightarrow$ | 0.250 NISOPOOHOH=O + 0.563 MACRN + 0.563 CO + 0.187<br>NOA + 0.187 OHCCH2OH + 0.75 OH + 0.75 HO2                                                               | $2.6 \times 10^{-13} \times \exp(1300/T)$  | 1                                                                              | Х |
| IHNC2O2 + NO   | $\rightarrow$ | 0.98 NO2 + 0.98 HO2 + 0.24 NOA + 0.24 GLY + 0.74 MACRN + 0.74 CO + 0.02 LISOPNO3NO3=O                                                                          | $2.7 \times 10^{-12} \times \exp(360/T)$   | 1                                                                              | Х |
| IHNC3O2        | $\rightarrow$ | MVKN + CO + OH                                                                                                                                                 | $1.0 \times 10^7 \times \exp(5000/T)$      | 1                                                                              | Х |
| IHNC3O2 + HO2  | $\rightarrow$ | 0.15 NISOPOOHOH=O + 0.638 MVKN + 0.638 CO + 0.212 MGLY<br>+ 0.212 ETHLN + 0.85 OH + 0.85 HO2                                                                   | $2.6 \times 10^{-13} \times \exp(1300/T)$  | 1                                                                              | Х |
| IHNC3O2 + NO   | $\rightarrow$ | 0.74 MVKN + 0.98 NO2 + 0.98 HO2 + 0.74 CO + 0.24 MGLY + 0.24 ETHLN + 0.02 LISOPNO3NO3=O                                                                        | $2.7 \times 10^{-12} \times \exp(360/T)$   | 1                                                                              | Х |
| IHNC4O2 + HO2  | $\rightarrow$ | 0.15 NISOPOOHOH=O + 0.638 CH3COCH2OH + 0.85 OH + 1.062<br>CH3C(O)O2 + 0.85 NO2 + 0.212 HO2 + 0.212 HCHO                                                        | $2.6 \times 10^{-13} \times \exp(1300/T)$  | <sup>1</sup> , decomposition of<br>MVK3CO4N-> 2<br>CH3C(O)O2 + NO <sub>2</sub> | Х |

| IHNC4O2 + NO        | $\rightarrow$ | 1.715 CH3C(O)O2 + 0.245 CH3COCH2OH + 0.735 HO2 + 0.735<br>HCHO + 1.96 NO2 + 0.02 LISOPNO3NO3=O                                                                                                     | $2.7 \times 10^{-12} \times \exp(360/T)$    | 1                             | X |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|---|
| IHNEOOH + OH        | $\rightarrow$ | 0.5 HO2 + 0.5 MACRNOOH + CO + OH + 0.5 NOA                                                                                                                                                         | $3.0 \times 10^{-12} \times \exp(20/T)$     | 1                             | Х |
| NISOPNOOH + OH      | $\rightarrow$ | 0.125 OH + 0.125 LISOPNO3NO3=O + 0.875 NISOPNOO                                                                                                                                                    | $1.0 \times 10^{-12}$                       | 1                             | Х |
| NC4CHO + OH         | $\rightarrow$ | 1.08 CO + 0.85 HO2 + 0.58 NOA + 0.5 OH + 0.12 HCHO + 0.12<br>MGLY + 0.17 NO2 + 0.11 MVKN + 0.05 LIECHO + 0.14<br>CH3C(O)O2 + 0.14 ETHLN                                                            | $4.1 \times 10^{-11}$                       | 9                             | Х |
| NC4CHO + O3         | $\rightarrow$ | 0.555 NOA + 0.89 CO + 0.89 OH + 0.445 MGLY + 0.445 HO2 + 0.075 H2O2 + 0.445 NO2 + 0.52 GLY + 0.035 HOOCCHO                                                                                         | $4.4 \times 10^{-18}$                       | 9                             | Х |
| NC4CHO + NO3        | $\rightarrow$ | HNO3 + 0.75 NOA + 0.75 CO + 0.75 HO2 +0.25 CH3C(O)O2 + 0.25 ETHLN                                                                                                                                  | $6.0 \times 10^{-12} \times \exp(-1860/T)$  | 9                             | Х |
| LHC4ACCHO + OH      | $\rightarrow$ | 1.065 OH + 0.355 MGLY + 0.652 CO + 0.297 HO2 + 0.116<br>LHMVKABOOH + 0.181 MACROOH + 0.35 LC578O2                                                                                                  | $4.64 \times 10^{-12} \times \exp(650/T)$   | <sup>1</sup> , 60%A, 40%C     | X |
| LHC4ACCHO + O3      | $\rightarrow$ | 0.2225 CH3C(O)O2 + 0.89 CO + 0.017188 CH2OHCOOH +<br>0.075625 H2O2 + 0.017188 HOOCCHO + 0.2775 CH3COCH2OH +<br>0.6675 HO2 + 0.260313 GLY + 0.2225 HCHO + 0.89 OH +<br>0.260313 OHCCH2OH + 0.5 MGLY | 2.4×10 <sup>-17</sup>                       | 3                             |   |
| LHC4ACCHO + NO3     | $\rightarrow$ | HNO3 + LHC4ACCO3                                                                                                                                                                                   | $6.12 \times 10^{-12} \times \exp(-1862/T)$ | 3                             |   |
| LC578O2 + NO        | $\rightarrow$ | 0.02 NISOPOHOH=O + 0.98 HO2 + 0.98 NO2 + 0.196 CO + 0.612<br>MGLY + 0.612 OHCCH2OH + 0.153 MVKOH + 0.043 MACROH +<br>0.172 GLY + 0.172 CH3COCH2OH                                                  | $2.7 \times 10^{-12} \times \exp(360/T)$    | <sup>1</sup> , 78%A, 22%C     | Х |
| LC578O2 + NO3       | $\rightarrow$ | HO2 + NO2 + 0.2 CO + 0.624 MGLY + 0.624 OHCCH2OH + 0.156<br>MVKOH + 0.044 MACROH + 0.176 GLY + 0.176 CH3COCH2OH                                                                                    | $2.3 \times 10^{-12}$                       | Analog to NO chemistry        | X |
| LC578O2 + HO2       | $\rightarrow$ | 0.35 LC578OOH + 0.13 CO + 0.65 OH + 0.65 HO2 + 0.101<br>MVKOH + 0.406 OHCCH2OH + 0.406 MGLY + 0.029 MACROH +<br>0.114 GLY + 0.114 CH3COCH2OH                                                       | $2.38 \times 10^{-13} \times \exp(1300/T)$  | <sup>1</sup> ,78%A,22%C       | Х |
| LC578O2 + CH3O2     | $\rightarrow$ | 2 HO2 + 0.2 CO + 0.624 MGLY + 0.624 OHCCH2OH + 0.156<br>MVKOH + 0.044 MACROH + 0.176 GLY + 0.176 CH3COCH2OH<br>+ HCHO                                                                              | $1.0 \times 10^{-12}$                       | Analog to other RO2 chemistry | X |
| LC578O2 + CH3C(O)O2 | $\rightarrow$ | HO2 + 0.2 CO + 0.624 MGLY + 0.624 OHCCH2OH + 0.156<br>MVKOH + 0.044 MACROH + 0.176 GLY + 0.176 CH3COCH2OH<br>+ CH3O2                                                                               | $1.0 \times 10^{-11}$                       | Analog to other RO2 chemistry | X |
| LC578O2             | $\rightarrow$ | OH + CO + 0.78 MVKOH + 0.22 MACROH                                                                                                                                                                 | $1.0 \times 10^7 \times \exp(-5000/T)$      | 1                             | X |

| LC578O2                  | $\rightarrow$     | HO2 + LIECO3H                                                                                                                | $1.875 \times 10^{13} \times \exp(-1000/T)$                                       | 1                                  | Х |
|--------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|---|
| LC578OOH + OH            | $\rightarrow$     | CO + 0.5 HO2 + 0.5 OH + 0.5 MACROOH + 0.35 MVKOH + 0.15<br>MACROH                                                            | $1.0 \times 10^{-11}$                                                             | 1                                  | Х |
| LHC4ACCO3                | $\rightarrow$     | HO2 + MDIALOOH                                                                                                               | $4.1 \times 10^8 \times \exp(-7700/T)$                                            | 3                                  |   |
| LHC4ACCO3 + NO           | $\rightarrow$     | 0.5 CH3COCH2OH + 0.5 OHCCH2OH + 0.5 CH3C(O)O2 + 0.5 CO<br>+ 0.5 HO2 + NO2                                                    | $8.1 \times 10^{-12} \times \exp(270/T)$                                          | 3                                  |   |
| LHC4ACCO3 + NO3          | $\rightarrow$     | 0.5CH3COCH2OH + 0.5OHCCH2OH + 0.5CH3C(0)O2 + 0.5CO + 0.5HO2 + NO2                                                            | $4.0 \times 10^{-12}$                                                             | 3                                  |   |
| LHC4ACCO3 + HO2          | $\rightarrow$     | 0.37 LHC4ACCO3H + 0.13 LHC4ACCO2H + 0.13 O3 + 0.5 OH + 0.25 CH3COCH2OH + 0.25 OHCCH2OH + 0.25 CH3C(O)O2 + 0.25 CO + 0.25 HO2 | $2.8 \times 10^{-12} \times \exp(730/T)$                                          | 6                                  | 2 |
| LHC4ACCO3 + CH3O2        | $\rightarrow$     | HCHO + 0.1 LHC4ACCO2H + 0.45 OHCCH2OH + 0.45<br>CH3COCH2OH + 0.45 CH3C(O)O2 + 0.45 CO + 1.35 HO2                             | $2.0 \times 10^{-12} \times \exp(500/T)$                                          | <sup>3</sup> , CH3C(O)O2 chemistry | 2 |
| LHC4ACCO3 +<br>CH3C(O)O2 | $\rightarrow$     | 0.5 CH3COCH2OH + 0.5 OHCCH2OH + 0.5 CH3C(O)O2 + 0.5 CO<br>+ 0.5 HO2 + CH3O2                                                  | $2.9 \times 10^{-12} \times \exp(500/T)$                                          | <sup>3</sup> , CH3C(O)O2 chemistry | 2 |
| LHC4ACCO3 + NO2          | $\xrightarrow{M}$ | LC5PAN1719                                                                                                                   | $k_{tro}(3.28 \times 10^{-28}, -6.87, 0, 1.125 \times 10^{-11}, -1.105, 0, 0.3)$  | <sup>3</sup> , CH3C(O)O2 chemistry | 1 |
| LHC4ACCO2H + OH          | $\rightarrow$     | 0.5 CH3COCH2OH + 0.5 OHCCH2OH + 0.5 CH3C(O)O2 + 0.5 CO<br>+ 0.5 HO2                                                          | $2.52 \times 10^{-11}$                                                            | 3                                  |   |
| LHC4ACCO3H + OH          | $\rightarrow$     | LHC4ACCO3                                                                                                                    | $2.88 \times 10^{-11}$                                                            | 3                                  |   |
| LC5PAN1719 + OH          | $\rightarrow$     | 0.5 MACROH + 0.5 MVKOH + CO + NO3                                                                                            | $7.79 \times 10^{-11}$                                                            | MCM                                | Х |
| LC5PAN1719               | $\xrightarrow{M}$ | LHC4ACCO3 + NO2                                                                                                              | $k_{tro}(1.1 \times 10^{-5}, 0, -10100,$<br>$1.9 \times 10^{17}, 0, -14100, 0.3)$ | МСМ                                | X |
| HCOC5 + OH               | $\rightarrow$     | C59O2                                                                                                                        | $2.7 \times 10^{-11} \times \exp(390/T)$                                          | 1                                  | Х |
| C59O2 + NO               | $\rightarrow$     | 0.784 CH3COCH2OH + 0.784 CO + 0.98 NO2 + 0.98 HCHO + 0.98<br>HO2 + 0.196 BIACETOH + 0.02 NISOPOHOH=O                         | $2.7 \times 10^{-12} \times \exp(360/T)$                                          | 1                                  | Х |
| C59O2 + NO3              | $\rightarrow$     | 0.8 CH3COCH2OH + 0.8 CO + NO2 + HCHO + HO2 + 0.2<br>BIACETOH                                                                 | $2.3 \times 10^{-12}$                                                             | Analog to RO2 chemistry            | X |
| C59O2 + HO2              | $\rightarrow$     | 0.35 LC578OOH + 0.65 OH + 0.13 BIACETOH + 0.65 HCHO + 0.65 HO2 + 0.52 CH3COCH2OH + 0.52 CO                                   | $2.38 \times 10^{-13} \times \exp(1300/T)$                                        | 1                                  | X |
| C59O2 + CH3O2            | $\rightarrow$     | 0.8 CH3COCH2OH + 0.8 CO + 2 HCHO + 2 HO2 + 0.2 BIACETOH                                                                      | $1.0 \times 10^{-12}$                                                             | Analog to RO2 chemistry            | Х |

| C59O2 + CH3C(O)O2  | $\rightarrow$ | 0.8 CH3COCH2OH + 0.8 CO + HCHO + HO2 + 0.2 BIACETOH + CH3O2                                                                                          | $1.0 \times 10^{-11}$                        | Analog to RO2 chemistry      | X |
|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|---|
| C59O2              | $\rightarrow$ | HO2 + CO + CO + CH3COCH2OH + OH                                                                                                                      | $1.875 \times 10^{13} \times \exp(-10000/T)$ | 1                            | Х |
| HPALD + OH         | $\rightarrow$ | 0.856 OH + 0.385 MDIALOOH + 0.256 BIGALD3 + 0.215<br>LIECO3H + 0.144 HO2 + 0.144 GLY + 0.144 CC(=O)COO                                               | $5.2 \times 10^{-11}$                        | MCM; 60%HPALD1,<br>40%HPALD2 | Х |
| HPALD + NO3        | $\rightarrow$ | MDIALOOH + OH + HNO3                                                                                                                                 | $5.95 \times 10^{-12} \times \exp(-1862/T)$  | MCM; 60%HPALD1,<br>40%HPALD2 | Х |
| HPALD + O3         | $\rightarrow$ | 0.438 HCOCH2OOH + 0.39 CH3C(O)O2 + 0.502 MGLY + 0.096<br>HO2 + 0.582 CO + 1.394 OH + 0.466 GLY + 0.108 CC(=O)COO                                     | $2.4 \times 10^{-17}$                        | MCM; 60%HPALD1,<br>40%HPALD2 | Х |
| LISOPOOHOOH + OH   | $\rightarrow$ | 0.333 LC578OOH + 0.667 DHHPEPOX + OH                                                                                                                 | $3.0 \times 10^{-12}$                        | 1                            | Х |
| LISOPACNO3O2 + NO  | $\rightarrow$ | 0.884 HO2 + 0.884 NO2 + 0.116 LISOPNO3NO3 + 0.304 NOA +<br>0.304 OHCCH2OH + 0.022 MACRN + 0.1 HCHO + 0.48<br>CH3COCH2OH + 0.48 ETHLN + 0.079 MVKN    | $2.7 \times 10^{-12} \times \exp(360/T)$     | <sup>1</sup> , 60%A, 40%C    | X |
| LISOPACNO3O2       | $\rightarrow$ | HO2 + NISOPOOHOH=O                                                                                                                                   | $1.875 \times 10^{13} \times \exp(-10000/T)$ | 1                            | Х |
| LISOPACNO3O2 + HO2 | $\rightarrow$ | 0.533 HO2 + 0.533 OH + 0.467 LISOPNO3OOH + 0.193 NOA +<br>0.193 OHCCH2OH + 0.011 MACRN + 0.053 HCHO + 0.287<br>CH3COCH2OH + 0.287 ETHLN + 0.042 MVKN | $2.6 \times 10^{-13} \times \exp(1300/T)$    | 1                            | Х |
| LISOPNO3NO3 + OH   | $\rightarrow$ | LISOPNO3NO3=O                                                                                                                                        | $2.0 \times 10^{-12}$                        | 1                            | Х |
| LISOPNO3NO3=O + OH | $\rightarrow$ | CO + NO2 + 0.5 MACRN + 0.5 MVKN                                                                                                                      | $4.0 \times 10^{-12}$                        | 1                            | Х |
| LISOPNO3OOH + OH   | $\rightarrow$ | 0.33 OH + 0.67 HO2 + 0.33 NISOPOHOH=O + 0.67<br>NISOPOOHOH=O                                                                                         | $3.0 \times 10^{-12}$                        | 1                            | Х |
| NISOPOHOH=O + OH   | $\rightarrow$ | CO + NO2 + 0.75 MVKOH + 0.25 MACROH                                                                                                                  | $1.0 \times 10^{-11}$                        | 1                            | Х |

| C6 chemistry |               |                                                                   |                                           |                            |   |
|--------------|---------------|-------------------------------------------------------------------|-------------------------------------------|----------------------------|---|
| BENZ + OH    | $\rightarrow$ | 0.327 BENZO2 + 0.14 BEPOMUC + 0.14 HO2 + 0.533 PHENOL + 0.533 HO2 | $2.3 \times 10^{-12} \times \exp(-190/T)$ | <sup>10</sup> , MCM, IUPAC | Х |
| PHENOL + OH  | $\rightarrow$ | 0.06 C6H5O + 0.8 CATECHOL + 0.8 HO2 + 0.14 PHENO2                 | $4.7 \times 10^{-13} \times \exp(1220/T)$ | <sup>3</sup> , MCM         |   |
| PHENOL + NO3 | $\rightarrow$ | 0.742 C6H5O + 0.742 HNO3 + 0.258 NPHENOLO2                        | $3.8 \times 10^{-12}$                     | MCM                        | Х |
| PHENO2 + NO  | $\rightarrow$ | 0.71 BIGACID1 + 0.71 GLY + NO2 + HO2 + 0.29 BZQONE                | $2.7 \times 10^{-12} \times \exp(360/T)$  | MCM                        | Х |
| PHENO2 + NO3 | $\rightarrow$ | 0.71 BIGACID1 + 0.71 GLY + NO2 + HO2 + 0.29 BZQONE                | $2.3 \times 10^{-12}$                     | MCM                        | Х |

| PHENO2 + HO2            | $\rightarrow$ | PHENOOH                                               | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                | Х |
|-------------------------|---------------|-------------------------------------------------------|--------------------------------------------|--------------------|---|
| PHENO2 + CH3O2          | $\rightarrow$ | 2 HO2 + HCHO + 0.71 BIGACID1 + 0.71 GLY + 0.29 BZQONE | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry | Х |
| PHENO2 + CH3C(O)O2      | $\rightarrow$ | HO2 + 0.71 BIGACID1 + 0.71 GLY + CH3O2 + 0.29 BZQONE  | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry | Х |
| PHENOOH + OH            | $\rightarrow$ | PHENO2                                                | $1.16 \times 10^{-10}$                     | MCM                | Х |
| NPHENOLO2+ NO           | $\rightarrow$ | BIGACID1 + GLY + 2 NO2                                | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                | Х |
| NPHENOLO2+ NO3          | $\rightarrow$ | BIGACID1 + GLY + 2 NO2                                | $2.3 \times 10^{-12}$                      | MCM                | Х |
| NPHENOLO2+HO2           | $\rightarrow$ | NPHENOLOOH                                            | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                | Х |
| NPHENOLO2+ CH3O2        | $\rightarrow$ | 2 HO2 + HCHO + BIGACID1 + GLY + NO2                   | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry | Х |
| NPHENOLO2+<br>CH3C(O)O2 | $\rightarrow$ | HO2 + BIGACID1 + GLY + NO2 + CH3O2                    | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry | Х |
| NPHENOLOOH+ OH          | $\rightarrow$ | NPHENOLO2                                             | $1.07 \times 10^{-10}$                     | MCM                | X |
| BZQONE + NO3            | $\rightarrow$ | NBZQO2                                                | $3.0 \times 10^{-13}$                      | MCM                | Х |
| BZQONE + OH             | $\rightarrow$ | BZQO2                                                 | $4.6 \times 10^{-12}$                      | MCM, IUPAC         | Х |
| NBZQO2 + HO2            | $\rightarrow$ | NBZQOOH                                               | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                | Х |
| NBZQO2 + NO             | $\rightarrow$ | C6CO4DB+ 2 NO2                                        | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                | Х |
| NBZQO2 + NO3            | $\rightarrow$ | 2 NO2 + C6CO4DB                                       | $2.3 \times 10^{-12}$                      | MCM                | Х |
| NBZQO2 + CH3O2          | $\rightarrow$ | NO2 + C6CO4DB + HO2 + HCHO                            | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry | Х |
| NBZQO2 + CH3C(O)O2      | $\rightarrow$ | NO2 + C6CO4DB + CH3O2                                 | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry | Х |
| NBZQOOH + OH            | $\rightarrow$ | NBZQO2                                                | $6.68 \times 10^{-11}$                     | MCM                | Х |
| BZQO2 + HO2             | $\rightarrow$ | BZQOOH                                                | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                | Х |
| BZQO2 + NO              | $\rightarrow$ | HO2 + CO + NO2 + HOCOC4DIAL                           | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                | Х |
| BZQO2 + NO3             | $\rightarrow$ | HO2 + CO + NO2 + HOCOC4DIAL                           | $2.3 \times 10^{-12}$                      | MCM                | Х |
| BZQO2 + CH3O2           | $\rightarrow$ | HO2 + CO + HOCOC4DIAL + HO2 + HCHO                    | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry | Х |
| BZQO2 + CH3C(O)O2       | $\rightarrow$ | HO2 + CO + HOCOC4DIAL + CH3O2                         | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry | Х |
| BZQOOH + OH             | $\rightarrow$ | BZQCO + OH                                            | $1.23 \times 10^{-10}$                     | MCM                | Х |
| BZQCO + OH              | $\rightarrow$ | HO2 + CO + HOCOC4DIAL                                 | $6.07 \times 10^{-11}$                     | МСМ                | Х |
| C6CO4DB + OH            | $\rightarrow$ | 3 CO + HO2 + C33CO                                    | $7.7 \times 10^{-11}$                      | МСМ                | Х |
| C6H5O + NO2             | $\rightarrow$ | NPHEN                                                 | $1.0 \times 10^{-12}$                      | 10                 | Х |

| C6H5O + HO2        | $\rightarrow$ | PHENOL                                                                       | 2.3×10 <sup>-13</sup>                      | 10                                | Х |
|--------------------|---------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|---|
| C6H5O + O3         | $\rightarrow$ | C6H5O2                                                                       | $2.9 \times 10^{-13}$                      | 10                                | Х |
| NPHEN + OH         | $\rightarrow$ | NPHENO                                                                       | 9.0×10 <sup>-13</sup>                      | MCM                               | Х |
| NPHEN + NO3        | $\rightarrow$ | NPHENO + HNO3                                                                | $9.0 \times 10^{-14}$                      | MCM                               | Х |
| C6H5O2 + HO2       | $\rightarrow$ | С6Н5ООН                                                                      | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                               | Х |
| C6H5O2 + NO        | $\rightarrow$ | C6H5O + NO2                                                                  | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                               | Х |
| C6H5O2 + NO3       | $\rightarrow$ | C6H5O + NO2                                                                  | $2.3 \times 10^{-12}$                      | <sup>3</sup> , MCM                |   |
| C6H5O2 + CH3O2     | $\rightarrow$ | C6H5O + HO2 + HCHO                                                           | $1.0 \times 10^{-12}$                      | <sup>3</sup> , MCM, RO2 chemistry |   |
| C6H5O2 + CH3C(O)O2 | $\rightarrow$ | C6H5O + CH3O2                                                                | $1.0 \times 10^{-11}$                      | <sup>3</sup> , MCM, RO2 chemistry |   |
| C6H5OOH + OH       | $\rightarrow$ | C6H5O2                                                                       | $3.6 \times 10^{-12}$                      | MCM                               | Х |
| BENZO2 + HO2       | $\rightarrow$ | BENZOOH                                                                      | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                               | Х |
| BENZO2 + NO        | $\rightarrow$ | 0.92 GLY + 0.92 NO2 + 0.46 BIGALD1 + 0.92 HO2 + 0.46<br>BZFUONE + 0.08 BENZN | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                               | Х |
| BENZO2 + NO3       | $\rightarrow$ | GLY + NO2 + 0.5 BIGALD1 + HO2 + 0.5 BZFUONE                                  | $2.3 \times 10^{-12}$                      | MCM                               | Х |
| BENZO2 + CH3O2     | $\rightarrow$ | GLY + 0.5 BIGALD1 + 2 HO2 + HCHO + 0.5 BZFUONE                               | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry                | Х |
| BENZO2 + CH3C(O)O2 | $\rightarrow$ | GLY + 0.5 BIGALD1 + HO2 + CH3O2 + 0.5 BZFUONE                                | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry                | Х |
| BENZOOH + OH       | $\rightarrow$ | 1.4 GLY + 0.6 MALANHY + HO2 + 0.4 CO                                         | $9.77 \times 10^{-11}$                     | MCM                               | Х |
| BENZN + OH         | $\rightarrow$ | NO2 + BENZ=O                                                                 | $7.3 \times 10^{-11}$                      | MCM                               | Х |
| BENZ=O + OH        | $\rightarrow$ | GLY + MALO2 + HO2                                                            | $8.16 \times 10^{-11}$                     | MCM                               | Х |
| CATECHOL + OH      | $\rightarrow$ | CATEC10                                                                      | $1.0 \times 10^{-10}$                      | <sup>3</sup> , MCM, IUPAC         |   |
| CATECHOL + NO3     | $\rightarrow$ | CATEC1O + HNO3                                                               | 9.9×10 <sup>-11</sup>                      | <sup>3</sup> , MCM                |   |
| CATEC1O + NO2      | $\rightarrow$ | NCATECHOL                                                                    | $2.08 \times 10^{-12}$                     | MCM                               | Х |
| CATEC1O + O3       | $\rightarrow$ | CATEC102                                                                     | $2.86 \times 10^{-13}$                     | MCM                               | Х |
| NCATECHOL + OH     | $\rightarrow$ | NCATECO2                                                                     | $3.47 \times 10^{-12}$                     | MCM                               | Х |
| NCATECHOL + NO3    | $\rightarrow$ | DNCATECO2                                                                    | $2.6 \times 10^{-12}$                      | MCM                               | Х |
| NCATECO2 + HO2     | $\rightarrow$ | NAROMOLOOH                                                                   | $2.24 \times 10^{-13} \times \exp(1300/T)$ | МСМ                               | Х |
| NCATECO2 + NO      | $\rightarrow$ | 2 NO2 + HOOCCHO + HO2 + MALANHY                                              | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                               | Х |
| NCATECO2 + NO3     | $\rightarrow$ | 2 NO2 + HOOCCHO + HO2 + MALANHY                                              | $2.3 \times 10^{-12}$                      | MCM                               | Х |

| NCATECO2 + CH3O2         | $\rightarrow$ | NO2 + HOOCCHO + 2 HO2 + MALANHY + HCHO | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry                   | Х |
|--------------------------|---------------|----------------------------------------|--------------------------------------------|--------------------------------------|---|
| NCATECO2 +<br>CH3C(O)O2  | $\rightarrow$ | NO2 + HOOCCHO + HO2 + MALANHY + CH3O2  | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry                   | X |
| DNCATECO2 + HO2          | $\rightarrow$ | NAROMOLOOH                             | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                                  | Х |
| DNCATECO2 + NO           | $\rightarrow$ | 3 NO2 + HOOCCHO + MALANHY              | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                                  | Х |
| DNCATECO2 + NO3          | $\rightarrow$ | 3 NO2 + HOOCCHO + MALANHY              | $2.3 \times 10^{-12}$                      | MCM                                  | Х |
| DNCATECO2 + CH3O2        | $\rightarrow$ | 2 NO2 + HOOCCHO + MALANHY + HO2 + HCHO | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry                   | Х |
| DNCATECO2 +<br>CH3C(O)O2 | $\rightarrow$ | 2 NO2 + HOOCCHO + MALANHY + CH3O2      | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry                   | X |
| CATEC1O2 + HO2           | $\rightarrow$ | CATEC100H                              | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                                  | Х |
| CATEC1O2 + NO            | $\rightarrow$ | CATEC10 + NO2                          | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                                  | Х |
| CATEC1O2 + NO3           | $\rightarrow$ | CATEC10 + NO2                          | $2.3 \times 10^{-12}$                      | <sup>3</sup> , MCM                   |   |
| CATEC102 + CH3O2         | $\rightarrow$ | CATEC1O + HO2 + HCHO                   | $1.0 \times 10^{-12}$                      | <sup>3</sup> , MCM, RO2 chemistry    |   |
| CATEC102 + CH3C(0)02     | $\rightarrow$ | CATEC10 + CH3O2                        | $1.0 \times 10^{-11}$                      | <sup>3</sup> , MCM, RO2 chemistry    |   |
| CATEC100H + OH           | $\rightarrow$ | CATEC102                               | $1.9 \times 10^{-12} \times \exp(190/T)$   | <sup>3</sup> , MCM                   |   |
| NPHENO2 + HO2            | $\rightarrow$ | NPHENOOH                               | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                                  | Х |
| NPHENO + O3              | $\rightarrow$ | NPHENO2                                | $2.86 \times 10^{-13}$                     | MCM                                  | Х |
| NPHENO + NO2             | $\rightarrow$ | N2PHEN                                 | $2.08 \times 10^{-12}$                     | MCM                                  | Х |
| NPHENOOH + OH            | $\rightarrow$ | NPHENO2                                | $9.0 \times 10^{-13}$                      | MCM                                  | Х |
| NPHENO2 + NO             | $\rightarrow$ | NPHENO + NO2                           | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                                  | Х |
| NPHENO2 + NO3            | $\rightarrow$ | NPHENO + NO2                           | $2.3 \times 10^{-12}$                      | MCM                                  | Х |
| NPHENO2 + CH3O2          | $\rightarrow$ | NPHENO + HO2 + HCHO                    | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry                   | Х |
| NPHENO2 + CH3C(O)O2      | $\rightarrow$ | NPHENO + CH3O2                         | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry                   | Х |
| N2PHEN + OH              | $\rightarrow$ | DNCATECO2                              | $3.0 \times 10^{-14}$                      | MCM                                  | Х |
| N2PHEN + NO3             | $\rightarrow$ | NDNPHENO2                              | $2.25 \times 10^{-12}$                     | MCM                                  | Х |
| NDNPHENO2 + HO2          | $\rightarrow$ | NAROMOLOOH                             | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM, NAROMOLOOH no further oxidation | X |
| NDNPHENO2 + NO           | $\rightarrow$ | 3 NO2 + HNO3 + 2 CO + MALANHY          | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                                  | Х |
| NDNPHENO2 + NO3          | $\rightarrow$ | 3 NO2 + HNO3 + 2 CO + MALANHY          | $2.3 \times 10^{-12}$                      | MCM                                  | Х |

| NDNPHENO2 + CH3O2        | $\rightarrow$ | 2 NO2 + HNO3 + 2 CO + MALANHY + HO2 + HCHO                                                           | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry | Х |
|--------------------------|---------------|------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|---|
| NDNPHENO2 +<br>CH3C(O)O2 | $\rightarrow$ | 2 NO2 + HNO3 + 2 CO + MALANHY + CH3O2                                                                | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry | Х |
| BIGALD4 + OH             | $\rightarrow$ | 0.7 CH3C(O)O2 + 0.7 CO2H3CHO + 0.6 MGLY + 0.3 HO2                                                    | $4.9 \times 10^{-11}$                      | MCM                | Х |
| BIGALD4 + O3             | $\rightarrow$ | 1.0675 MGLY + 0.125 CH3CHO + 0.57 OH + 0.57 CO + 0.695<br>CH3C(O)O2 + 0.0675 H2O2 + 0.1125 CH3COCOOH | $5.0 \times 10^{-18}$                      | МСМ                | Х |
| BIGACID3 + OH            | $\rightarrow$ | 0.65 MALANHY + 0.65 CH3O2 + 0.35 CH3C(O)O2 + 0.35 HO2 + 0.35 HCHO + 0.7 CO                           | $5.08 \times 10^{-11}$                     | MCM                | Х |
| С615СО2О2+ НО2           | $\rightarrow$ | С615СО2ООН                                                                                           | $2.24 \times 10^{-13} \times \exp(1300/T)$ | MCM                | Х |
| C615CO2O2+ NO            | $\rightarrow$ | BIGALD2 + CO + HO2 + NO2                                                                             | $2.7 \times 10^{-12} \times \exp(360/T)$   | MCM                | Х |
| C615CO2O2+ NO3           | $\rightarrow$ | BIGALD2 + CO + HO2 + NO2                                                                             | $2.3 \times 10^{-12}$                      | MCM                | Х |
| C615CO2O2+ CH3O2         | $\rightarrow$ | 0.8 HCHO + 0.2 CH3OH + 0.7 BIGALD2 + CO + 1.8 HO2 + 0.3<br>DICARBO2                                  | $1.0 \times 10^{-12}$                      | MCM, RO2 chemistry | Х |
| C615CO2O2+ CH3C(O)O2     | $\rightarrow$ | 0.8 CH3O2 + 0.2 CH3COOH + 0.8 BIGALD2 + CO + HO2 + 0.2<br>DICARBO2                                   | $1.0 \times 10^{-11}$                      | MCM, RO2 chemistry | Х |
| C615CO2OOH+ OH           | $\rightarrow$ | OH + DICARBO2 + CO + HO2                                                                             | 9.42×10 <sup>-11</sup>                     | МСМ                | Х |

| C7 chemistry       |               |                                                                                      |                                              |                                     |   |
|--------------------|---------------|--------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|---|
| TOL + OH           | $\rightarrow$ | 0.063 BZALD + 0.063 HO2 + 0.1914 CRESOL + 0.4171 HO2 + 0.2237 TEPOMUC + 0.5219 TOLO2 | $1.8 \times 10^{-12} \times \exp(340/T)$     | <sup>10</sup> , IUPAC               | X |
| CRESOL + OH        | $\rightarrow$ | 0.2 CRESO2 + 0.727 CATECHOL + 0.727 HO2 + 0.073 C6H5O                                | $1.6 \times 10^{-12} \times \exp(970/T)$     | <sup>10</sup> , MCM, IUPAC o-cresol | Х |
| CRESOL + NO3       | $\rightarrow$ | 0.103 CRESO2 + 0.391 C6H5O + 0.494 HNO3 + 0.506 NCRESO2                              | $1.4 \times 10^{-11}$                        | MCM                                 | Х |
| CRESO2 + HO2       | $\rightarrow$ | CRESOOH                                                                              | $2.3862 \times 10^{-13} \times \exp(1300/T)$ | MCM                                 | Х |
| CRESO2 + NO        | $\rightarrow$ | 0.68 BIGACID2 + 0.68 GLY + NO2 + HO2 + 0.32 BZQONE                                   | $2.7 \times 10^{-12} \times \exp(360/T)$     | MCM                                 | Х |
| CRESO2 + NO3       | $\rightarrow$ | 0.68 BIGACID2 + 0.68 GLY + NO2 + HO2 + 0.32 BZQONE                                   | $2.3 \times 10^{-12}$                        | MCM                                 | Х |
| CRESO2 + CH3O2     | $\rightarrow$ | 2 HO2 + HCHO + 0.68 BIGACID2 + 0.68 GLY + 0.32 BZQONE                                | $1.0 \times 10^{-12}$                        | MCM, RO2 chemistry                  | Х |
| CRESO2 + CH3C(O)O2 | $\rightarrow$ | HO2 + 0.68 BIGACID2 + 0.68 GLY + CH3O2 + 0.32 BZQONE                                 | $1.0 \times 10^{-11}$                        | MCM, RO2 chemistry                  | Х |
| CRESOOH + OH       | $\rightarrow$ | CRESO2                                                                               | $1.15 \times 10^{-10}$                       | MCM                                 | Х |
| NCRESO2+ HO2       | $\rightarrow$ | NCRESOOH                                                                             | $2.4 \times 10^{-13} \times \exp(1300/T)$    | MCM                                 | Х |

| NCRESO2+ NO        | $\rightarrow$     | 2 NO2 + BIGACID2 + GLY                                                                                                                   | $2.7 \times 10^{-12} \times \exp(360/T)$                                                                | MCM                                        | Х |
|--------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|---|
| NCRESO2+ NO3       | $\rightarrow$     | 2 NO2 + BIGACID2 + GLY                                                                                                                   | $2.3 \times 10^{-12}$                                                                                   | MCM                                        | Х |
| NCRESO2+ CH3O2     | $\rightarrow$     | HO2 + HCHO + NO2 + 0.771 MGLY + 0.771 BIGACID2 + 0.229<br>GLY + 0.229 BIGACID3                                                           | $1.0 \times 10^{-12}$                                                                                   | MCM, RO2 chemistry                         | Х |
| NCRESO2+ CH3C(O)O2 | $\rightarrow$     | NO2 + 0.771 MGLY + 0.771 BIGACID2 + 0.229 GLY + 0.229<br>BIGACID3 + CH3O2                                                                | $1.0 \times 10^{-11}$                                                                                   | MCM, RO2 chemistry                         | Х |
| NCRESOOH+ OH       | $\rightarrow$     | NCRESO2                                                                                                                                  | $1.1 \times 10^{-10}$                                                                                   | MCM                                        | Х |
| TOLO2 + HO2        | $\rightarrow$     | TOLOOH                                                                                                                                   | $2.3862 \times 10^{-13} \times \exp(1300/T)$                                                            | MCM                                        | Х |
| TOLO2 + NO         | $\rightarrow$     | 0.889 NO2 + 0.53 GLY + 0.36 MGLY + 0.889 HO2 + 0.18<br>BIGALD1 + 0.18 BIGALD2 + 0.18 BIGALD3 + 0.18 BZFUONE +<br>0.18 FUONE + 0.111 TOLN | $2.7 \times 10^{-12} \times \exp(360/T)$                                                                | MCM                                        | х |
| TOLO2 + NO3        | $\rightarrow$     | NO2 + 0.6 GLY + 0.4 MGLY + HO2 + 0.2 BIGALD1 + 0.2<br>BIGALD2 + 0.2 BIGALD3 + 0.2 BZFUONE + 0.2 FUONE                                    | $2.3 \times 10^{-12}$                                                                                   | МСМ                                        | Х |
| TOLO2 + CH3O2      | $\rightarrow$     | 0.6 GLY + 0.4 MGLY + 2 HO2 + 0.2 BIGALD1 + 0.2 BIGALD2 + 0.2 BIGALD3 + HCHO + 0.2 BZFUONE + 0.2 FUONE                                    | $1.0 \times 10^{-12}$                                                                                   | MCM, RO2 chemistry                         | Х |
| TOLO2 + CH3C(O)O2  | $\rightarrow$     | 0.6 GLY + 0.4 MGLY + HO2 + 0.2 BIGALD1 + 0.2 BIGALD2 + 0.2<br>BIGALD3 + CH3O2 + 0.2 BZFUONE + 0.2 FUONE                                  | $1.0 \times 10^{-11}$                                                                                   | MCM, RO2 chemistry                         | Х |
| TOLOOH + OH        | $\rightarrow$     | GLY + DICARBO2                                                                                                                           | 9.64×10 <sup>-11</sup>                                                                                  | MCM                                        | Х |
| TOLN + OH          | $\rightarrow$     | NO2 + TOL=O                                                                                                                              | $7.16 \times 10^{-11}$                                                                                  | MCM                                        | Х |
| TOL=O + OH         | $\rightarrow$     | GLY + DICARBO2                                                                                                                           | $7.99 \times 10^{-11}$                                                                                  | MCM                                        | Х |
| BZALD + OH         | $\rightarrow$     | ACBZO2                                                                                                                                   | $5.9 \times 10^{-12} \times \exp(225/T)$                                                                | <sup>3</sup> , MCM, IUPAC                  |   |
| BZALD + NO3        | $\rightarrow$     | ACBZO2 + HNO3                                                                                                                            | $2.4 \times 10^{-15}$                                                                                   | MCM                                        | Х |
| ACBZO2 + HO2       | $\rightarrow$     | 0.5 C6H5O2 + 0.5 OH + 0.37 ACBZOOH + 0.13 O3 + 0.13<br>PHCOOH                                                                            | $1.1 \times 10^{-11} \times \exp(364/T)$                                                                | <sup>6</sup> , MCM, CH3C(O)O2<br>chemistry | 2 |
| ACBZO2 + NO        | $\rightarrow$     | C6H5O2 + NO2                                                                                                                             | $7.5 \times 10^{-12} \times \exp(290/T)$                                                                | 3                                          |   |
| ACBZO2 + NO3       | $\rightarrow$     | C6H5O2 + NO2                                                                                                                             | $4.0 \times 10^{-12}$                                                                                   | MCM                                        |   |
| ACBZO2 + NO2       | $\xrightarrow{M}$ | PBZNIT                                                                                                                                   | $\begin{split} k_{tro}(3.28{\times}10^{-28},-6.87,0,\\ 1.125{\times}10^{-11},-1.105,0,0.3) \end{split}$ | MCM, CH3C(O)O2<br>chemistry                | 1 |
| ACBZO2 + CH3O2     | $\rightarrow$     | 0.9 C6H5O2 + 0.9 HO2 + HCHO + 0.1 PHCOOH                                                                                                 | $2.0 \times 10^{-12} \times \exp(500/T)$                                                                | MCM, CH3C(O)O2<br>chemistry                | 2 |

| ACBZO2 + CH3C(O)O2 | $\rightarrow$     | C6H5O2 + CH3O2     | $2.9 \times 10^{-12} \times \exp(500/T)$ | MCM, CH3C(0)02                | 2 |
|--------------------|-------------------|--------------------|------------------------------------------|-------------------------------|---|
|                    |                   |                    |                                          | chemistry                     |   |
| PHCOOH + OH        | $\rightarrow$     | C6H5O2             | $1.1 \times 10^{-12}$                    | MCM                           | Х |
| ACBZOOH + OH       | $\rightarrow$     | ACBZO2             | $4.66 \times 10^{-12}$                   | MCM                           | Х |
| PBZNIT + OH        | $\rightarrow$     | C6H5OOH + CO + NO2 | $1.06 \times 10^{-12}$                   | MCM                           | Х |
| PBZNIT             | $\xrightarrow{M}$ | ACBZO2 + NO2       | $k_{tro}(1.1 	imes 10^{-5}, 0, -10100,$  | <sup>3</sup> , MCM, CH3C(O)O2 |   |
|                    |                   |                    | $1.9 \times 10^{17}, 0, -14100, 0.3)$    | chemistry                     |   |

| C8 chemistry        |               |                                                                                                                                                                                                                |                                           |                                                                          |   |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|---|
| XYL + OH            | $\rightarrow$ | 0.15 XYLOL + 0.23 TEPOMUC + 0.06 BZALD + 0.06 HO2 + 0.56<br>XYLENO2 + 0.38 HO2                                                                                                                                 | $7.3 \times 10^{-12} \times \exp(355/T)$  | <sup>3,13</sup> , see sect. 4.1.1, RACM                                  | X |
| XYLOL + OH          | $\rightarrow$ | 0.33 CRESO2 + 0.6 CATECHOL + 0.6 HO2 + 0.07 C6H5O                                                                                                                                                              | $8.4 \times 10^{-11}$                     | <sup>3</sup> , MCM, XYLOLO2<br>approximated with<br>CRESO2               | х |
| XYLOL + NO3         | $\rightarrow$ | 0.1 CRESO2 + 0.39 C6H5O + 0.49 HNO3 + 0.51 NCRESO2                                                                                                                                                             | 3.91×10 <sup>-11</sup>                    | MCM, XYLOLO2<br>approximated with<br>CRESO2 and NXYLOLO2<br>with NCRESO2 | X |
| XYLENO2 + HO2       | $\rightarrow$ | XYLENOOH                                                                                                                                                                                                       | $2.5 \times 10^{-13} \times \exp(1300/T)$ | MCM                                                                      | Х |
| XYLENO2 + NO        | $\rightarrow$ | 0.138 XYLNO3 + 0.293 GLY + 0.491 MGLY + 0.043 BIGALD1 +<br>0.147 BIGALD2 + 0.138 BIGALD3 + 0.233 BIGALD4 + 0.862 NO2<br>+ 0.862 HO2 + 0.259 FUONE + 0.043 BZFUONE + 0.081 CO +<br>0.081 CH3C(O)O2 + 0.081 HCHO | $2.7 \times 10^{-12} \times \exp(360/T)$  | МСМ                                                                      | X |
| XYLENO2 + NO3       | $\rightarrow$ | HO2 + 0.34 GLY + 0.57 MGLY + 0.05 BIGALD1 + 0.17 BIGALD2<br>+ 0.16 BIGALD3 + 0.27 BIGALD4 + 0.09 CO + 0.09 CH3C(O)O2 +<br>0.09 HCHO + 0.3 FUONE + 0.05 BZFUONE + NO2                                           | $2.3 \times 10^{-12}$                     | МСМ                                                                      | х |
| XYLENO2 + CH3O2     | $\rightarrow$ | 2 HO2 + HCHO + 0.34 GLY + 0.57 MGLY + 0.05 BIGALD1 + 0.17<br>BIGALD2 + 0.16 BIGALD3 + 0.27 BIGALD4 + 0.09 CO + 0.09<br>CH3C(O)O2 + 0.09 HCHO + 0.3 FUONE + 0.05 BZFUONE                                        | $1.0 \times 10^{-12}$                     | MCM, RO2 chemistry                                                       | х |
| XYLENO2 + CH3C(O)O2 | $\rightarrow$ | HO2 + 0.34 GLY + 0.57 MGLY + 0.05 BIGALD1 + 0.17 BIGALD2<br>+ 0.16 BIGALD3 + 0.27 BIGALD4 + 0.09 CO + 0.09 CH3C(O)O2 +<br>0.09 HCHO + 0.3 FUONE + 0.05 BZFUONE + CH3O2                                         | 1.0×10 <sup>-11</sup>                     | MCM, RO2 chemistry                                                       | Х |

| XYLENOOH + OH | $\rightarrow$ | 0.48 XYLENO2 + 0.52 MGLY + 0.26 MDIALO2 + 0.26<br>DICARBO2 | 9.3×10 <sup>-11</sup>  | MCM | Х |
|---------------|---------------|------------------------------------------------------------|------------------------|-----|---|
| XYLNO3 + OH   | $\rightarrow$ | NO2 + TOL=O + 0.59 CH3O2                                   | $7.19 \times 10^{-11}$ | МСМ | X |

| C10/C15 chemistry |               |                                                                                                                                                                            |                                             |                       |   |
|-------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|---|
| APIN + OH         | $\rightarrow$ | TERPO2                                                                                                                                                                     | $1.34 \times 10^{-11} \times \exp(410/T)$   | <sup>3</sup> , IUPAC  | Х |
| BPIN + OH         | $\rightarrow$ | TERPO2                                                                                                                                                                     | $1.62 \times 10^{-11} \times \exp(460/T)$   | <sup>3</sup> , IUPAC  | Х |
| LIMONENE + OH     | $\rightarrow$ | TERPO2                                                                                                                                                                     | $3.41 \times 10^{-11} \times \exp(470/T)$   | <sup>3</sup> , IUPAC  | Х |
| MYRC + OH         | $\rightarrow$ | TERPO2                                                                                                                                                                     | $2.1 \times 10^{-10}$                       | 3                     |   |
| BCARY + OH        | $\rightarrow$ | BCO2                                                                                                                                                                       | $2.0 \times 10^{-10}$                       | <sup>11</sup> , IUPAC | Х |
| APIN + O3         | $\rightarrow$ | 0.07 ELVOC + 0.39 TERPROD1 + 0.27 TERPROD2 + 0.63 OH +<br>0.57 HO2 + 0.23 CO + 0.52 CH3COCH3 + 0.34 HCHO + 0.05<br>HCOOH + 0.05 BIGALK + 0.06 CH3C(O)O2 + 0.06 CC(=O)CO[O] | $8.22 \times 10^{-16} \times \exp(-640/T)$  | <sup>3</sup> , IUPAC  | X |
| BPIN + O3         | $\rightarrow$ | 0.43 TERPROD1 + 0.3 TERPROD2 + 0.63 OH + 0.57 HO2 + 0.23<br>CO + 0.52 CH3COCH3 + 0.34 HCHO + 0.05 HCOOH + 0.05<br>BIGALK + 0.06 CH3C(O)O2 + 0.06 CC(=O)CO[O]               | $1.39 \times 10^{-15} \times \exp(-1280/T)$ | <sup>3</sup> , IUPAC  | X |
| LIMONENE + O3     | $\rightarrow$ | 0.07 ELVOC + 0.39 TERPROD1 + 0.27 TERPROD2 + 0.63 OH +<br>0.57 HO2 + 0.23 CO + 0.52 CH3COCH3 + 0.34 HCHO + 0.05<br>HCOOH + 0.05 BIGALK + 0.06 CH3C(O)O2 + 0.06 CC(=O)CO[O] | $2.91 \times 10^{-15} \times \exp(-770/T)$  | <sup>3</sup> , IUPAC  | X |
| MYRC + O3         | $\rightarrow$ | 0.43 TERPROD1 + 0.3 TERPROD2 + 0.63 OH + 0.57 HO2 + 0.23<br>CO + 0.52 CH3COCH3 + 0.34 HCHO + 0.05 HCOOH + 0.05<br>BIGALK + 0.06 CH3C(O)O2 + 0.06 CC(=O)CO[O]               | $2.69 \times 10^{-15} \times \exp(-520/T)$  | <sup>3</sup> , IUPAC  | X |
| BCARY + O3        | $\rightarrow$ | 0.9 BCOO + 0.1 BCO2 + 0.1 OH                                                                                                                                               | $1.2 \times 10^{-14}$                       | <sup>11</sup> , IUPAC | Х |
| APIN + NO3        | $\rightarrow$ | NTERPO2                                                                                                                                                                    | $1.2 \times 10^{-12} \times \exp(490/T)$    | <sup>3</sup> , IUPAC  |   |
| BPIN + NO3        | $\rightarrow$ | NTERPO2                                                                                                                                                                    | $2.5 \times 10^{-12}$                       | <sup>3</sup> , IUPAC  |   |
| LIMONENE + NO3    | $\rightarrow$ | NTERPO2                                                                                                                                                                    | $1.2 \times 10^{-11}$                       | <sup>3</sup> , IUPAC  |   |
| MYRC + NO3        | $\rightarrow$ | NTERPO2                                                                                                                                                                    | $1.1 \times 10^{-11}$                       | <sup>3</sup> , IUPAC  | Х |
| BCARY + NO3       | $\rightarrow$ | NTERPO2 + 0.5 TERPROD1                                                                                                                                                     | $1.9 \times 10^{-11}$                       | <sup>3</sup> , IUPAC  | Х |
| TERPO2 + NO       | $\rightarrow$ | 0.26 TERPNO3 + 0.36 HCHO + 0.045 CH3COCH3 + 0.695<br>TERPROD1 + 0.74 HO2 + 0.74 NO2                                                                                        | $4.2 \times 10^{-12} \times \exp(180/T)$    | 3                     |   |

| TERPO2 + HO2        | $\rightarrow$ | TERPOOH                                                                                                   | $7.5 \times 10^{-13} \times \exp(700/T)$ | 3                            |   |
|---------------------|---------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|---|
| TERPO2 + CH3O2      | $\rightarrow$ | 1.15 HCHO + 0.05 CH3COCH3 + 0.945 TERPROD1 + HO2 + 0.25<br>CH3OH                                          | $2.0 \times 10^{-12} \times \exp(500/T)$ | 3                            |   |
| TERPO2 + CH3C(O)O2  | $\rightarrow$ | 0.4 HCHO + 0.05 CH3COCH3 + 0.945 TERPROD1 + HO2 + CH3O2                                                   | $1.0 \times 10^{-11}$                    | 3                            |   |
| TERPOOH + OH        | $\rightarrow$ | TERPO2                                                                                                    | $3.3 \times 10^{-11}$                    | 3                            |   |
| TERPROD1 + OH       | $\rightarrow$ | TERP2O2                                                                                                   | $5.7 \times 10^{-11}$                    | 3                            |   |
| TERPROD1 + NO3      | $\rightarrow$ | 0.5 TERP2O2 + 0.5 NTERPO2 + 0.5 NO2                                                                       | $1.0 \times 10^{-12}$                    | 3                            |   |
| TERP2O2 + HO2       | $\rightarrow$ | TERP2OOH                                                                                                  | $7.5 \times 10^{-13} \times \exp(700/T)$ | 3                            |   |
| TERP2O2 + NO        | $\rightarrow$ | 0.1 TERPNO3 + 0.34 HCHO + 0.27 CH3COCH3 + 0.225 CO + 0.9<br>TERPROD2 + 0.9 HO2 + 0.9 NO2 + 0.225 OHCCH2OH | $4.2 \times 10^{-12} \times \exp(180/T)$ | 3                            |   |
| TERP2O2 + CH3O2     | $\rightarrow$ | TERPROD2 + 0.93 HCHO + 0.25 CH3OH + HO2 + 0.125 CO + 0.125 OHCCH2OH + 0.15 CH3COCH3                       | $2.0 \times 10^{-12} \times \exp(500/T)$ | 3                            |   |
| TERP2O2 + CH3C(O)O2 | $\rightarrow$ | 0.34 HCHO + 0.27 CH3COCH3 + 0.225 CO + TERPROD2 + HO2 + 0.225 OHCCH2OH + CH3O2                            | $1.0 \times 10^{-11}$                    | 3                            |   |
| TERPNO3 + OH        | $\rightarrow$ | NO2 + TERPROD1                                                                                            | $3.5 \times 10^{-12}$                    | 3                            |   |
| TERP2OOH + OH       | $\rightarrow$ | TERP2O2                                                                                                   | $2.3 \times 10^{-11}$                    | 3                            |   |
| TERPROD2 + OH       | $\rightarrow$ | 0.15 CC(=O)CO[O] + 0.68 HCHO + 0.5 CH3COCH3 + 0.65<br>CH3C(O)O2 + 0.2 HO2 + 0.7 CO                        | $3.4 \times 10^{-11}$                    | 3                            |   |
| NTERPO2 + NO        | $\rightarrow$ | 0.26 NTERPNO3 + 0.74 TERPROD1 + 1.48 NO2                                                                  | $4.2 \times 10^{-12} \times \exp(180/T)$ | 3                            |   |
| NTERPO2 + NO3       | $\rightarrow$ | TERPROD1 + NO2 + NO2                                                                                      | $2.4 \times 10^{-12}$                    | 3                            |   |
| NTERPO2 + HO2       | $\rightarrow$ | NTERPOOH                                                                                                  | $7.5 \times 10^{-13} \times \exp(700/T)$ | Analog to TERPO2 and TERP2O2 | Х |
| NTERPO2 + CH3O2     | $\rightarrow$ | 0.5 NTERPNO3 + 0.75 HCHO + 0.25 CH3OH + 0.5 HO2 + 0.5<br>TERPROD1 + 0.5 NO2                               | $2.0 \times 10^{-12} \times \exp(500/T)$ | 3                            |   |
| NTERPO2 + CH3C(O)O2 | $\rightarrow$ | TERPROD1 + NO2 + CH3O2                                                                                    | $1.0 \times 10^{-11}$                    | 3                            |   |
| NTERPNO3 + OH       | $\rightarrow$ | NO2 + TERPROD1                                                                                            | $3.5 \times 10^{-12}$                    | 3                            |   |
| NTERPOOH + OH       | $\rightarrow$ | NTERPO2                                                                                                   | $2.0 \times 10^{-11}$                    | MCM                          | Х |
| ELVOC + OH          | $\rightarrow$ | HO2 + TERPROD1                                                                                            | $1.0 \times 10^{-11}$                    | 3                            |   |
| BCOO                | $\rightarrow$ | PROD1                                                                                                     | 100                                      | 11                           | Х |

| BCOO             | $\xrightarrow{H_2O}$ | 0.5 PROD1 + 0.5 H2O2 + 0.5 PROD2                                  | $2.0 \times 10^{-16}$                      | 11                            | X |
|------------------|----------------------|-------------------------------------------------------------------|--------------------------------------------|-------------------------------|---|
| BCO2 + NO        | $\rightarrow$        | 0.753 PROD1 + 0.753 HO2 + 0.753 NO2 + 0.247 BCNO3                 | $2.54 \times 10^{-12} \times \exp(360/T)$  | 11                            | Х |
| BCO2 + NO3       | $\rightarrow$        | NO2 + HO2 + PROD1                                                 | $2.3 \times 10^{-12}$                      | <sup>11</sup> , MCM           | Х |
| BCO2 + HO2       | $\rightarrow$        | ВСООН                                                             | $2.84 \times 10^{-13} \times \exp(1300/T)$ | 11                            | Х |
| BCO2 + CH3O2     | $\rightarrow$        | PROD1 + 2 HO2 + HCHO                                              | $1.0 \times 10^{-12}$                      | <sup>11</sup> , RO2 chemistry | Х |
| BCO2 + CH3C(O)O2 | $\rightarrow$        | PROD1 + HO2 + CH3O2                                               | $1.0 \times 10^{-11}$                      | <sup>11</sup> , RO2 chemistry | Х |
| BCNO3 + OH       | $\rightarrow$        | PROD1 + NO2                                                       | $7.3 \times 10^{-11}$                      | 11                            | Х |
| BCOOH + OH       | $\rightarrow$        | PROD1 + OH                                                        | 9.1×10 <sup>-11</sup>                      | 11                            | Х |
| PROD1 + O3       | $\rightarrow$        | 0.836 PROD3 + 0.836 HCHO + 0.164 P1O2 + 0.164 OH                  | $1.1 \times 10^{-16}$                      | 11                            | Х |
| PROD1 + OH       | $\rightarrow$        | P1O2                                                              | $7.9 \times 10^{-11}$                      | 11                            | Х |
| P1O2 + NO        | $\rightarrow$        | 0.753 PROD3 + 0.753 HCHO + 0.753 HO2 + 0.753 NO2 + 0.247<br>P1NO3 | $2.54 \times 10^{-12} \times \exp(360/T)$  | 11                            | Х |
| P1O2 + NO3       | $\rightarrow$        | PROD3 + HCHO + HO2 + NO2                                          | $2.3 \times 10^{-12}$                      | <sup>11</sup> , MCM           | Х |
| P1O2 + HO2       | $\rightarrow$        | PSQTOOH                                                           | $2.84 \times 10^{-13} \times \exp(1300/T)$ | 11                            | Х |
| P1O2 + CH3O2     | $\rightarrow$        | PROD3 + 2 HCHO + 2 HO2                                            | $1.0 \times 10^{-12}$                      | <sup>11</sup> , RO2 chemistry | Х |
| P1O2 + CH3C(O)O2 | $\rightarrow$        | PROD3 + HCHO + HO2 + CH3O2                                        | $1.0 \times 10^{-11}$                      | <sup>11</sup> , RO2 chemistry | Х |
| P1NO3 + OH       | $\rightarrow$        | PROD3 + HCHO + NO2                                                | $2.3 \times 10^{-11}$                      | 11                            | Х |
| PROD2 + O3       | $\rightarrow$        | 0.836 PROD4 + 0.836 HCHO + 0.164 P2O2 + 0.164 OH                  | $1.1 \times 10^{-16}$                      | 11                            | Х |
| PROD2 + OH       | $\rightarrow$        | P2O2                                                              | $7.0 \times 10^{-11}$                      | 11                            | Х |
| P2O2 + NO        | $\rightarrow$        | 0.753 PROD4 + 0.753 HCHO + 0.753 HO2 + 0.753 NO2 + 0.247<br>P2NO3 | $2.54 \times 10^{-12} \times \exp(360/T)$  | 11                            | Х |
| P2O2 + NO3       | $\rightarrow$        | PROD4 + HCHO + HO2 + NO2                                          | $2.3 \times 10^{-12}$                      | <sup>11</sup> , MCM           | Х |
| P2O2 + HO2       | $\rightarrow$        | PSQTOOH                                                           | $2.84 \times 10^{-13} \times \exp(1300/T)$ | 11                            | Х |
| P2O2 + CH3O2     | $\rightarrow$        | PROD4 + 2 HCHO + 2 HO2                                            | $1.0 \times 10^{-12}$                      | 11                            | Х |
| P2O2 + CH3C(O)O2 | $\rightarrow$        | PROD4 + HCHO + HO2 + CH3O2                                        | $1.0 \times 10^{-11}$                      | 11                            | Х |
| PROD3 + OH       | $\rightarrow$        | 0.9 TERP2O2 + 1.25 CO2C3CHO                                       | $3.7 \times 10^{-11}$                      | 11                            | Х |
| PROD4 + OH       | $\rightarrow$        | 0.9 TERP2O2 + 1.25 CO2C3CHO                                       | $1.2 \times 10^{-11}$                      | 11                            | Х |

| Table S1-3: URMELL Photolysis reactions. Photolysis rates are calculated as in MCM3.3.1, therefore     |
|--------------------------------------------------------------------------------------------------------|
| the reader is referred to http://mcm.york.ac.uk/parameters/photolysis_param.htt. A few parameters were |
| calculated from IUPAC data. A list of the photolysis parameters is given in Table S1-4. All reaction   |
| equations marked with an X or a number from 1 to 5 deviate from original JAMv2b formula.               |

|                     |               |                                                        | Photolysis                |   |
|---------------------|---------------|--------------------------------------------------------|---------------------------|---|
| Photolysis reaction |               |                                                        | rate as in MCM3.3.1       |   |
| 03                  | $\rightarrow$ | 01D                                                    | J1                        |   |
| 03                  | $\rightarrow$ | O3PX                                                   | J2                        |   |
| H2O2                | $\rightarrow$ | OH + OH                                                | J3                        |   |
| HONO                | $\rightarrow$ | OH + NO                                                | J7                        |   |
| NO2                 | $\rightarrow$ | NO + O3PX                                              | J4                        |   |
| N2O5                | $\rightarrow$ | NO3 + NO2                                              | <sup>3</sup> , IUPAC      |   |
| HNO3                | $\rightarrow$ | OH + NO2                                               | J8                        |   |
| NO3                 | $\rightarrow$ | NO                                                     | J5                        |   |
| NO3                 | $\rightarrow$ | NO2 + O3PX                                             | J6                        |   |
| HNO4                | $\rightarrow$ | 0.65 HO2 + 0.65 NO2 + 0.35 OH + 0.35 NO3               | <sup>3</sup> , IUPAC      |   |
| СНЗООН              | $\rightarrow$ | HCHO + HO2 + OH                                        | J41                       |   |
| НСНО                | $\rightarrow$ | CO + HO2 + HO2                                         | J11                       |   |
| НСНО                | $\rightarrow$ | H2 + CO                                                | J12                       |   |
| НОСН2ООН            | $\rightarrow$ | HCOOH + HO2 + OH                                       | IUPAC                     |   |
| ЕООН                | $\rightarrow$ | EO + OH                                                | J41                       |   |
| ССОО                | $\rightarrow$ | CH3CHO + OH + HO2                                      | J41                       |   |
| СНЗСНО              | $\rightarrow$ | CH3O2 + HO2 + CO                                       | J13                       |   |
| СНЗСОООН            | $\rightarrow$ | CH3O2 + OH                                             | J41                       | 3 |
| PAN                 | $\rightarrow$ | 0.6 CH3C(O)O2 + 0.6 NO2 + 0.4 CH3O2 + 0.4 NO3          | <sup>3</sup> , IUPAC      |   |
| ОНССН2ОН            | $\rightarrow$ | HO2 + HCHO + HO2 + CO                                  | J15                       |   |
| OCC(=0)00           | $\rightarrow$ | HCHO + HO2 + OH                                        | J41                       |   |
| GLY                 | $\rightarrow$ | 0.87 CO + 0.87 CO + 0.87 H2 + 0.13 HCHO + 0.13 CO      | J31+J32                   | 4 |
| GLY                 | $\rightarrow$ | CO + CO + HO2 + HO2                                    | J33                       |   |
| O=C(OO)C=O          | $\rightarrow$ | HO2 + CO + OH                                          | J15                       |   |
| НООССНО             | $\rightarrow$ | HO2 + HO2 + CO                                         | J34                       | 3 |
| CH3CH(OH)OOH        | $\rightarrow$ | HCOOH + CH3O2 + OH                                     | Analog to<br>HOCH2OO<br>H |   |
| РООН                | $\rightarrow$ | CH3CHO + HCHO + HO2 + OH                               | J41                       |   |
| PROPOOH             | $\rightarrow$ | 0.736 CH3COCH3 + 0.396 CH3CHO + OH + HO2               | J41                       |   |
| СН3СОСН3            | $\rightarrow$ | CH3C(0)02 + CH3O2                                      | J21                       |   |
| CC(=O)COO           | $\rightarrow$ | CH3C(O)O2 + HCHO + OH                                  | J22                       |   |
| CC(=O)COO           | $\rightarrow$ | CH3C(O)O2 + HCHO + OH                                  | J41                       |   |
| СНЗСОСООН           | $\rightarrow$ | CH3C(O)O2 + HO2                                        | J34                       |   |
| MGLY                | $\rightarrow$ | CH3C(O)O2 + CO + HO2                                   | J34                       | 3 |
| CH3COCH2OH          | $\rightarrow$ | CH3C(O)O2 + HCHO + HO2                                 | J22                       | 1 |
| PR2O2HNO3           | $\rightarrow$ | 0.83 HO2 + 0.83 NOA + 0.17 HCHO + 0.17 CH3CHO + OH     | J41                       |   |
| rK202HN03           | $\rightarrow$ | 0.83  HO2 + 0.83  NOA + 0.17  HCHO + 0.17  CH3CHO + 0H | J41                       |   |

| NOA                                                                                                                                                                                                 | $\rightarrow$ | CH3C(O)O2 + HCHO + NO2                                                       |         | 3 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------|---------|---|
| MEK                                                                                                                                                                                                 | $\rightarrow$ | CH3C(O)O2 + ETHPX                                                            | J22     | 3 |
| MEKANO3                                                                                                                                                                                             | $\rightarrow$ | NO2 + 0.5 CO2C3CHO + 0.5 HCHO + 0.5 EO2 + 0.5 HO2                            | J22     | 3 |
| MEKANO3                                                                                                                                                                                             | $\rightarrow$ | NO2 + 0.5 CO2C3CHO + 0.5 HCHO + 0.5 EO2 + 0.5 HO2                            | J53     | 3 |
| МЕКАООН                                                                                                                                                                                             | $\rightarrow$ | 0.5 HCHO + 0.5 HO2 + 0.5 CO2C3CHO + 0.5 EO2 + OH                             | J41     | 3 |
| MEKAOOH                                                                                                                                                                                             | $\rightarrow$ | 0.5 HCHO + 0.5 HO2 + 0.5 CO2C3CHO + 0.5 EO2 + OH                             | J22     | 3 |
| MEKBOOH                                                                                                                                                                                             | $\rightarrow$ | CH3C(O)O2 + CH3CHO + OH                                                      | J41     | 3 |
| МЕКВООН                                                                                                                                                                                             | $\rightarrow$ | CH3C(O)O2 + CH3CHO + OH                                                      | J22     | 3 |
| МЕКСООН                                                                                                                                                                                             | $\rightarrow$ | HCHO + 1.5 CH3C(O)O2 + OH                                                    | J41     | 3 |
| МЕКСООН                                                                                                                                                                                             | $\rightarrow$ | HCHO + 1.5 CH3C(O)O2 + OH                                                    | J22     | 3 |
| МЕКАОН                                                                                                                                                                                              | $\rightarrow$ | CH3C(O)O2 + EO                                                               | J22     | X |
| МЕКВОН                                                                                                                                                                                              | $\rightarrow$ | CH3C(O)O2 + CH3CHO                                                           | J22     | X |
| МЕКСОН                                                                                                                                                                                              | $\rightarrow$ | 1.5 CH3C(O)O2 + HCHO + HO2                                                   | J22     | Χ |
| СО2С3СНО                                                                                                                                                                                            | $\rightarrow$ | CC(=O)CO[O] + HCHO                                                           | J15     |   |
| MACR                                                                                                                                                                                                | $\rightarrow$ | HO2 + 0.5 MCO3 + 0.5 HCHO + 0.175 CH3C(O)O2 + 0.825<br>CO + 0.325 CH3O2      | J18+J19 | 5 |
| MACRN                                                                                                                                                                                               | $\rightarrow$ | NOA + HO2 + CO + OH                                                          | J22     | 5 |
| MACRN                                                                                                                                                                                               | $\rightarrow$ | NOA + HO2 + CO + OH                                                          | J41     | 5 |
| MACR2N3OH                                                                                                                                                                                           | $\rightarrow$ | CH3COCH2OH + HO2 + CO + NO2                                                  | J56     |   |
| MACR2NOOH                                                                                                                                                                                           | $\rightarrow$ | CH3COCH2OH + OH + NO2                                                        | J22     |   |
| MACR2NOOH                                                                                                                                                                                           | $\rightarrow$ | CH3COCH2OH + OH + NO2                                                        | J41     |   |
| MACR2NOOH                                                                                                                                                                                           | $\rightarrow$ | CH3COCH2OH + OH + NO2                                                        | J51     |   |
| MACROOH                                                                                                                                                                                             | $\rightarrow$ | CH3COCH2OH + CO + HO2 + OH                                                   | J17     | 3 |
| MACROH                                                                                                                                                                                              | $\rightarrow$ | CH3COCH2OH + CO + HO2 + HO2                                                  | J17     | 3 |
| МАСОЗН                                                                                                                                                                                              | $\rightarrow$ | HCHO +0.35 CH3C(O)O2 + OH + 0.65 CH3O2 + 0.65 CO J                           |         | 5 |
| MVK                                                                                                                                                                                                 | $\rightarrow$ | 0.50 C3H6 + CO + 0.50 CH3C(O)O2 + 0.50 HCHO + 0.50<br>HO2                    |         |   |
| MVKOH                                                                                                                                                                                               | $\rightarrow$ | CH3C(O)O2 + OHCCH2OH + HO2                                                   |         |   |
| MVKN                                                                                                                                                                                                | $\rightarrow$ | 1.01 CH3C(O)O2 + 0.69 OHCCH2OH + 0.7 NO2 + 0.3<br>ETHLN + 0.29 HO2 + 0.01 OH |         | 3 |
| LHMVKABOOH                                                                                                                                                                                          | $\rightarrow$ | OH + 0.47 HCHO + 0.47 MGLY + 0.47 HO2 + 0.53<br>CH3C(O)O2 + 0.53 OHCCH2OH    | J17     | 5 |
| СО2НЗСНО                                                                                                                                                                                            | $\rightarrow$ | 0.5 MGLY + 0.5 CO + 1.5 HO2 + 0.5 CH3C(O)O2 + 0.5 GLY                        | J35     | 3 |
| BIACETOH                                                                                                                                                                                            | $\rightarrow$ | CH3C(O)O2 + CO + HO2 + HCHO                                                  | J35     | 3 |
| MALOOH                                                                                                                                                                                              | $\rightarrow$ | 0.4 GLY + HO2 + 0.4 CO + 0.6 MALANHY + OH                                    | 2×J20   |   |
| MDIALOOH                                                                                                                                                                                            | $\rightarrow$ | 0.5 CH3C(O)O2 + 0.5 GLY + 0.5 CO + 0.5 HO2 + 0.5 MGLY<br>+ OH                | 2×J20   |   |
| MALANHYOOH                                                                                                                                                                                          | $\rightarrow$ | OH + HCOCOHCO3                                                               | J41     |   |
| НСОСОНСОЗН                                                                                                                                                                                          | $\rightarrow$ | OH + GLY + HO2                                                               | J41     |   |
| IBUTALOH                                                                                                                                                                                            | $\rightarrow$ | CH3COCH3 + HO2 + HO2 + CO                                                    | J17     | 3 |
| IBUTALOHOOH                                                                                                                                                                                         | $\rightarrow$ | HO2 + CH3COCH3 + OH                                                          | J41     | 3 |
| ALKNO3                                                                                                                                                                                              | $\rightarrow$ | → 0.4 CH3CHO + 0.25 HCHO + 0.25 CH3COCH3 + HO2 + 0.8<br>MEK + NO2            |         | 3 |
| ALKOOH                                                                                                                                                                                              | $\rightarrow$ | 0.4 CH3CHO + 0.25 HCHO + 0.25 CH3COCH3 + HO2 + 0.8<br>MEK + OH               |         |   |
| LISOPACNO3 $\rightarrow \begin{array}{c} 0.45 \text{ LHC4ACCHO} + 0.45 \text{ HO2} + 0.55 \text{ CO} + 0.55 \text{ OH} + 0.33 \\ \text{MACROOH} + 0.22 \text{ LHMVKABOOH} + \text{NO2} \end{array}$ |               |                                                                              |         | 3 |

| LISOPACOOH                                                                                                                                                  | $\rightarrow$                                                                                                                                                                                                    | 0.97 LHC4ACCHO + 0.97 HO2 + 1.03 OH + 0.03 CO + 0.012<br>MACROOH + 0.018 LHMVKABOOH                                     |         |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|---|
| DHPMPAL                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                    | $\rightarrow CO + HO2 + OH + CC(=0)COO$                                                                                 |         |   |
| DHPMPAL                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                    | 0.5 MGLY + 1.5 OH + 0.5 HCHO + 0.5 C3MDIALOOH                                                                           | J41     |   |
| DHPMEK                                                                                                                                                      | $\rightarrow$                                                                                                                                                                                                    | 0.5 CH3C(O)O2 + 0.5 HCHO + 0.5 MGLY + 0.5<br>HCOCH2OOH + 1.5 OH                                                         | J41     |   |
| DHPMEK                                                                                                                                                      | $\rightarrow$                                                                                                                                                                                                    | CH3C(O)O2 + HCOCH2OOH + OH                                                                                              | J22     |   |
| НСОСН2ООН                                                                                                                                                   | $\rightarrow$                                                                                                                                                                                                    | OH + HCHO + CO + HO2                                                                                                    | J41     |   |
| НСОСН2ООН                                                                                                                                                   | $\rightarrow$                                                                                                                                                                                                    | HO2 + CO + HCHO + OH                                                                                                    | J22     |   |
| C3MDIALOOH                                                                                                                                                  | $\rightarrow$                                                                                                                                                                                                    | MGLY + OH + HO2 + CO                                                                                                    | 2×J17   |   |
| HPALD                                                                                                                                                       | $\rightarrow$                                                                                                                                                                                                    | 0.285 CH3C(O)O2 + 0.285 HVMK + 0.285 OHCCH2OH +<br>1.215 CO + 1.5 OH + 0.215 MACRENOL + 0.215<br>CH3COCH2OH + 0.215 HO2 | 0.5×J20 |   |
| LIECHO                                                                                                                                                      | $\rightarrow$                                                                                                                                                                                                    | HO2 + 0.28 OH + 1.28 CO + 0.72 LHMVKABO2 + 0.28<br>CH3COCH2OH                                                           | J17     |   |
| LIECO3H                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                    | 0.546 OH + CO + 1.454 HO2 + 0.391 CO2H3CHO + 0.155<br>C3MDIALOH + 0.454 LHMVKABOOH                                      | J41     |   |
| LIECO3H                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                    | 0.546 OH + CO + 1.454 HO2 + 0.391 CO2H3CHO + 0.155<br>C3MDIALOH + 0.454 LHMVKABOOH                                      | 2×J22   |   |
| ISOPBNO3                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                    | HCHO + MVK + HO2 + NO2                                                                                                  | J55     | 3 |
| ISOPBOOH                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                    | HCHO + MVK + HO2 + OH                                                                                                   | J41     |   |
| DHHPEPOX                                                                                                                                                    | HHPEPOX $\rightarrow$ OH + HO2 + 0.429 MGLY + 0.429 OHCCH2OH + 0.571<br>GLY + 0.571 CC(=0)COO                                                                                                                    |                                                                                                                         | J41     |   |
| ISOPDNO3                                                                                                                                                    | $(SOPDNO3) \rightarrow HCHO + MACR + HO2 + NO2$                                                                                                                                                                  |                                                                                                                         | J54     | 3 |
| ISOPDOOH                                                                                                                                                    | $OPDOOH \rightarrow HCHO + MACR + HO2 + OH$                                                                                                                                                                      |                                                                                                                         | J41     |   |
| NISOPBOOH                                                                                                                                                   | SOPBOOH $\rightarrow \frac{\text{NO2} + 0.33 \text{ HO2} + 0.67 \text{ OH} + 0.097 \text{ MACR} + 0.903 \text{ MVK} + \text{HCHO}}{\text{HCHO}}$                                                                 |                                                                                                                         | J41     |   |
| NISOPDOOH                                                                                                                                                   | $\rightarrow \begin{array}{c} 0.125 \text{ NC4CHO} + 0.125 \text{ HO2} + 0.783 \text{ OH} + 0.217 \text{ NO2} + \\ 0.182 \text{ ISOPBO2} + 0.034 \text{ ISOPDO2} + 0.659 \text{ NISOPO} \end{array}$             |                                                                                                                         | J41     |   |
| NISOPOOHOH=O                                                                                                                                                | 0.102 + 0.034 + 1301 D02 + 0.039  NISOPO $0.102 + 0.034 + 1301 D02 + 0.039  NISOPO$ $0.5  CO + 0.25  LHMVKABOOH + 0.25  MACROOH + 0.5  HO2 + 0.5  OHCCH2OH$                                                      |                                                                                                                         | J41     |   |
| NISOPOOHOH=O                                                                                                                                                | $\rightarrow$                                                                                                                                                                                                    | OH + NO2 + MGLY + OHCCH2OH                                                                                              | J54     |   |
| NISOPOOHOH=O                                                                                                                                                | $\rightarrow$                                                                                                                                                                                                    | CO + 0.5 LHMVKABOOH + 0.5 MACROOH + HO2 + NO2                                                                           | J22     |   |
| NISOPOOHOOH                                                                                                                                                 | $\rightarrow$                                                                                                                                                                                                    | NO2 + IDHPOO1                                                                                                           | J54     |   |
| NISOPOOHOOH                                                                                                                                                 | $\rightarrow$                                                                                                                                                                                                    | OH + 0.5 IDHNBOO + 0.5 LISOPACNO3O2                                                                                     | 2×J41   |   |
| NISOPOH                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                    | NO2 + 0.5 MVK + 0.5 MACR + HO2 + HCHO                                                                                   | J53     |   |
| NISOPN                                                                                                                                                      | $\rightarrow$                                                                                                                                                                                                    | 1.11 NO2 + 0.455 NC4CHO + 0.455 HO2 + 0.1 MVK + 0.01<br>MACR + 0.11 HCHO + 0.455 NISOPO                                 | J55     |   |
| MACRNOOH                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                    | NOA + OH + CO + HO2                                                                                                     | J17     |   |
| LHMVKNOOH                                                                                                                                                   | $\rightarrow$                                                                                                                                                                                                    | CH3C(O)O2 + OH + ETHLN                                                                                                  |         |   |
| LHMVKNOOH                                                                                                                                                   | $\rightarrow$                                                                                                                                                                                                    | CH3C(O)O2 + OH + ETHLN                                                                                                  | J53+J22 |   |
| IHNEOOH                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                    | HO2 + OH + NOA + GLY                                                                                                    | J41     |   |
| NISOPNOOH                                                                                                                                                   | SOPNOOH $\rightarrow \qquad OH + 0.32 \text{ NO2} + 0.32 \text{ OHCCH2OH} + 0.5 \text{ ETHLN} + 0.82 \text{ NOA} + 0.68 \text{ HO2} + 0.18 \text{ LISOPNO3NO3-O}$                                                |                                                                                                                         | J41     |   |
| NISOPNOOH                                                                                                                                                   | NISOPNOOH $\rightarrow$ HO2 + 0.35 HO2 + 0.16 DISOF HO3HO3-0<br>0.535  OH + NO2 + 0.16  OHCCH2OH + 0.25  NOA + 0.09<br>HO2 + 0.25  LISOPACNO3O2 + 0.125  IDHNBOO + 0.375<br>MVKN + 0.375  HCHO + 0.09  HCOCH2OOH |                                                                                                                         | 2×J51   |   |
| ETHLN                                                                                                                                                       | $\rightarrow$                                                                                                                                                                                                    | HCHO + CO + HO2 + NO2                                                                                                   | J56     |   |
| NO3CH2CO3H                                                                                                                                                  | $\rightarrow$                                                                                                                                                                                                    | HCHO + OH + NO2                                                                                                         | J41     |   |
| HVMK $\rightarrow \begin{array}{c} 0.5 \text{ CO} + 0.5 \text{ MGLY} + \text{OH} + 0.5 \text{ HO2} + 0.5 \text{ CH3C(O)O2} + 0.5 \\ \text{GLY} \end{array}$ |                                                                                                                                                                                                                  | 0.5×J20                                                                                                                 |         |   |

| MACRENOL                                                                                                                                                                                                                                                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO + CH3COCOOH + 2 OH                                                                                                                                                                                   |         |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
| C3MDIALOH                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO + MGLY + 2 HO2                                                                                                                                                                                       | 2×J17   |   |
| NC4CHO                                                                                                                                                                                                                                                                                                                                                                                       | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO2 + 0.184 HO2 + 0.088 HCHO + 0.104 CH3C(O)O2 +<br>0.056 MGLY + 1.004 CO + 0.016 GLY + 0.552 OH + 0.08<br>MDIALOOH + 0.08 C3MDIALOOH + 0.144 HVMK + 0.336<br>MACRENOL + 0.06 LHMVKABO2 + 0.14 CH3COCH3 | 8×J56   | 3 |
| LHC4ACCHO                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5 LHC4ACCO3 + 0.3 CH3COCH2OH + 0.2 OHCCH2OH + 0.2 CH3C(O)O2 + 1.3 HO2 + 0.8 CO                                                                                                                        | J18+J19 | 3 |
| LC578OOH                                                                                                                                                                                                                                                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO + 1.5 HO2 + 0.5 OH + 0.5 MACROOH + 0.35 MVKOH + 0.15 MACROH                                                                                                                                          | J22     |   |
| LC578OOH                                                                                                                                                                                                                                                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OH + HO2 + 0.1 HCHO + 0.1 CO2H3CHO + 0.438<br>CH3COCH2OH + 0.438 GLY + 0.088 OHCCH2OH + 0.088<br>MGLY + 0.122 CO + 0.122 MACROH                                                                         | J41     |   |
| LHC4ACCO3H                                                                                                                                                                                                                                                                                                                                                                                   | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5 CH3COCH2OH + 0.5 OHCCH2OH + 0.5 CH3C(O)O2 + 0.5 CO + 0.5 HO2 + OH                                                                                                                                   | J41     | 3 |
| HCOC5                                                                                                                                                                                                                                                                                                                                                                                        | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OCC(=O)O[O] + CH3C(O)O2 + HCHO                                                                                                                                                                          | J24     | 3 |
| МВОООН                                                                                                                                                                                                                                                                                                                                                                                       | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HO2 + 0.67 OHCCH2OH + 0.67 CH3COCH3 + 0.33<br>IBUTALOH + 0.33 HCHO + OH                                                                                                                                 | J41     |   |
| MBONO3OOH                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.35 HCHO + 0.35 IBUTALOH + 0.35 NO2 + 0.43 NOA + 0.65 CH3COCH3 + 0.65 HO2 + OH                                                                                                                         | J41     |   |
| BIGACID2                                                                                                                                                                                                                                                                                                                                                                                     | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH3C(O)O2 + HOOCCHO + CO + HO2                                                                                                                                                                          | J23+J24 |   |
| DICARBOOH                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.17 MGLY + 0.17 HO2 + 0.17 CO + 0.83 MALANHY + 0.83<br>CH3O2 + OH                                                                                                                                      | 2xJ20   |   |
| LISOPNO3OOH                                                                                                                                                                                                                                                                                                                                                                                  | $ \xrightarrow{\text{PNO3OOH}} 0.65 \text{ OH} + 0.7 \text{ HO2} + 0.35 \text{ HCHO} + 0.025 \text{ MVKN} + 0.075 $ $ \xrightarrow{\text{PNO3OOH}} 0.65 \text{ OH} + 0.7 \text{ HO2} + 0.35 \text{ HCHO} + 0.025 \text{ MVKN} + 0.075 $ $ \xrightarrow{\text{ETHLN}} + 0.25 \text{ MACRN} + 0.325 \text{ OHCCH2OH} + 0.625 $ $ \xrightarrow{\text{CH3COCH2OH}} + 0.65 \text{ NO2} + 0.075 \text{ MACROOH} + 0.25 $ $ \xrightarrow{\text{HCOCH2OOH}} + 0.025 \text{ CC}(=0)\text{COO} $ |                                                                                                                                                                                                         | J41     |   |
| LISOPNO3OOH                                                                                                                                                                                                                                                                                                                                                                                  | $DPNO3OOH \rightarrow \frac{0.65 \text{ OH} + 0.7 \text{ HO2} + 0.35 \text{ HCHO} + 0.025 \text{ MVKN} + 0.075}{\text{ETHLN} + 0.25 \text{ MACRN} + 0.325 \text{ OHCCH2OH} + 0.625} CH3COCH2OH + 0.65 \text{ NO2} + 0.075 \text{ MACROOH} + 0.25}$                                                                                                                                                                                                                                     |                                                                                                                                                                                                         | J51     |   |
| LISOPOOHOOH                                                                                                                                                                                                                                                                                                                                                                                  | LISOPOOHOOH $\rightarrow$ 1.25 OH + 0.25 OHCCH2OH + 0.25 CH3COCH2OH + 0.75<br>LC578OOH + 0.75 HO2                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         | 2×J41   |   |
| LISOPNO3NO3                                                                                                                                                                                                                                                                                                                                                                                  | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CC(=O)COO + OHCCH2OH + 2 NO2                                                                                                                                                                            | J55     |   |
| LISOPNO3NO3=O                                                                                                                                                                                                                                                                                                                                                                                | $(SOPNO3NO3=O) \rightarrow \begin{array}{c} 0.6 \text{ CC}(=O)COO + \text{NO2} + 0.6 \text{ NO3CH2CO3} + 0.4 \text{ HO2} + 0.4 \\ CO + 0.2 \text{ MACRN} + 0.2 \text{ MVKN} \end{array}$                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         | J41     |   |
| LISOPNO3NO3=O                                                                                                                                                                                                                                                                                                                                                                                | $LISOPNO3NO3=O \rightarrow \begin{array}{c} 0.6 \text{ CC}(=0)COO + NO2 + 0.6 \text{ NO3CH2CO3} + 0.4 \text{ HO2} + 0.4 \\ CO + 0.2 \text{ MACRN} + 0.2 \text{ MVKN} \end{array}$                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         | J22     |   |
| $\begin{array}{rcl} 1.5 \text{ NO2} + 0.65 \text{ CO} + 0.1 \text{ MACROH} + 0.1 \text{ MVKOH} + 0.075 \\ \text{MVKN} + 0.075 \text{ MACRN} + 0.275 \text{ HO2} + 0.025 \text{ GLY} + 0.025 \\ \text{NOA} + 0.025 \text{ MGLY} + 0.025 \text{ ETHLN} + 0.525 \\ \text{CH3COCH2OH} + 0.375 \text{ HCHO} + 0.075 \text{ NO2} + 0.15 \\ \text{CH3C(O)O2} + 0.225 \text{ NO3CH2CO3} \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2×J51                                                                                                                                                                                                   |         |   |
| NISOPOHOH=O                                                                                                                                                                                                                                                                                                                                                                                  | $NISOPOHOH=O \rightarrow \begin{array}{c} 0.5 \text{ HO2} + 0.225 \text{ HO3} \text{ CH2} \text{ COS} \\ MACROH + 0.5 \text{ CO} + 0.375 \text{ MVKOH} + 0.125 \\ MACROH + 0.5 \text{ OCC} (=0) \text{O}(0) + 0.5 \text{ CC} (=0) \text{CO} \\ \end{array}$                                                                                                                                                                                                                            |                                                                                                                                                                                                         | J41     |   |
| NISOPOHOH=O                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{NISOPOHOH=O} \end{array} \rightarrow \begin{array}{c} 0.5 \text{ HO2} + \text{NO2} + 0.5 \text{ CO}(=0)\text{CO}(=0) + 0.5 \text{ CO}(=0)\text{COO} \end{array}$                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         | J22     |   |
| NISOPOHOH=O                                                                                                                                                                                                                                                                                                                                                                                  | $\text{NISOPOHOH=O} \rightarrow \frac{\text{NO2} + 0.5 \text{ HO2} + 0.375 \text{ OHCCH2OH} + 0.375 \text{ MGLY} + 0.125}{\text{GLY} + 0.625 \text{ CC}(=0)\text{COO} + 0.5 \text{ OCC}(=0)\text{O[O]}}$                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         | J51     |   |
| BEPOMUC $\rightarrow$ 0.5 BIGALD1 + 1.5 HO2 + 1.5 CO + 0.5 C5DIALO2                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5 BIGALD1 + 1.5 HO2 + 1.5 CO + 0.5 C5DIALO2                                                                                                                                                           | 0.1×J4  | 3 |
| C5DIALOOH                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OH + BIGALD1 +CO + HO2                                                                                                                                                                                  | J41     |   |
| C5DIALOOH                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO + OH + HO2 + BIGALD1                                                                                                                                                                                 | J18+J19 | 1 |
| BIGALD1                                                                                                                                                                                                                                                                                                                                                                                      | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6 MALO2 + 0.6 HO2 + 0.4 BZFUONE                                                                                                                                                                       | 0.14×J4 | 3 |
| BIGALD2                                                                                                                                                                                                                                                                                                                                                                                      | $3IGALD2 \rightarrow 0.6 \text{ DICARBO2} + 0.6 \text{ HO2} + 0.4 \text{ FUONE}$                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | 0.2×J4  |   |
| BIGALD3                                                                                                                                                                                                                                                                                                                                                                                      | BIGALD3 $\rightarrow$ 0.6 CO + 0.6 HO2 + 0.6 MDIALO2 + 0.4 FUONE                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | 0.2×J4  |   |

| BIGALD4    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | CH3C(O)O2 + MGLY +HO2 + CO                                                                                                                        |          | 3 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
| PHENOOH    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 0.71 BIGACID1 + 0.71 GLY + HO2 + OH + 0.29 BZQONE                                                                                                 | J41      |   |
| NPHENOLOOH | $\rightarrow$                                                                                                                                                                                                                                                                                                           | BIGACID1 + GLY + NO2 + OH                                                                                                                         | J41      |   |
| NBZQOOH    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | OH + NO2 + 2 HO2 + 6 CO                                                                                                                           | J41      |   |
| C6CO4DB    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 2 HO2 + 2 CO + C33CO                                                                                                                              | 2×J34    |   |
| C33CO      | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 2 HO2 + 3 CO                                                                                                                                      | 2×J15    |   |
| BZQOOH     | $\rightarrow$                                                                                                                                                                                                                                                                                                           | OH + 2 HO2 + 5 CO                                                                                                                                 | J41      |   |
| HOCOC4DIAL | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 2  HO2 + CO + GLY                                                                                                                                 | J34, J15 |   |
| CO2C4DIAL  | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 2 HO2 + 4 CO                                                                                                                                      | 2×J34    |   |
| BIGACID1   | $\rightarrow$                                                                                                                                                                                                                                                                                                           | HOOCCHO + CO + HO2 + CO + HO2                                                                                                                     | J18+J19  |   |
| С6Н5ООН    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | C6H5O + OH                                                                                                                                        | J41      |   |
| BENZOOH    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | GLY + 0.5 BIGALD1 + HO2 + OH + 0.5 BZFUONE                                                                                                        | J41      |   |
| BENZN      | $\rightarrow$                                                                                                                                                                                                                                                                                                           | NO2 + HO2 + GLY + 0.5 BIGALD1 + 0.5 BZFUONE                                                                                                       | J54      |   |
| BENZ=O     | $\rightarrow$                                                                                                                                                                                                                                                                                                           | GLY + MALO2                                                                                                                                       | J22      |   |
| BZFUONEOOH | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 2 HO2 + 2 CO + OH + HCHO                                                                                                                          | J41      |   |
| BZFUO      | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 2 HO2 + 2 CO + HCHO                                                                                                                               | J34      |   |
| CATEC100H  | $\rightarrow$                                                                                                                                                                                                                                                                                                           | CATEC10 + OH                                                                                                                                      | J41      |   |
| NPHENOOH   | $\rightarrow$                                                                                                                                                                                                                                                                                                           | NPHENO + OH                                                                                                                                       | J41      |   |
| TEPOMUC    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 0.5 CH3C(O)O2 + HO2 + CO + 0.5 EPOXDIALD + 0.5<br>C615CO2O2                                                                                       | J4       | 3 |
| С615СО2ООН | $\rightarrow$                                                                                                                                                                                                                                                                                                           | OH + BIGALD2 + CO + HO2                                                                                                                           | J41      |   |
| С615СО2ООН | $\rightarrow$                                                                                                                                                                                                                                                                                                           | CO + OH + HO2 + BIGALD2                                                                                                                           | J19+J19  |   |
| EPOXDIALD  | $\rightarrow$                                                                                                                                                                                                                                                                                                           | CO + HO2 + GLY + CO + HO2                                                                                                                         |          |   |
| CRESOOH    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 0.68 BIGACID2 + 0.68 GLY + HO2 + OH + 0.32 BZQONE .                                                                                               |          |   |
| NCRESOOH   | $\rightarrow$                                                                                                                                                                                                                                                                                                           | NO2 + OH + BIGACID2 + GLY                                                                                                                         | J41      |   |
| NCRESOOH   | SOOH $\rightarrow \begin{array}{c} OH + NO2 + HO2 + 0.68 \text{ BIGACID2} + 0.32 \text{ BZQONE} + 0.68 \\ GLY \end{array}$                                                                                                                                                                                              |                                                                                                                                                   | J54      |   |
| TOLOOH     | DLOOH $\rightarrow$ 0.6 GLY + 0.4 MGLY + HO2 + 0.2 BIGALD1 + 0.2<br>BIGALD2 + 0.2 BIGALD3 + OH + 0.2 BZFUONE + 0.2<br>FUONE                                                                                                                                                                                             |                                                                                                                                                   | J41      |   |
| TOLN       | $\rightarrow$                                                                                                                                                                                                                                                                                                           | NO2 + 0.6 GLY + 0.4 MGLY + HO2 + 0.2 BIGALD1 + 0.2<br>BIGALD2 + 0.2 BIGALD3 + 0.2 BZFUONE + 0.2 FUONE                                             |          |   |
| TOL=O      | $\rightarrow$                                                                                                                                                                                                                                                                                                           | GLY + DICARBO2                                                                                                                                    | J22      |   |
| BZOOH      | $\rightarrow$                                                                                                                                                                                                                                                                                                           | $\rightarrow$ BZALD + HO2 + OH                                                                                                                    |          |   |
| BZALD      | $\rightarrow$                                                                                                                                                                                                                                                                                                           | 0.50 HO2 + 0.50 ACBZO2 + 0.50 HO2 + 0.50 CO + 0.50<br>C6H5O2                                                                                      | J18+J19  |   |
| ACBZOOH    | $\rightarrow$                                                                                                                                                                                                                                                                                                           | C6H5O2 + OH                                                                                                                                       | J41      |   |
| BIGACID3   | $\rightarrow$                                                                                                                                                                                                                                                                                                           | HOOCCHO + 2 CH3C(O)O2                                                                                                                             | J24      |   |
| XYLENOOH   | H $\rightarrow \begin{pmatrix} 0.34 \text{ GLY} + 0.57 \text{ MGLY} + 0.05 \text{ BIGALD1} + 0.17 \text{ BIGALD2} \\ + 0.16 \text{ BIGALD3} + 0.27 \text{ BIGALD4} + 0.09 \text{ CO} + 0.09 \text{ HCHO} \\ + 0.09 \text{ CH3C(O)O2} + 0.3 \text{ FUONE} + 0.05 \text{ BZFUONE} + \text{HO2} + \text{OH} \end{pmatrix}$ |                                                                                                                                                   | J41      |   |
| XYLNO3     | $\rightarrow$                                                                                                                                                                                                                                                                                                           | → NO2 + HO2 + 0.22 GLY + 0.78 MGLY + 0.26 BIGALD2 + 0.26 BIGALD3 + 0.11 BIGALD4 + 0.37 FUONE                                                      |          |   |
| XYLNO3     | $\rightarrow$                                                                                                                                                                                                                                                                                                           | NO2 + HO2 + 0.42 GLY + 0.42 MGLY + 0.08 BIGALD1 +<br>0.113 BIGALD2 + 0.097 BIGALD3 + 0.38 BIGALD4 + 0.32<br>CH3C(0)O2 + 0.25 FUONE + 0.08 BZFUONE |          |   |
| FUONEOOH   | $\rightarrow$                                                                                                                                                                                                                                                                                                           | HO2 + CH3C(O)O2 + HCHO + OH                                                                                                                       |          |   |

| TERPOOH  | $\rightarrow$ | 0.4 HCHO + 0.05 CH3COCH3 + 0.945 TERPROD1 + HO2 + OH                         | J41 |   |
|----------|---------------|------------------------------------------------------------------------------|-----|---|
| TERPNO3  | $\rightarrow$ | TERPROD1 + NO2 + HO2                                                         | J41 |   |
| TERP2OOH | $\rightarrow$ | OH + 0.372 HCHO + 0.3 CH3COCH3 + 0.25 CO +<br>TERPROD2 + HO2 + 0.25 OHCCH2OH | J41 |   |
| NTERPOOH | $\rightarrow$ | TERPROD1 + NO2 + OH                                                          | J41 |   |
| NTERPNO3 | $\rightarrow$ | TERPROD1 + NO2 + OH                                                          | J41 |   |
| TERPROD1 | $\rightarrow$ | TERPROD2 + HO2 + CO                                                          | J15 | 3 |
| TERPROD2 | $\rightarrow$ | 0.15 CC(=O)CO[O] + 0.68 HCHO + 0.5 CH3COCH3 + 1.2<br>HO2 + 1.7 CO            | J15 | 3 |
| ELVOC    | $\rightarrow$ | OH + HO2 + TERPROD2                                                          | J41 |   |
| ВСООН    | $\rightarrow$ | PROD1 + HO2 + OH                                                             | J41 |   |

| J                              | 1                       | m     | n     |
|--------------------------------|-------------------------|-------|-------|
| J1                             | 6.073×10 <sup>-5</sup>  | 1.743 | 0.474 |
| J2                             | $4.775 \times 10^{-4}$  | 0.298 | 0.080 |
| J3                             | 1.041×10 <sup>-5</sup>  | 0.723 | 0.279 |
| J4                             | 1.165×10 <sup>-2</sup>  | 0.244 | 0.267 |
| J5                             | $2.485 \times 10^{-2}$  | 0.168 | 0.108 |
| J6                             | $1.747 \times 10^{-1}$  | 0.155 | 0.125 |
| J7                             | $2.644 \times 10^{-3}$  | 0.261 | 0.288 |
| J8                             | 9.312×10 <sup>-7</sup>  | 1.230 | 0.307 |
| J11                            | $4.642 \times 10^{-5}$  | 0.762 | 0.353 |
| J12                            | 6.853×10 <sup>-5</sup>  | 0.477 | 0.323 |
| J13                            | $7.344 \times 10^{-6}$  | 1.202 | 0.417 |
| J15                            | $2.792 \times 10^{-5}$  | 0.805 | 0.338 |
| J17                            | 7.914×10 <sup>-5</sup>  | 0.764 | 0.364 |
| J18                            | 1.482×10 <sup>-6</sup>  | 0.396 | 0.298 |
| J19                            | 1.482×10 <sup>-6</sup>  | 0.396 | 0.298 |
| J20                            | 7.600D×10 <sup>-4</sup> | 0.396 | 0.298 |
| J21                            | 7.992×10 <sup>-7</sup>  | 1.578 | 0.271 |
| J22                            | 5.804×10 <sup>-6</sup>  | 1.092 | 0.377 |
| J23                            | $2.4246 \times 10^{-6}$ | 0.395 | 0.296 |
| J24                            | $2.424 \times 10^{-6}$  | 0.395 | 0.296 |
| J31                            | $6.845 \times 10^{-5}$  | 0.130 | 0.201 |
| J32                            | 1.032×10 <sup>-5</sup>  | 0.130 | 0.201 |
| J33                            | 3.802×10 <sup>-5</sup>  | 0.644 | 0.312 |
| J34                            | 1.537×10 <sup>-4</sup>  | 0.170 | 0.208 |
| J35                            | 3.326×10 <sup>-4</sup>  | 0.148 | 0.215 |
| J41                            | $7.649 \times 10^{-6}$  | 0.682 | 0.279 |
| J51                            | 1.588×10 <sup>-6</sup>  | 1.154 | 0.318 |
| J53                            | $2.485 \times 10^{-6}$  | 1.196 | 0.328 |
| J54                            | $4.095 \times 10^{-6}$  | 1.111 | 0.316 |
| J55                            | 1.135×10 <sup>-5</sup>  | 0.974 | 0.309 |
| J56                            | 4.365×10 <sup>-5</sup>  | 1.089 | 0.323 |
| JN <sub>2</sub> O <sub>5</sub> | 7.083×10 <sup>-5</sup>  | 0.887 | 0.237 |
| JHNO <sub>4</sub>              | 9.036×10 <sup>-6</sup>  | 1.262 | 0.327 |
| JHOCH <sub>2</sub> OOH         | 8.122×10 <sup>-6</sup>  | 0.879 | 0.248 |
| JPAN                           | 8.518×10 <sup>-7</sup>  | 1.173 | 0.250 |

**Table S1-4:** List of photolysis parameters used mainly taking from the MCM3.3.1 (J1-J56). The formula used to calculate the photolysis rates is as follows:  $J = l \times \cos(\chi)^m \times \exp(-n \times \sec\chi)$  where the solar zenith angle  $\chi$  is in radians

### Supplement S2 – Sensitivity studies

Supplement S2 contains all additional information about the box model sensitivity studies including figures, statistics and more detailed insights into the performed sensitivity studies. A summary of the main results are presented in the main manuscript in sect. 4.1 and in terms of sCI in sect. 2.2.1.

# S2.1 stabilized Criegee intermediate CH<sub>2</sub>OO

The sensitivity study on the branching ratios of the stabilized Criegee intermediate CH<sub>2</sub>OO considers ratios recommended by Nguyen *et al.* (fig. 2 dashed yellow line) and Sheps *et al.* (fig. 2 yellow line).<sup>7,14</sup> OH (fig. 2e), HO<sub>2</sub> (fig. 2i), HCHO (fig. 2c) and H<sub>2</sub>O<sub>2</sub> (fig. 2m) show only minor increases with highest impacts on H<sub>2</sub>O<sub>2</sub> concentrations when using the ratios provided by Sheps *et al.*<sup>7</sup>. The ratios from Nguyen *et al.*<sup>12</sup> produce three times higher HCOOH (fig. 2p) ratios and an earlier production onset with minimum concentrations between 9-10 p.m. and maximum concentrations around 1pm. For Sheps *et al.*<sup>7</sup>, minimum and maximum concentrations are delayed by about eight (6 a.m.) and three hours (4 p.m.), respectively. A similar shift can be seen for JAMv2b (fig. 2 blue line) and the MCM (fig. 2 black line), but fluctuations in the diurnal cycle are weak. Compared to other chemistry mechanisms, URMELL shows a clear diurnal cycle when using the ratios from Sheps *et al.*<sup>7</sup>. Which is in better agreement with field measurements<sup>15,16</sup> (Millet et al., 2015; Yuan et al., 2015).

# S2.2 Treatment of NPHENOLO<sub>2</sub>

Sensitivity study on the treatment of NPHENOLO<sub>2</sub> produced from the reaction of PHENOL with NO<sub>3</sub>. For NPHENOLO<sub>2</sub> various approximations are currently used: i) direct treatment, ii) approximation with PHENO<sub>2</sub> and iii) approximation with NPHEN (see sect. 2.4). To test the different approaches, we performed sensitivity studies with URMELL for the urb\_05\_w scenario (Fig. S2-4). While URMELL itself considers the direct treatment of NPHENOLO<sub>2</sub> (solid yellow line), for the PHENO<sub>2</sub> run NPHENOLO<sub>2</sub> is replaced by PHENO<sub>2</sub> + NO<sub>2</sub> (dashed yellow line) and for the NPHEN run by NPHEN (dotted yellow line). The further oxidation of PHENO<sub>2</sub> leads to HO<sub>2</sub> formation while NPHENOLO<sub>2</sub> produces NO<sub>2</sub>. This increase in HO<sub>2</sub> and decrease in NO<sub>2</sub> enhance the O<sub>3</sub> and consequently also the OH, and NO<sub>3</sub> while lowering NO concentrations. As a consequent, oxidation processes are boosted lowering the reactant (e.g. C<sub>5</sub>H<sub>8</sub> Fig. S2-4d) and increasing the reaction product concentrations (remaining plots of Fig. S2-4). In contrast, the approximation with NPHEN has no significant impact on most of

the analyzed compounds except GLY (Fig. S2-4k), which decreases. The degradation of NPHENOLO<sub>2</sub> would lead to NO<sub>2</sub>, BIGACID1 and GLY formation, whereas NPHEN e.g. produces MALANHY but due to lower reaction coefficients of intermediate products (e.g. N2PHEN), these products build up.



### S2.3 Analysis of higher (remote) oxidant concentrations

**Figure S2-1:** Time series of various gas-phase species for the remote summer case with full radiation for several sensitivity runs and additionally showing the MCM3.3.1, JAMv2b and URMELL.

To quantify the contribution of the mechanism adjustments/extensions, multiple sensitivity simulations were performed (overview of performed sensitivity studies is given in Table 5). Starting from the final URMELL mechanism several updates were successively replaced by the

original JAMv2b formulation. Fig. S2-1 illustrates the results of all sensitivity studies, the final URMELL version (yellow line), JAMv2b (blue line) and the MCM3.3.1 (black line).

### S2.3.1 RC(O)O<sub>2</sub> chemistry with separate PAN simulation

For RC(O)O<sub>2</sub> chemistry, the impact of the reaction with NO<sub>2</sub> to produce PAN and PAN-like (Fig. S2-1grey line) species was investigated independent of the other RC(O)O<sub>2</sub> chemistry changes (Fig. S2-1green line). For both sensitivity studies, O<sub>3</sub> (Fig. S2-1a), OH (Fig. S2-1e), HO<sub>2</sub> (Fig. S2-1i), NO (Fig. S2-1b), NO<sub>2</sub> (Fig. S2-1f), NO<sub>3</sub> (Fig. S2-1j) and HNO<sub>3</sub> (Fig. S2-1n) peak concentrations are lower with stronger reduction for the PAN simulation. The changed  $k_{NO2}$  rate coefficient, resetting it to the faster value (see sect. 2.3) lowers the NO<sub>2</sub> (Fig. S2-1f) day time minimum and increases PAN (Fig. S2-1g) concentrations. As NO<sub>2</sub> photolysis is a major NO and O<sub>3</sub> source and subsequent O<sub>3</sub> photolysis impacts OH, their concentration declines and substance concentrations directly linked (HO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, NO<sub>3</sub>, HNO<sub>3</sub>), too. As a consequence, common reaction partners such as C<sub>5</sub>H<sub>8</sub>, MACR and MVK increase while their reaction products (HCHO, GLY, CH<sub>3</sub>COOOH and CH<sub>3</sub>COCH<sub>2</sub>OH) decline.

Additional changes to  $RC(O)O_2$  chemistry comprise NO, NO<sub>3</sub>,  $CH_3O_2$ ,  $CH_3C(O)O_2$  and  $HO_2$  reactions including their reaction rate coefficients and branching ratios (see Table S1-2 for more detail). The slower reaction rate constant of  $CH_3C(O)O_2$  with  $HO_2$  (see sect. 2.3) enhances  $CH_3C(O)O_2$  concentrations (Fig. S2-1r) and decreases the reaction product  $CH_3COOOH$  (Fig. S2-1s). This deceleration also diminishes OH conversion. Furthermore, not all  $HO_2 + RC(O)O_2$  pathways in JAMv2b include  $O_3$  and OH formation further reducing OH,  $O_3$  and corresponding subsequent reaction partners. For OH and  $O_3$ , the changes to  $RC(O)O_2$  chemistry already account for most of the non-isoprene invoked deviations.

### S2.3.2 Photolysis

Most changes to photolysis (Fig. S2-1, red line) consider the photolysis rate constant and some (MVKN,  $CO_2H_3CHO$ , BIACETOH, BEPOMUC, TEPOMUC, BIGALD1, MEKNO<sub>3</sub>) also the branching ratios (see Table S1-4). Generally the changed photolysis rates become slower, and thus commonly produced photolysis products (e.g.  $CH_3C(O)O_2$ ,  $CH_3O_2$ , HCHO, GLY, OH and HO<sub>2</sub>) decline while the sources such as MGLY increase (Fig. S2-1). In the case of the slower photolysis of MGLY a shift towards the OH degradation channel occurs, so instead of releasing HO<sub>2</sub> via photolysis the OH is consumed more frequently lowering HO<sub>x</sub>. This reduction in HO<sub>2</sub> concentration also lowers  $H_2O_2$  production (Fig. S2-1m). Lower PAN (Fig. S2-1g) and CH<sub>3</sub>COOOH (Fig. S2-1s) concentration as well a slight day-time NO (Fig. S2-1b) and NO<sub>2</sub> (Fig. S2-1f) increase result from  $CH_3C(O)O_2$  (Fig. S2-1r) reduction.

The reductions in OH and  $O_3$  lower the reaction frequency of  $C_5H_8$  (Fig. S2-1d), MVK (Fig. S2-11) and MACR (Fig. S2-1h) causing a concentration increase. For NO (Fig. S2-1b), also an increase occurs, which is mainly forced by reduced concentrations of oxidation partners including  $O_3$ , CH3C(O)O<sub>2</sub>, CH<sub>3</sub>O<sub>2</sub> and other peroxy radicals. Photolysis differences dominate the non-isoprene induced HO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub> and HCHO reduction and MGLY increase.

# S2.3.3 GLY and ozonolysis implementation updates

GLY (Section 2.1) and ozonolysis changes (Section 2.2) are jointly simulated (brown line in Fig. S2-1). As mentioned in sect 2.1. of the main manuscript, the reaction rate constant of GLY with NO<sub>3</sub> in JAMv2b is four magnitudes higher than in URMELL. On the one hand, an increase of this reaction rate constant reduces NO<sub>3</sub> concentration (Fig. S2-1j) but, on the other hand, leads to a non-expected increase of the GLY concentration (Fig. S2-1k). GLY oxidation is now dominated by NO<sub>3</sub>, while beforehand it was mainly oxidized by OH. This also shifts the oxidation pathways of other substances in opposing manner, here the ratio of NO<sub>3</sub> oxidation shrinks, while O<sub>3</sub> and OH become more important. OH and O<sub>3</sub> reaction channels are more efficient GLY sources compared to NO<sub>3</sub> channels leading to a GLY increase. As the reaction of GLY with NO<sub>3</sub> also produces HNO<sub>3</sub> an increase is invoked, too. The increase in HCOOH (Fig. S2-1p) is invoked by ozonolysis changes.

#### S2.3.4 Isoprene

Additional isoprene related deviations are mainly caused by OH oxidation, as well as MVK and MACR chemistry. When considering all isoprene related changes (purple line in Fig. S2-1), OH (Fig. S2-1e), NO (Fig. S2-1b), NO<sub>2</sub> (Fig. S2-1f), NO<sub>3</sub> (Fig. S2-1j), HCHO (Fig. S2-1c), MGLY (Fig. S2-1o), HCOOH (Fig. S2-1p), Isoprene (Fig. S2-1d), as well as MVK (Fig. S2-1l) and MACR (Fig. S2-1h) become very similar to JAMv2b (blue line in Fig. S2-1).

In JAMv2b the low  $CH_3O_2$  yield of 0.051 (0.407 in URMELL) of  $C_5H_8$  ozonolysis diminishes night-time  $CH_3O_2$  production (Fig S2-1q). The reaction of  $CH_3O_2$  with NO<sub>2</sub> produces nitroperoxy methane ( $CH_3O_2NO_2$ ) and its decomposition is an important nighttime NO<sub>2</sub> source. Therefore, NO<sub>2</sub> nighttime concentrations (Fig. S2-1f) decline reaching similar nighttime peak concentrations as with JAMv2b. As NO chemistry is linked to NO<sub>2</sub>, NO concentrations (Fig. S2-1b) also decline. The integration of H-shift reactions, enabling OH recycling, into isoprene chemistry has the most significant impact on OH (Fig. S2-1e). Therefore, neglecting this OH recycling lowers not just OH but  $H_2O_2$  (Fig. S2-1m) and  $HO_2$  (Fig. S2-1i) concentrations. For compounds with multiple day-time degradation channels (reaction with  $HO_x$ ,  $NO_x$ ,  $O_3$ , or photolysis) the oxidation is pushed towards the other pathways reducing the oxidant day-time concentrations, too. This has a major impact on  $O_3$  as it is consumed more frequently, while at the same time its formation through RC(O)O<sub>2</sub> + HO<sub>2</sub> reaction stagnates. Therefore,  $O_3$  decreases (Fig. S2-1a). The lack of oxidants increases  $C_5H_8$  (Fig. S2-1d) while lowering the reaction product concentrations of MACR (Fig. S2-1h), MVK (Fig. S2-1l) and HCHO (Fig. S2-1c).

Furthermore, the reduction in  $CH_3O_2$  and  $HO_2$  also shifts the oxidation from peroxy radicals towards  $CH3C(O)O_2$  and  $NO_x$  resulting in lower day time concentrations. As the reactions of  $RC(O)O_2$  with  $HO_2$  produce  $O_3$ , this further reduces  $O_3$  concentrations. Additionally, a shift of peroxy radical oxidation from  $CH_3O_2$  towards  $CH3C(O)O_2$  reduces  $HO_2$  production rates, as  $CH_3O_2$  pathways usually have higher  $HO_2$  yields.

The composition of the ISOPOO pool also plays a role. The chemical degradation of LISOPACO2 seems to have a higher direct impact on  $O_3$  depletion through the reaction of LHC4ACCHO with  $O_3$  (this reaction is not part of Wennberg et al.<sup>1</sup>, but kept from Schultz *et al.*<sup>7</sup>, the MCM3.3.1 also suggest reactions with  $O_3$ ) compared to ISOPBO2 and ISOPDO2 leading to MVK/MACR ozonolysis reactions. Note that  $O_3$  is additionally indirectly impacted through  $NO_x$  rechanneling, as the degradation pathways of  $\beta$  and  $\delta$  isoprene nitrates (ISOPBNO3 & ISOPDNO3, LISOPACNO3) differ. Therefore, the contributions of the diverse ISOPOO pool plays an important role for  $NO_x$  as well as  $O_3$ . As a result, multiple interlinkages changed creating some kind of self-reinforcing effect leading to intensified  $O_3$  reduction. As  $NO_2 + O_3$  is the major  $NO_3$  production pathway,  $NO_3$  declines as both precursor decline. But note, that the sources of the higher daytime  $NO_3$  concentrations of URMELL are from the reaction of MPAN (a MACR reaction product) with OH and  $O_3$ , both yielding  $NO_3$ . In the case of MPAN + OH, JAMv2b postulates  $NO_2$  instead of  $NO_3$  formation while the reaction with  $O_3$  is missing.

The strong increase in HCOOH concentration is due to the high  $MVK + O_3$  production ratio of 0.85 in JAMv2b compared to 0.025 in URMELL. Changes to CH3COCH2OH are also caused by ISOPOO pool composition, with multiple pathways (MACR, HPALD, LIECHO, LHC4ACCHO...). For GLY URMELL shows a stronger day-time production mainly linked to

newly implemented  $C_5H_8$  chemistry (MVK, ISOPOO pool) with a strong photolysis component and only moderate night-time production. Whereas the MCM3.3.1 simulates only minor daytime GLY but stronger night-time ozonolysis production. The main sources are NC4CHO, HPALD, OHCCH<sub>2</sub>OH and HCOCH<sub>2</sub>OOH. Based on the recommendation from Wennberg et al.,<sup>1</sup> URMELL only considers terminal OH addition channels for the  $C_5H_8$  + OH reaction but the MCM3.3.1 also includes internal addition channels which lead to addition GLY ozonolysis formation.

For most species, a reset to the original JAMv2b increases the similarity to JAMv2b. One exception is  $HNO_3$  for which no approximation to JAMv2b is reached, but instead to MCM3.3.1. This is due to the treatment of  $HOCH_2CO_3$ . In JAMv2b, the reaction of  $HOCH_2CO_3$  with  $NO_2$  leads to  $HCHO + CO_2 + HNO_3$  while in MCM and URMELL a PAN-like (PHAN) substance is formed.  $HOCH_2CO_3$  is an important day- and nighttime  $HNO_3$  source in JAMv2b while for URMELL OH +  $NO_2$  is the major source. The lower OH and  $NO_2$  concentrations are also in better agreement with the MCM3.3.1 resulting in similar  $HNO_3$  simulations.

Fig. S2-2 till Fig S2-7 show additional plots for the urban and remote scenarios for various summer and winter cases as describe in the main text in sect. 4.1.



**Fig. S2-2:** Time series of various gas-phase compounds for the urban summer case with 50% attenuated actinic radiation (urb\_s\_05) modeled with MCM3.3.1 (black line), RACM (red line), JAMv2b (blue line) and URMELL (yellow line).



**Fig. S2-3:** Time series of various gas-phase compounds for the urban winter case with clear sky conditions (urb\_w\_1) modeled with MCM3.3.1 (black line), RACM (red line), JAMv2b (blue line) and URMELL (yellow line).



**Fig. S2-4:** Time series of various gas-phase compounds for the urban winter case with 50% attenuated actinic radiation (urb\_w\_05) modeled with MCM3.3.1 (black line), RACM (red line), JAMv2b (blue line), URMELL (yellow line) and for XYL+OH reaction rate constant of  $2.3 \times 10^{-11}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> (yellow dotted line).


Fig. S2-5: Time series of various gas-phase compounds for the remote summer case with 50% attenuated actinic radiation (rem\_s\_05) modeled with MCM3.3.1 (black line), RACM (red line), JAMv2b (blue line) and URMELL (yellow line).



**Fig. S2-6:** Time series of various gas-phase compounds for the remote winter case with clear sky conditions (rem\_w\_1) modeled with MCM3.3.1 (black line), RACM (red line), JAMv2b (blue line) and URMELL (yellow line).



**Fig. S2-7:** Time series of various gas-phase compounds for the remote winter case with 50% attenuated actinic radiation (rem\_w\_05) modeled with MCM3.3.1 (black line), RACM (red line), JAMv2b (blue line) and URMELL (yellow line).

**Table S2-1:** Correlation and COD values between MCM3.3.1 and URMELL, Jamv2b and RACM for box model simulations and the various scenarios indicated by the first three columns: scenario (urban/remote), season (summer s/winter w) and solar radiation (full radiation \_1/ 50% attenuated actinic radiation \_05). Bold numbers highlight highest R values indicating best representation of MCM3.3.1 concentration trends and lowest COD for closest MCM3.3.1 approximation.

| Soonario | Sanson | Rad  | Spacios                              | URM   | IELL  | JAM    | lv2b  | RA    | СМ    |
|----------|--------|------|--------------------------------------|-------|-------|--------|-------|-------|-------|
| Scenario | Season | Rau. | species                              | R     | COD   | R      | COD   | R     | COD   |
| urban    | summer | 05   | O <sub>3</sub>                       | 0.998 | 0.023 | 0.917  | 0.157 | 0.995 | 0.015 |
|          |        |      | NO                                   | 0.997 | 0.080 | 0.920  | 0.352 | 0.996 | 0.075 |
|          |        |      | $NO_2$                               | 0.999 | 0.067 | 0.709  | 0.277 | 0.975 | 0.043 |
|          |        |      | OH                                   | 0.995 | 0.291 | 0.889  | 0.189 | 0.994 | 0.144 |
|          |        |      | HO <sub>2</sub>                      | 0.998 | 0.237 | 0.663  | 0.511 | 0.989 | 0.281 |
|          |        |      | $H_2O_2$                             | 0.999 | 0.083 | 0.847  | 0.474 | 0.995 | 0.200 |
|          |        |      | NO <sub>3</sub>                      | 0.998 | 0.073 | 0.956  | 0.240 | 0.958 | 0.180 |
|          |        |      | HNO <sub>3</sub>                     | 0.857 | 0.066 | 0.042  | 0.122 | 0.581 | 0.040 |
|          |        |      | НСНО                                 | 0.998 | 0.030 | 0.965  | 0.158 | 0.995 | 0.160 |
|          |        |      | PAN                                  | 1.000 | 0.061 | 0.987  | 0.268 | 1.000 | 0.098 |
|          |        |      | GLY                                  | 0.968 | 0.097 | -0.149 | 0.725 | 0.588 | 0.102 |
|          |        |      | MGLY                                 | 0.986 | 0.078 | 0.848  | 0.162 | 0.940 | 0.498 |
|          |        |      | C <sub>5</sub> H <sub>8</sub>        | 0.958 | 0.096 | 0.734  | 0.140 | 0.802 | 0.165 |
|          |        |      | MACR                                 | 0.826 | 0.066 | 0.278  | 0.141 | 0.963 | 0.055 |
|          |        |      | MVK                                  | 0.598 | 0.090 | 0.225  | 0.221 | 0.940 | 0.190 |
|          |        |      | НСООН                                | 0.947 | 0.556 | 0.995  | 0.081 | 0.998 | 0.280 |
|          |        |      | CH <sub>3</sub> O <sub>2</sub>       | 0.622 | 0.395 | 0.573  | 0.692 | 0.771 | 0.199 |
|          |        |      | $CH_3C(O)O_2$                        | 0.999 | 0.079 | 0.894  | 0.532 | 0.978 | 0.168 |
|          |        |      | CH <sub>3</sub> COOOH                | 0.999 | 0.194 | 0.940  | 0.659 | 0.999 | 0.281 |
|          |        |      | CH <sub>3</sub> COCH <sub>2</sub> OH | 0.971 | 0.388 | 0.988  | 0.271 | 0.999 | 0.193 |
|          | winter | 1    | O <sub>3</sub>                       | 0.990 | 0.152 | 0.466  | 0.478 | 0.991 | 0.057 |
|          |        |      | NO                                   | 0.996 | 0.174 | 0.864  | 0.508 | 0.989 | 0.102 |
|          |        |      | $NO_2$                               | 0.925 | 0.121 | -0.202 | 0.278 | 0.830 | 0.052 |
|          |        |      | OH                                   | 0.983 | 0.281 | 0.863  | 0.289 | 0.997 | 0.073 |
|          |        |      | HO <sub>2</sub>                      | 0.803 | 0.243 | 0.411  | 0.390 | 0.514 | 0.165 |
|          |        |      | $H_2O_2$                             | 0.806 | 0.244 | -0.075 | 0.404 | 0.105 | 0.456 |
|          |        |      | NO <sub>3</sub>                      | 0.947 | 0.180 | 0.463  | 0.633 | 0.936 | 0.136 |
|          |        |      | HNO <sub>3</sub>                     | 0.964 | 0.051 | 0.798  | 0.107 | 0.883 | 0.044 |
|          |        |      | НСНО                                 | 0.995 | 0.107 | 0.991  | 0.275 | 0.999 | 0.122 |
|          |        |      | PAN                                  | 0.993 | 0.264 | 0.997  | 0.491 | 1.000 | 0.012 |
|          |        |      | GLY                                  | 0.981 | 0.044 | 0.720  | 0.601 | 0.850 | 0.138 |
|          |        |      | MGLY                                 | 0.989 | 0.167 | 0.988  | 0.051 | 0.990 | 0.577 |
|          |        |      | $C_5H_8$                             | 0.975 | 0.101 | 0.298  | 0.378 | 0.966 | 0.055 |
|          |        |      | MACR                                 | 0.981 | 0.122 | 0.934  | 0.107 | 0.989 | 0.101 |
|          |        |      | MVK                                  | 0.991 | 0.120 | 0.904  | 0.144 | 0.999 | 0.042 |
|          |        |      | НСООН                                | 0.942 | 0.603 | 0.923  | 0.141 | 0.999 | 0.241 |
|          |        |      | CH <sub>3</sub> O <sub>2</sub>       | 0.116 | 0.785 | 0.547  | 0.867 | 0.638 | 0.327 |
|          |        |      | $CH_3C(O)O_2$                        | 0.987 | 0.309 | 0.836  | 0.681 | 0.989 | 0.094 |
|          |        |      | CH <sub>3</sub> COOOH                | 0.992 | 0.105 | 0.870  | 0.257 | 0.947 | 0.766 |

|        |   |    | CH <sub>3</sub> COCH <sub>2</sub> OH | 0.994  | 0.679 | 0.998  | 0.512 | 0.998 | 0.048 |
|--------|---|----|--------------------------------------|--------|-------|--------|-------|-------|-------|
|        |   | 05 | O <sub>3</sub>                       | 0.765  | 0.650 | 0.589  | 0.640 | 0.995 | 0.059 |
|        |   |    | NO                                   | 0.804  | 0.642 | 0.448  | 0.620 | 1.000 | 0.067 |
|        |   |    | NO <sub>2</sub>                      | 0.850  | 0.123 | 0.910  | 0.073 | 0.999 | 0.044 |
|        |   |    | ОН                                   | 0.993  | 0.435 | 0.737  | 0.386 | 0.998 | 0.136 |
|        |   |    | HO <sub>2</sub>                      | 0.616  | 0.703 | 0.722  | 0.671 | 0.918 | 0.086 |
|        |   |    | H <sub>2</sub> O <sub>2</sub>        | 0.939  | 0.381 | 0.905  | 0.414 | 0.931 | 0.391 |
|        |   |    | NO <sub>3</sub>                      | 0.938  | 0.717 | 0.967  | 0.705 | 0.971 | 0.296 |
|        |   |    | HNO <sub>3</sub>                     | 0.429  | 0.244 | -0.397 | 0.346 | 0.965 | 0.069 |
|        |   |    | НСНО                                 | 0.997  | 0.207 | 0.909  | 0.296 | 0.999 | 0.099 |
|        |   |    | PAN                                  | 0.997  | 0.489 | 0.885  | 0.525 | 0.999 | 0.028 |
|        |   |    | GLY                                  | 0.888  | 0.158 | 0.914  | 0.625 | 0.912 | 0.199 |
|        |   |    | MGLY                                 | 0.998  | 0.280 | 0.991  | 0.075 | 0.994 | 0.545 |
|        |   |    | C <sub>5</sub> H <sub>8</sub>        | 0.956  | 0.192 | 0.812  | 0.234 | 0.987 | 0.040 |
|        |   |    | MACR                                 | 0.995  | 0.089 | 0.997  | 0.094 | 0.997 | 0.154 |
|        |   |    | MVK                                  | 0.993  | 0.106 | 0.996  | 0.217 | 1.000 | 0.019 |
|        |   |    | НСООН                                | 0.881  | 0.653 | -0.452 | 0.183 | 0.998 | 0.235 |
|        |   |    | CH <sub>3</sub> O <sub>2</sub>       | 0.240  | 0.865 | 0.583  | 0.869 | 0.761 | 0.218 |
|        |   |    | $CH_3C(O)O_2$                        | 0.971  | 0.602 | 0.596  | 0.684 | 0.985 | 0.135 |
|        |   |    | CH <sub>3</sub> COOOH                | 0.559  | 0.087 | 0.480  | 0.060 | 0.951 | 0.733 |
|        |   |    | CH <sub>3</sub> COCH <sub>2</sub> OH | 0.995  | 0.766 | 0.999  | 0.563 | 1.000 | 0.025 |
|        |   |    |                                      |        |       |        |       |       |       |
| remote | S | 05 | O <sub>3</sub>                       | 0.984  | 0.067 | 0.999  | 0.004 | 0.999 | 0.077 |
|        |   |    | NO                                   | 0.982  | 0.170 | 0.987  | 0.154 | 0.982 | 0.140 |
|        |   |    | NO <sub>2</sub>                      | 0.970  | 0.189 | 0.982  | 0.104 | 0.970 | 0.064 |
|        |   |    | OH                                   | 0.991  | 0.275 | 0.998  | 0.106 | 0.992 | 0.061 |
|        |   |    |                                      | 0.992  | 0.337 | 0.991  | 0.368 | 0.997 | 0.216 |
|        |   |    | $H_2O_2$                             | 0.997  | 0.095 | 0.993  | 0.045 | 0.976 | 0.178 |
|        |   |    | NO <sub>3</sub>                      | 0.981  | 0.370 | 0.994  | 0.168 | 0.987 | 0.343 |
|        |   |    | HNO <sub>3</sub>                     | 0.986  | 0.251 | 0.958  | 0.424 | 0.993 | 0.050 |
|        |   |    | HCHU<br>DAN                          | 0.980  | 0.072 | 0.997  | 0.101 | 0.987 | 0.269 |
|        |   |    | PAN                                  | 0.999  | 0.075 | 0.998  | 0.110 | 0.999 | 0.334 |
|        |   |    |                                      | -0.051 | 0.121 | -0.121 | 0.585 | 0.754 | 0.452 |
|        |   |    |                                      | 0.964  | 0.117 | 0.///  | 0.375 | 0.752 | 0.003 |
|        |   |    | $C_5\Pi_8$                           | 0.727  | 0.238 | 0.985  | 0.003 | 0.999 | 0.009 |
|        |   |    | MACK                                 | 0.978  | 0.001 | 0.999  | 0.138 | 0.999 | 0.184 |
|        |   |    |                                      | 0.980  | 0.002 | 0.907  | 0.394 | 1.000 | 0.130 |
|        |   |    | СНО                                  | 0.908  | 0.393 | 0.999  | 0.009 | 0.969 | 0.274 |
|        |   |    | $CH_3O_2$                            | 0.903  | 0.182 | 0.808  | 0.413 | 0.803 | 0.400 |
|        |   |    |                                      | 0.971  | 0.249 | 0.973  | 0.300 | 0.972 | 0.257 |
|        |   |    | СН.СОСН ОН                           | 1 000  | 0.020 | 1 000  | 0.252 | 1 000 | 0.338 |
|        |   | 1  | 0                                    | 0.000  | 0.107 | 0.007  | 0.230 | 0.000 | 0.170 |
|        | W | 1  | NO                                   | 0.988  | 0.107 | 0.997  | 0.044 | 0.999 | 0.014 |
|        |   |    | NO.                                  | 0.971  | 0.241 | 0.971  | 0.229 | 0.970 | 0.198 |
|        |   |    | OH                                   | 0.903  | 0.310 | 0.909  | 0.220 | 0.979 | 0.145 |
|        |   |    | НО                                   | 0.901  | 0.241 | 0.993  | 0.107 | 0.991 | 0.143 |
|        | 1 | I  | 1102                                 | 0.702  | 0.432 | 0.700  | 0.400 | U.707 | 0.200 |

|  |    | ** 0                                 |        |       |        |       |        |       |
|--|----|--------------------------------------|--------|-------|--------|-------|--------|-------|
|  |    | H <sub>2</sub> O <sub>2</sub>        | 0.973  | 0.046 | 0.853  | 0.181 | 0.612  | 0.271 |
|  |    | NO <sub>3</sub>                      | 0.995  | 0.446 | 0.999  | 0.039 | 0.999  | 0.139 |
|  |    | HNO <sub>3</sub>                     | 0.995  | 0.303 | 0.994  | 0.412 | 0.998  | 0.203 |
|  |    | НСНО                                 | 0.929  | 0.148 | 0.945  | 0.069 | 0.991  | 0.189 |
|  |    | PAN                                  | 0.999  | 0.173 | 0.999  | 0.118 | 0.999  | 0.331 |
|  |    | GLY                                  | 0.947  | 0.268 | -0.833 | 0.553 | 0.948  | 0.513 |
|  |    | MGLY                                 | 0.826  | 0.110 | -0.146 | 0.501 | -0.178 | 0.686 |
|  |    | $C_5H_8$                             | 0.953  | 0.157 | 0.992  | 0.080 | 0.995  | 0.059 |
|  |    | MACR                                 | 0.998  | 0.080 | 0.999  | 0.095 | 1.000  | 0.192 |
|  |    | MVK                                  | 0.986  | 0.043 | 0.993  | 0.272 | 0.999  | 0.134 |
|  |    | НСООН                                | 0.959  | 0.445 | 1.000  | 0.065 | 0.993  | 0.194 |
|  |    | CH <sub>3</sub> O <sub>2</sub>       | -0.053 | 0.236 | 0.937  | 0.460 | 0.914  | 0.393 |
|  |    | $CH_3C(O)O_2$                        | 0.972  | 0.425 | 0.943  | 0.367 | 0.952  | 0.335 |
|  |    | CH <sub>3</sub> COOOH                | 0.996  | 0.272 | 0.995  | 0.395 | 0.994  | 0.496 |
|  |    | CH <sub>3</sub> COCH <sub>2</sub> OH | 0.999  | 0.089 | 1.000  | 0.248 | 1.000  | 0.214 |
|  | 05 | O <sub>3</sub>                       | 0.992  | 0.106 | 0.998  | 0.044 | 0.999  | 0.019 |
|  |    | NO                                   | 0.964  | 0.268 | 0.957  | 0.245 | 0.954  | 0.228 |
|  |    | NO <sub>2</sub>                      | 0.955  | 0.383 | 0.985  | 0.277 | 0.982  | 0.218 |
|  |    | OH                                   | 0.958  | 0.229 | 0.981  | 0.166 | 0.979  | 0.155 |
|  |    | HO <sub>2</sub>                      | 0.973  | 0.450 | 0.974  | 0.458 | 0.988  | 0.278 |
|  |    | H <sub>2</sub> O <sub>2</sub>        | 0.882  | 0.056 | 0.270  | 0.211 | -0.103 | 0.312 |
|  |    | NO <sub>3</sub>                      | 0.982  | 0.480 | 0.995  | 0.110 | 0.995  | 0.075 |
|  |    | HNO <sub>3</sub>                     | 0.992  | 0.325 | 0.995  | 0.409 | 0.998  | 0.280 |
|  |    | НСНО                                 | 0.985  | 0.161 | 0.980  | 0.069 | 0.990  | 0.142 |
|  |    | PAN                                  | 0.997  | 0.248 | 0.997  | 0.126 | 0.998  | 0.348 |
|  |    | GLY                                  | 0.902  | 0.371 | -0.804 | 0.308 | 0.845  | 0.548 |
|  |    | MGLY                                 | 0.860  | 0.161 | 0.460  | 0.354 | 0.438  | 0.571 |
|  |    | C <sub>5</sub> H <sub>8</sub>        | 0.980  | 0.119 | 0.996  | 0.063 | 0.997  | 0.052 |
|  |    | MACR                                 | 0.999  | 0.105 | 0.999  | 0.085 | 1.000  | 0.207 |
|  |    | MVK                                  | 0.991  | 0.044 | 0.999  | 0.219 | 0.999  | 0.121 |
|  |    | НСООН                                | 0.964  | 0.471 | 0.999  | 0.075 | 0.994  | 0.159 |
|  |    | CH <sub>3</sub> O <sub>2</sub>       | 0.092  | 0.272 | 0.900  | 0.488 | 0.631  | 0.405 |
|  |    | CH <sub>3</sub> C(0)O <sub>2</sub>   | 0.969  | 0.534 | 0.945  | 0.427 | 0.957  | 0.429 |
|  |    | CH <sub>3</sub> COOOH                | 0.996  | 0.353 | 0.996  | 0.384 | 0.998  | 0.546 |
|  |    | CH <sub>3</sub> COCH <sub>2</sub> OH | 0.998  | 0.066 | 0.999  | 0.214 | 1.000  | 0.261 |
|  |    |                                      |        |       |        |       |        |       |

#### **Supplement S3 – CTM simulations**

Supplement S3 contains the information about the time series analysis including an overview of all selected measurement sites in Table S3-1 and statistics for the entire time series in Table S3-2 und for the mean diurnal cycle of May 2014 in Table S3-3. A map with the dominated land use type distribution and colored ozone correlation values for all considered measurement sites are presented in Fig. S3-1. Time series are shown for selected sites for  $O_3$ , NO<sub>2</sub> and NO in fig. S3.2-1 till S3.2-5. For the mechanism comparison in remote areas also plots showing modeled OH, ISO, API+BPI and LIM+MYRC concentration time series for Kellerwald, Simmerath, Schmuecke and Spreewald are shown (Fig. S3.2-6 till S3.2-.

**Table S3-1:** Overview about the 57 measurement sites considered for the comparisons providing their name, longitude, latitude, station code, classification (24 remote background (BR), 13 urban background (BU), 7 traffic (T) and 12 industrial/traffic and industrial (IR/IU/TI)) and indication of O<sub>3</sub>, NO<sub>2</sub> and NO dada availability. Information about the German measurement network used for this study, with links to data and additional information can be found at the station database provided by the German Environment Agency (Umwelt Bundesamt - UBA): <u>https://www.env-it.de/stationen/public/networkList.do</u>

| Site                 | Longitudo | Latituda  | Station | Classi-  | 0  | NO              | NO |
|----------------------|-----------|-----------|---------|----------|----|-----------------|----|
| Site                 | Longhude  | Latitude  | code    | fication | 03 | $\mathbf{NO}_2$ | NO |
| Neuglobsow           | 13.031662 | 53.141303 | DEUB030 | BR       | Х  | Х               |    |
| Schmuecke            | 10.769534 | 50.654066 | DEUB029 | BR       | Х  | Х               | Х  |
| Waldhof              | 10.756733 | 52.800773 | DEUB005 | BR       | Х  | Х               | Х  |
| Westerland           | 8.308208  | 54.924967 | DEUB001 | BR       | Х  | Х               | X  |
| Zingst               | 12.721938 | 54.436985 | DEUB028 | BR       | Х  | Х               | X  |
| Schwedt/Oder         | 14.285139 | 53.064262 | DEBB029 | TI       | Х  |                 |    |
| Eisenhuettenstadt    | 14.638166 | 52.146264 | DEBB032 | TI       | Х  |                 |    |
| Mannheim/Nord        | 8.465281  | 49.544078 | DEBW005 | TI       | Х  | Х               | Х  |
| Salzgitter/Druette   | 10.455910 | 52.153690 | DENI070 | IR       | Х  | Х               |    |
| Bottrop-Welheim      | 6.976880  | 51.525955 | DENW021 | IU       | Х  | Х               |    |
| Duisburg-Walsum      | 6.748363  | 51.524030 | DENW034 | IU       | Х  | Х               |    |
| Trier/Eitzstr.       | 6.690258  | 49.784023 | DERP047 | TI       | Х  | Х               |    |
| Bitterfeld/Wolfen    | 12.302866 | 51.651166 | DEST015 | TI       | Х  | Х               |    |
| Niederzier           | 6.469312  | 50.883484 | DENW074 | IR       | Х  |                 |    |
| Leuna                | 12.032141 | 51.321364 | DEST090 | TI       | Х  | Х               | Х  |
| Berlin Marienfelde   | 13.368103 | 52.398406 | DEBE027 | IR       | Х  | Х               |    |
| Bremen               | 8.695060  | 53.117700 | DEHB013 | IR       | Х  | Х               |    |
| Neubrandenburg       | 13.266440 | 53.559784 | DEMV003 | Т        | Х  | Х               |    |
| Koblenz              | 7.596633  | 50.354403 | DERP024 | Т        | Х  | Х               |    |
| Erfurt/Kraempferstr. | 11.037924 | 50.979455 | DETH020 | Т        | Х  | Х               |    |
| Frankfurt/Hoechst    | 8.542517  | 50.101750 | DEHE005 | Т        | Х  | Х               | Х  |
| Saarbruecken/Verkehr | 7.003174  | 49.230740 | DESL020 | Т        | Х  | Х               | Х  |
| Karlsruhe/Nordwest   | 8.355628  | 49.028594 | DEBW081 | Т        | Х  | Х               | Х  |
| Elsterwerda          | 13.526796 | 51.462734 | DEBB007 | Т        | Х  |                 |    |
| Cottbus              | 14.334470 | 51.746848 | DEBB064 | BU       | Х  | Х               |    |
| Berlin Wedding       | 13.349326 | 52.543041 | DEBE010 | BU       | Х  | Х               | Х  |

| Site                 | Longitude  | Latitude  | Station<br>code | Classi-<br>fication | O <sub>3</sub> | NO <sub>2</sub> | NO |
|----------------------|------------|-----------|-----------------|---------------------|----------------|-----------------|----|
| Rostock/Warnemuende  | 12.080003  | 54.171330 | DEMV021         | BU                  | Х              | Х               |    |
| Hamburg/Sternschanze | 9.967882   | 53.564140 | DEHH008         | BU                  | Х              |                 |    |
| Frankfurt/Ost        | 8.746343   | 50.125332 | DEHE008         | BU                  | Х              | Х               | Х  |
| Wiesbaden/Sued       | 8.244949   | 50.050343 | DEHE022         | BU                  | Х              | Х               |    |
| Koeln-Chorweiler     | 6.884571   | 51.019338 | DENW053         | Т                   | Х              | Х               | Х  |
| Osnabrueck           | 8.052860   | 52.255340 | DENI038         | BU                  | Х              | Х               | Х  |
| Hannover             | 9.706120   | 52.362920 | DENI054         | BU                  | Х              | Х               |    |
| Halle/Nord           | 11.979056  | 51.496185 | DEST050         | BU                  | Х              | Х               | Х  |
| Neuruppin            | 12.809481  | 52.931890 | DEBB048         | BU                  | Х              |                 |    |
| Hof/Berliner_Platz   | 11.897492  | 50.320611 | DEBY020         | BU                  | Х              | Х               |    |
| Leipzig-West         | 12.297411  | 51.317905 | DESN059         | BU                  | Х              | Х               |    |
| Potsdam/Zentrum      | 13.059945  | 52.401352 | DEBB021         | BU                  | Х              | Х               |    |
| Radebeul-Wahnsdorf   | 13.675005  | 51.119514 | DESN051         | BR                  | Х              |                 |    |
| Schwartenberg        | 13.465.078 | 50.659097 | DESN074         | BR                  | Х              |                 |    |
| Riedstadt            | 8.516798   | 49.825165 | DEHE043         | BR                  | Х              | Х               |    |
| Soest/Ost            | 8.148023   | 51.570675 | DENW068         | BR                  | Х              | Х               |    |
| Eggenstein           | 8.406660   | 49.076550 | DEBW004         | BR                  | Х              |                 |    |
| Luette               | 12.561389  | 52.194225 | DEBB065         | BR                  | Х              |                 |    |
| Spreewald            | 14.057064  | 51.897598 | DEBB066         | BR                  | Х              |                 |    |
| Kellerwald           | 9.031754   | 51.154843 | DEHE060         | BR                  | Х              |                 |    |
| Neuhaus              | 11.134593  | 50.499955 | DETH027         | BR                  | Х              |                 |    |
| Hummelshain          | 11.661233  | 50.791616 | DETH061         | BR                  | Х              |                 |    |
| Tiefenbach           | 12.548869  | 49.438464 | DEBY072         | BR                  | Х              | Х               |    |
| Possen               | 10.867188  | 51.333333 | DETH042         | BR                  | Х              |                 |    |
| Witzenhausen/Wald    | 9.774588   | 51.291757 | DEHE024         | BR                  | Х              |                 |    |
| Carlsfeld            | 12.611125  | 50.431322 | DESN049         | BR                  | Х              |                 |    |
| Spessart             | 9.399441   | 50.164430 | DEHE026         | BR                  | Х              |                 |    |
| Simmerath(Eifel)     | 6.281008   | 50.653234 | DENW064         | BR                  |                | Х               |    |
| Zinnwald             | 13.751450  | 50.731478 | DESN052         | BR                  | Х              | Х               |    |
| Zartau/Waldstation   | 11.172327  | 52.593136 | DEST089         | BR                  | Х              | Х               |    |
| Collmberg            | 13.009406  | 51.303772 | DESN076         | BR                  | Х              | Х               |    |

| O <sub>3</sub> | Measurement sites | Min    | Mean   | Max     | Stdv.  | R     | COD   |
|----------------|-------------------|--------|--------|---------|--------|-------|-------|
|                | Spessart          | 16.040 | 76.301 | 156.718 | 22.647 |       |       |
|                | RACM              | 38.850 | 69.382 | 104.046 | 14.292 | 0.546 | 0.131 |
|                | URMELL            | 25.488 | 69.783 | 105.161 | 15.676 | 0.611 | 0.128 |
|                | Witzenhausen      | 21.671 | 75.954 | 146.570 | 25.560 |       |       |
|                | RACM              | 28.681 | 63.438 | 102.303 | 15.805 | 0.523 | 0.172 |
|                | URMELL            | 22.159 | 64.051 | 103.161 | 16.267 | 0.611 | 0.162 |
|                | Collmberg         | 18.44  | 74.385 | 141.386 | 23.696 |       |       |
|                | RACM              | 25.581 | 60.525 | 118.549 | 17.520 | 0.587 | 0.173 |
|                | URMELL            | 25.755 | 61.303 | 121.581 | 17.872 | 0.675 | 0.161 |
|                | Possen            | 13.782 | 74.043 | 145.719 | 23.844 |       |       |
|                | RACM              | 27.162 | 64.026 | 109.909 | 16.226 | 0.617 | 0.157 |
|                | URMELL            | 23.101 | 64.675 | 111.155 | 16.812 | 0.707 | 0.145 |
|                | Zingst            | 24.500 | 73.455 | 129.900 | 19.076 |       |       |
|                | RACM              | 38.195 | 73.317 | 113.476 | 15.441 | 0.624 | 0.111 |
|                | URMELL            | 36.362 | 73.471 | 112.224 | 15.797 | 0.563 | 0.121 |
|                | Waldhof           | 1.000  | 71.421 | 172.800 | 29.484 |       |       |
|                | RACM              | 25.571 | 64.893 | 121.246 | 17.060 | 0.751 | 0.192 |
|                | URMELL            | 30.865 | 65.676 | 119.001 | 16.788 | 0.736 | 0.196 |
|                | Cottbus           | 7.620  | 70.487 | 146.710 | 26.346 |       |       |
|                | RACM              | 30.252 | 66.189 | 117.381 | 17.544 | 0.798 | 0.143 |
|                | URMELL            | 27.151 | 66.069 | 119.188 | 17.721 | 0.781 | 0.148 |
|                | Neuglobsow        | 3.500  | 70.109 | 139.150 | 26.678 |       |       |
|                | RACM              | 38.675 | 71.158 | 123.702 | 16.330 | 0.694 | 0.195 |
|                | URMELL            | 33.800 | 71.041 | 122.656 | 17.246 | 0.661 | 0.199 |
|                | Hummelshain       | 16.810 | 70.021 | 154.961 | 28.263 |       |       |
|                | RACM              | 18.398 | 64.340 | 113.213 | 17.115 | 0.754 | 0.152 |
|                | URMELL            | 19.298 | 64.988 | 110.784 | 17.629 | 0.760 | 0.153 |
|                | Radebeul          | 18.859 | 69.829 | 143.002 | 23.226 |       |       |
|                | RACM              | 18.750 | 59.976 | 121.460 | 19.285 | 0.768 | 0.137 |
|                | URMELL            | 19.323 | 60.241 | 121.923 | 19.281 | 0.798 | 0.129 |
|                | Neuhaus           | 17.421 | 80.922 | 140.112 | 22.978 |       |       |
|                | RACM              | 40.788 | 72.406 | 98.581  | 11.986 | 0.690 | 0.123 |
|                | URMELL            | 37.793 | 72.412 | 102.057 | 13.474 | 0.715 | 0.121 |
|                | Tiefenbach        | 16.450 | 78.289 | 131.230 | 22.658 |       |       |
|                | RACM              | 35.307 | 65.966 | 103.504 | 14.132 | 0.544 | 0.156 |
|                | URMELL            | 30.348 | 66.166 | 105.537 | 14.681 | 0.597 | 0.152 |
|                | Carlsfeld         | 18.075 | 77.459 | 138.612 | 23.022 |       |       |
|                | RACM              | 38.631 | 73.172 | 105.364 | 12.939 | 0.677 | 0.128 |
|                | URMELL            | 36.939 | 72.832 | 107.007 | 14.538 | 0.642 | 0.131 |

**Table S3-2:** Summary of min, mean, max, standard deviation (stdv.), correlation (R) and COD values for the measured and modeled  $O_3$ ,  $NO_2$  and NO concentrations for the 57, 38 and 14 measurement sites considered.

| Measurement sites  | Min    | Mean   | Max     | Stdv.  | R     | COD   |
|--------------------|--------|--------|---------|--------|-------|-------|
| Spreewald          | 4.240  | 67.440 | 150.280 | 27.453 |       |       |
| RACM               | 26.479 | 63.739 | 117.613 | 17.831 | 0.800 | 0.167 |
| URMELL             | 26.040 | 64.240 | 117.852 | 17.364 | 0.781 | 0.175 |
| Hof                | 1.350  | 67.056 | 129.430 | 27.375 |       |       |
| RACM               | 23.673 | 62.562 | 112.095 | 16.571 | 0.760 | 0.217 |
| URMELL             | 26.111 | 63.088 | 112.779 | 16.344 | 0.733 | 0.221 |
| Elsterwerda        | 2.000  | 66.979 | 148.500 | 27.124 |       |       |
| RACM               | 24.007 | 62.082 | 122.730 | 18.500 | 0.816 | 0.162 |
| URMELL             | 23.391 | 62.191 | 119.800 | 18.615 | 0.783 | 0.174 |
| Potsdam            | 2.000  | 66.763 | 139.800 | 25.022 |       |       |
| RACM               | 24.177 | 67.083 | 122.376 | 18.677 | 0.818 | 0.152 |
| URMELL             | 27.816 | 67.493 | 123.308 | 18.648 | 0.797 | 0.159 |
| Bitterfeld         | 6.391  | 66.130 | 148.649 | 26.433 |       |       |
| RACM               | 18.880 | 63.876 | 122.367 | 19.013 | 0.762 | 0.170 |
| URMELL             | 25.691 | 64.393 | 125.517 | 19.309 | 0.762 | 0.172 |
| Leipzig-West       | 6.942  | 66.124 | 147.611 | 28.535 |       |       |
| RACM               | 8.262  | 60.175 | 120.211 | 21.024 | 0.770 | 0.181 |
| URMELL             | 19.915 | 61.723 | 120.916 | 20.505 | 0.798 | 0.173 |
| Kellerwald         | 18.054 | 66.081 | 127.947 | 19.595 |       |       |
| RACM               | 24.958 | 64.913 | 103.128 | 15.258 | 0.603 | 0.132 |
| URMELL             | 29.665 | 65.910 | 105.030 | 15.463 | 0.692 | 0.120 |
| Halle              | 5.703  | 65.040 | 160.332 | 26.547 |       |       |
| RACM               | 15.930 | 57.642 | 125.261 | 20.777 | 0.791 | 0.168 |
| URMELL             | 20.331 | 59.148 | 124.936 | 20.251 | 0.824 | 0.156 |
| Berlin Marienfelde | 0.910  | 64.956 | 142.170 | 27.711 |       |       |
| RACM               | 6.961  | 61.270 | 122.450 | 20.745 | 0.794 | 0.187 |
| URMELL             | 12.473 | 61.802 | 118.289 | 20.952 | 0.790 | 0.196 |
| Luette             | 2.000  | 63.950 | 145.860 | 29.319 |       |       |
| RACM               | 31.034 | 65.242 | 112.183 | 16.964 | 0.750 | 0.247 |
| URMELL             | 31.386 | 65.771 | 114.732 | 16.941 | 0.722 | 0.252 |
| Mannheim           | 1.000  | 63.731 | 165.000 | 31.411 |       |       |
| RACM               | 4.860  | 56.832 | 108.557 | 22.983 | 0.760 | 0.242 |
| URMELL             | 10.196 | 57.719 | 110.845 | 22.991 | 0.729 | 0.253 |
| Rostock            | 1.000  | 62.922 | 139.750 | 24.354 |       |       |
| RACM               | 29.615 | 68.973 | 111.766 | 16.375 | 0.672 | 0.206 |
| URMELL             | 32.622 | 69.628 | 112.403 | 16.375 | 0.630 | 0.212 |
| Riedstadt          | 0.599  | 62.367 | 149.961 | 28.630 |       |       |
| RACM               | 3.867  | 55.245 | 111.276 | 21.925 | 0.708 | 0.248 |
| URMELL             | 8.366  | 57.154 | 113.611 | 21.711 | 0.671 | 0.260 |
| Hamburg            | 1.000  | 61.599 | 146.464 | 26.680 |       |       |
| RACM               | 29.443 | 70.194 | 121.969 | 19.114 | 0.708 | 0.224 |
| URMELL             | 27.932 | 69.948 | 122.466 | 19.131 | 0.677 | 0.227 |

| 3 Measurement sites | Min    | Mean   | Max     | Stdv.  | R     | COD   |
|---------------------|--------|--------|---------|--------|-------|-------|
| Berlin Wedding      | 1.660  | 61.173 | 139.290 | 26.982 |       |       |
| RACM                | 0.474  | 59.470 | 130.237 | 22.330 | 0.754 | 0.232 |
| URMELL              | 4.591  | 60.065 | 124.438 | 22.040 | 0.760 | 0.228 |
| Salzgitter          | 1.792  | 60.874 | 151.084 | 26.181 |       |       |
| RACM                | 14.480 | 58.585 | 112.999 | 18.339 | 0.770 | 0.183 |
| URMELL              | 16.565 | 59.173 | 113.014 | 17.953 | 0.764 | 0.190 |
| Hannover            | 4.198  | 60.705 | 136.226 | 24.678 |       |       |
| RACM                | 8.037  | 61.825 | 123.362 | 19.813 | 0.755 | 0.153 |
| URMELL              | 17.128 | 62.018 | 125.135 | 19.650 | 0.763 | 0.158 |
| Eggenstein          | 1.000  | 60.702 | 161.000 | 32.636 |       |       |
| RACM                | 6.592  | 59.533 | 108.903 | 22.568 | 0.804 | 0.250 |
| URMELL              | 18.459 | 62.599 | 111.249 | 20.577 | 0.755 | 0.276 |
| Erfurt              | 2.998  | 60.695 | 141.911 | 26.512 |       |       |
| RACM                | 10.980 | 59.932 | 108.662 | 20.003 | 0.752 | 0.182 |
| URMELL              | 14.611 | 61.275 | 111.165 | 18.860 | 0.772 | 0.181 |
| Niederzier          | 0.425  | 58.671 | 119.833 | 25.865 |       |       |
| RACM                | 7.141  | 58.749 | 122.138 | 21.210 | 0.768 | 0.219 |
| URMELL              | 3.067  | 59.508 | 119.701 | 20.405 | 0.749 | 0.230 |
| Wiesbaden           | 1.754  | 58.358 | 156.734 | 29.221 |       |       |
| RACM                | 7.835  | 57.469 | 107.436 | 20.901 | 0.694 | 0.246 |
| URMELL              | 14.185 | 58.537 | 106.404 | 19.590 | 0.698 | 0.248 |
| Leuna               | 1.260  | 58.263 | 148.191 | 25.878 |       |       |
| RACM                | 10.768 | 57.924 | 122.123 | 20.986 | 0.568 | 0.229 |
| URMELL              | 20.575 | 59.154 | 123.164 | 20.251 | 0.602 | 0.221 |
| Osnabrück           | 1.260  | 58.263 | 148.191 | 25.878 |       |       |
| RACM                | 16.629 | 56.253 | 125.726 | 18.481 | 0.654 | 0.212 |
| URMELL              | 17.133 | 57.683 | 118.986 | 17.892 | 0.693 | 0.211 |
| Frankfurt Ost       | 2.284  | 57.614 | 135.732 | 27.155 |       |       |
| RACM                | 3.613  | 54.569 | 113.609 | 22.248 | 0.754 | 0.203 |
| URMELL              | 10.916 | 56.121 | 112.762 | 21.162 | 0.744 | 0.212 |
| Neubrandenburg      | 1.010  | 57.105 | 122.550 | 23.381 |       |       |
| RACM                | 23.861 | 63.780 | 114.076 | 18.738 | 0.734 | 0.218 |
| URMELL              | 21.652 | 63.993 | 111.968 | 18.714 | 0.711 | 0.222 |
| Soest               | 0.873  | 56.551 | 130.004 | 26.367 |       |       |
| RACM                | 13.281 | 57.788 | 111.260 | 19.007 | 0.798 | 0.219 |
| URMELL              | 16.931 | 58.253 | 113.483 | 19.450 | 0.797 | 0.222 |
| Trier               | 1.502  | 56.483 | 157.405 | 29.979 |       |       |
| RACM                | 24.357 | 65.708 | 115.468 | 18.077 | 0.773 | 0.273 |
| URMELL              | 21.758 | 66.908 | 115.664 | 18.855 | 0.748 | 0.278 |
| Cologne             | 0.263  | 55.599 | 141.718 | 29.024 | 1     |       |
| RACM                | 0.551  | 47.593 | 114.010 | 24.193 | 0.715 | 0.277 |
| URMELL              | 1.239  | 48.210 | 111.934 | 23.177 | 0.723 | 0.275 |

| O <sub>3</sub> | Measurement sites | Min    | Mean   | Max     | Stdv.  | R     | COD   |
|----------------|-------------------|--------|--------|---------|--------|-------|-------|
|                | Karlsruhe         | 1.000  | 69.406 | 168.000 | 30.541 |       |       |
|                | RACM              | 6.592  | 59.533 | 108.903 | 22.568 | 0.760 | 0.181 |
|                | URMELL            | 18.459 | 62.599 | 111.249 | 20.577 | 0.756 | 0.186 |
|                | Zartau            | 3.979  | 68.471 | 157.522 | 27.914 |       |       |
|                | RACM              | 29.925 | 64.023 | 117.464 | 17.216 | 0.756 | 0.179 |
|                | URMELL            | 32.354 | 64.641 | 118.283 | 17.317 | 0.742 | 0.186 |
|                | Schwedt           | 8.170  | 68.285 | 152.630 | 25.554 |       |       |
|                | RACM              | 29.555 | 65.713 | 113.991 | 17.284 | 0.774 | 0.154 |
|                | URMELL            | 25.739 | 66.178 | 115.249 | 17.378 | 0.721 | 0.164 |
|                | Eisenhuettenstadt | 9.960  | 68.163 | 136.060 | 25.193 |       |       |
|                | RACM              | 28.826 | 64.291 | 115.084 | 17.198 | 0.768 | 0.156 |
|                | URMELL            | 26.951 | 65.668 | 114.354 | 17.269 | 0.699 | 0.169 |
|                | Frankfurt Hoechst | 1.197  | 53.947 | 144.518 | 26.614 |       |       |
|                | RACM              | 5.135  | 54.333 | 106.777 | 21.795 | 0.721 | 0.223 |
|                | URMELL            | 7.519  | 55.013 | 104.133 | 20.899 | 0.710 | 0.235 |
|                | Koblenz           | 0.998  | 49.991 | 133.019 | 27.247 |       |       |
|                | RACM              | 5.712  | 57.963 | 116.734 | 21.746 | 0.703 | 0.268 |
|                | URMELL            | 6.963  | 59.198 | 117.651 | 21.424 | 0.727 | 0.267 |
|                | Duisburg          | 0.494  | 49.372 | 133.737 | 24.802 |       |       |
|                | RACM              | 3.310  | 54.189 | 124.886 | 22.020 | 0.677 | 0.267 |
|                | URMELL            | 2.573  | 53.718 | 120.418 | 21.632 | 0.671 | 0.269 |
|                | Bottrop           | 0.049  | 48.798 | 147.440 | 28.085 |       |       |
|                | RACM              | 1.779  | 51.328 | 122.474 | 23.246 | 0.709 | 0.283 |
|                | URMELL            | 1.480  | 51.447 | 113.800 | 22.526 | 0.714 | 0.286 |
|                | Neuruppin         | 8.510  | 67.739 | 167.010 | 26.175 |       |       |
|                | RACM              | 29.127 | 66.324 | 125.873 | 18.466 | 0.791 | 0.145 |
|                | URMELL            | 26.401 | 66.691 | 125.460 | 18.752 | 0.769 | 0.153 |
|                | Saarbruecken      | 1.240  | 47.185 | 120.830 | 25.213 |       |       |
|                | RACM              | 26.465 | 66.936 | 110.359 | 17.229 | 0.725 | 0.351 |
|                | URMELL            | 25.064 | 68.935 | 112.391 | 17.324 | 0.662 | 0.362 |
|                | Westerland        | 36.450 | 87.524 | 133.600 | 15.685 |       |       |
|                | RACM              | 35.862 | 80.094 | 127.450 | 15.686 | 0.542 | 0.100 |
|                | URMELL            | 40.206 | 79.132 | 128.367 | 16.572 | 0.525 | 0.108 |
|                | Schmuecke         | 18.650 | 85.412 | 154.200 | 25.521 |       |       |
|                | RACM              | 35.210 | 72.234 | 101.708 | 12.734 | 0.656 | 0.139 |
|                | URMELL            | 33.119 | 72.107 | 102.843 | 14.005 | 0.682 | 0.139 |
|                | Zinnwald          | 24.602 | 83.937 | 149.427 | 21.878 |       |       |
|                | RACM              | 31.618 | 67.214 | 110.621 | 14.017 | 0.697 | 0.146 |
|                | URMELL            | 31.718 | 66.957 | 109.386 | 15.022 | 0.702 | 0.149 |
|                | Schwartenberg     | 25.320 | 83.705 | 151.362 | 23.081 |       |       |
|                | RACM              | 33.327 | 67.636 | 108.278 | 14.113 | 0.723 | 0.143 |
|                | URMELL            | 28.729 | 67.038 | 111.661 | 15.878 | 0.736 | 0.146 |

| O <sub>3</sub> | Measurement sites | Min    | Mean   | Max     | Stdv.  | R     | COD   |
|----------------|-------------------|--------|--------|---------|--------|-------|-------|
|                | Bremen            | 2.260  | 60.533 | 137.050 | 23.827 |       |       |
|                | RACM              | 27.392 | 68.426 | 119.779 | 17.258 | 0.668 | 0.197 |
|                | URMELL            | 25.456 | 68.047 | 122.042 | 17.637 | 0.672 | 0.199 |
| $NO_2$         | Tiefenbach        | 2.820  | 6.282  | 15.920  | 1.842  |       |       |
|                | RACM              | 0.241  | 2.322  | 7.470   | 1.152  | 0.399 | 0.508 |
|                | URMELL            | 0.374  | 2.469  | 7.305   | 1.264  | 0.336 | 0.492 |
|                | Collmberg         | 1.183  | 5.673  | 22.433  | 3.021  |       |       |
|                | RACM              | 0.642  | 3.819  | 11.324  | 1.860  | 0.600 | 0.274 |
|                | URMELL            | 0.634  | 3.766  | 11.313  | 1.844  | 0.601 | 0.275 |
|                | Zingst            | 0.100  | 4.947  | 37.020  | 4.917  |       |       |
|                | RACM              | 0.384  | 4.180  | 27.158  | 3.319  | 0.599 | 0.296 |
|                | URMELL            | 0.371  | 4.105  | 24.053  | 3.073  | 0.534 | 0.311 |
|                | Waldhof           | 0.370  | 4.013  | 17.800  | 3.097  |       |       |
|                | RACM              | 0.366  | 2.799  | 9.379   | 1.659  | 0.627 | 0.249 |
|                | URMELL            | 0.413  | 2.850  | 10.592  | 1.778  | 0.606 | 0.253 |
|                | Simmerath         | 0.066  | 5.685  | 35.267  | 4.664  |       |       |
|                | RACM              | 0.366  | 5.583  | 35.995  | 5.392  | 0.566 | 0.344 |
|                | URMELL            | 0.518  | 5.900  | 38.047  | 5.713  | 0.548 | 0.346 |
|                | Neuglobsow        | 0.100  | 2.113  | 11.300  | 1.592  |       |       |
|                | RACM              | 0.311  | 2.382  | 7.679   | 1.490  | 0.671 | 0.251 |
|                | URMELL            | 0.346  | 2.453  | 7.532   | 1.580  | 0.679 | 0.253 |
|                | Karlsruhe         | 0.000  | 13.750 | 69.000  | 11.760 |       |       |
|                | RACM              | 2.147  | 10.880 | 47.274  | 6.601  | 0.774 | 0.272 |
|                | URMELL            | 2.136  | 10.013 | 31.165  | 5.210  | 0.650 | 0.295 |
|                | Zartau            | 0.331  | 3.906  | 17.900  | 2.515  |       |       |
|                | RACM              | 0.437  | 3.073  | 9.276   | 1.814  | 0.665 | 0.238 |
|                | URMELL            | 0.476  | 3.054  | 10.067  | 1.855  | 0.643 | 0.241 |
|                | Hof               | 1.950  | 11.813 | 53.410  | 7.990  |       |       |
|                | RACM              | 1.111  | 4.696  | 21.396  | 2.685  | 0.491 | 0.451 |
|                | URMELL            | 1.200  | 4.500  | 13.362  | 2.137  | 0.423 | 0.458 |
|                | Elsterwerda       | 1.910  | 9.914  | 40.810  | 5.381  |       |       |
|                | RACM              | 0.598  | 3.684  | 8.794   | 1.771  | 0.599 | 0.479 |
|                | URMELL            | 0.609  | 3.698  | 9.205   | 1.769  | 0.571 | 0.476 |
|                | Potsdam           | 4.560  | 13.962 | 57.800  | 7.951  |       |       |
|                | RACM              | 1.159  | 7.807  | 71.446  | 7.027  | 0.556 | 0.411 |
|                | URMELL            | 1.118  | 7.234  | 43.982  | 5.220  | 0.527 | 0.415 |
|                | Bitterfeld        | 1.397  | 8.918  | 47.312  | 5.993  |       |       |
|                | RACM              | 1.231  | 5.031  | 18.164  | 2.698  | 0.422 | 0.345 |
|                | URMELL            | 1.232  | 5.107  | 15.252  | 2.666  | 0.415 | 0.340 |
|                | Leipzig-West      | 2.985  | 11.622 | 61.448  | 6.911  |       |       |
|                | RACM              | 1.661  | 8.608  | 39.601  | 5.860  | 0.521 | 0.283 |
|                | URMELL            | 1.626  | 7.880  | 26.050  | 4.432  | 0.611 | 0.278 |

| $NO_2$ | Measurement sites | Min   | Mean    | Max     | Stdv.  | R     | COD   |
|--------|-------------------|-------|---------|---------|--------|-------|-------|
|        | Salzgitter        | 3.174 | 11.285  | 40.350  | 5.441  |       |       |
|        | RACM              | 3.000 | 8.466   | 43.679  | 4.492  | 0.255 | 0.261 |
|        | URMELL            | 3.136 | 8.244   | 34.341  | 3.966  | 0.240 | 0.265 |
|        | Hannover          | 4.500 | 16.344  | 58.293  | 8.648  |       |       |
|        | RACM              | 2.376 | 11.891  | 61.038  | 7.799  | 0.485 | 0.300 |
|        | URMELL            | 2.384 | 11.500  | 50.883  | 7.112  | 0.499 | 0.300 |
|        | Erfurt            | 1.913 | 16.080  | 66.659  | 10.184 |       |       |
|        | RACM              | 1.114 | 6.030   | 34.720  | 4.245  | 0.496 | 0.496 |
|        | URMELL            | 1.131 | 5.707   | 19.458  | 3.254  | 0.515 | 0.499 |
|        | Wiesbaden         | 3.442 | 23.711  | 93.624  | 17.319 |       |       |
|        | RACM              | 1.906 | 14.102  | 59.505  | 9.928  | 0.645 | 0.342 |
|        | URMELL            | 1.974 | 13.718  | 45.600  | 8.972  | 0.657 | 0.342 |
|        | Leuna             | 4.002 | 15.586  | 58.761  | 8.689  |       |       |
|        | RACM              | 1.356 | 7.085   | 29.791  | 4.278  | 0.407 | 0.424 |
|        | URMELL            | 1.262 | 6.676   | 19.541  | 3.135  | 0.470 | 0.424 |
|        | Osnabrück         | 4.002 | 15.586  | 58.761  | 8.689  |       |       |
|        | RACM              | 2.265 | 9.732   | 34.418  | 5.034  | 0.505 | 0.304 |
|        | URMELL            | 2.271 | 9.169   | 22.911  | 4.222  | 0.498 | 0.312 |
|        | Frankfurt Ost     | 1.559 | 27.945  | 105.470 | 19.542 |       |       |
|        | RACM              | 1.639 | 15.511  | 71.357  | 11.314 | 0.592 | 0.367 |
|        | URMELL            | 1.764 | 14.549  | 51.427  | 9.603  | 0.598 | 0.374 |
|        | Neubrandenburg    | 4.500 | 18.543  | 59.500  | 10.236 |       |       |
|        | RACM              | 0.611 | 3.447   | 11.178  | 2.027  | 0.364 | 0.682 |
|        | URMELL            | 0.605 | 3.386   | 8.876   | 1.852  | 0.349 | 0.683 |
|        | Soest             | 0.021 | 10.188  | 53.412  | 8.184  |       |       |
|        | RACM              | 1.301 | 6.809   | 23.178  | 3.837  | 0.329 | 0.360 |
|        | URMELL            | 1.460 | 6.928   | 23.178  | 3.837  | 0.340 | 0.357 |
|        | Trier             | 2.429 | 14.949  | 61.404  | 9.600  |       |       |
|        | RACM              | 1.294 | 7.285   | 23.401  | 4.123  | 0.491 | 0.379 |
|        | URMELL            | 1.406 | 7.285   | 23.401  | 4.123  | 0.505 | 0.382 |
|        | Cologne           | 0.546 | 20.289  | 91.004  | 14.404 |       |       |
|        | RACM              | 5.061 | 25.451  | 86.674  | 13.843 | 0.388 | 0.343 |
|        | URMELL            | 5.273 | 24.256  | 82.916  | 12.414 | 0.391 | 0.335 |
|        | Frankfurt Hoechst | 4.539 | 35.548  | 103.086 | 16.042 |       |       |
|        | RACM              | 2.409 | 18.319  | 82.992  | 13.809 | 0.618 | 0.427 |
|        | URMELL            | 2.495 | 17.800  | 65.017  | 12.479 | 0.623 | 0.431 |
|        | Koblenz           | 3.969 | 33.559  | 80.567  | 15.190 |       |       |
|        | RACM              | 2.097 | 14.596  | 49.360  | 9.595  | 0.380 | 0.465 |
|        | URMELL            | 2.194 | 13.9923 | 42.196  | 8.789  | 0.431 | 0.469 |
|        | Duisburg          | 0.029 | 21.562  | 87.724  | 15.891 |       |       |
|        | RACM              | 2.094 | 19.427  | 54.651  | 9.962  | 0.556 | 0.303 |
|        | URMELL            | 2.071 | 19.393  | 56.011  | 10.167 | 0.555 | 0.302 |

| $NO_2$ | Measurement sites  | Min   | Mean   | Max     | Stdv.  | R     | COD   |
|--------|--------------------|-------|--------|---------|--------|-------|-------|
|        | Berlin Marienfelde | 1.550 | 10.158 | 63.140  | 7.348  |       |       |
|        | RACM               | 2.320 | 12.807 | 92.863  | 9.810  | 0.511 | 0.267 |
|        | URMELL             | 2.490 | 12.074 | 48.192  | 8.272  | 0.420 | 0.267 |
|        | Mannheim           | 1.000 | 20.327 | 94.000  | 15.496 |       |       |
|        | RACM               | 1.959 | 13.530 | 46.508  | 8.953  | 0.493 | 0.319 |
|        | URMELL             | 2.093 | 13.942 | 54.479  | 9.709  | 0.465 | 0.322 |
|        | Rostock            | 0.900 | 12.241 | 65.100  | 11.407 |       |       |
|        | RACM               | 0.805 | 4.920  | 28.057  | 3.266  | 0.252 | 0.469 |
|        | URMELL             | 0.852 | 4.800  | 25.992  | 2.933  | 0.208 | 0.474 |
|        | Berlin Wedding     | 3.850 | 22.217 | 113.780 | 16.423 |       |       |
|        | RACM               | 2.740 | 17.629 | 90.424  | 14.263 | 0.603 | 0.277 |
|        | URMELL             | 2.863 | 16.528 | 63.840  | 11.864 | 0.577 | 0.288 |
|        | Bottrop            | 0.036 | 22.389 | 61.925  | 12.718 |       |       |
|        | RACM               | 5.689 | 23.343 | 60.730  | 10.886 | 0.459 | 0.279 |
|        | URMELL             | 5.889 | 22.832 | 67.019  | 10.507 | 0.474 | 0.276 |
|        | Cottbus            | 1.910 | 9.711  | 48.890  | 5.786  |       |       |
|        | RACM               | 1.061 | 4.547  | 15.628  | 2.243  | 0.358 | 0.409 |
|        | URMELL             | 1.089 | 4.525  | 19.013  | 2.165  | 0.341 | 0.407 |
|        | Saarbruecken       | 4.230 | 37.230 | 107.110 | 18.084 |       |       |
|        | RACM               | 0.677 | 4.752  | 18.697  | 2.806  | 0.156 | 0.757 |
|        | URMELL             | 0.667 | 4.686  | 18.508  | 2.750  | 0.087 | 0.759 |
|        | Riedstadt          | 0.574 | 11.378 | 46.508  | 7.985  |       |       |
|        | RACM               | 2.767 | 14.152 | 70.870  | 9.148  | 0.431 | 0.300 |
|        | URMELL             | 2.775 | 13.471 | 50.572  | 8.064  | 0.418 | 0.294 |
|        | Westerland         | 0.100 | 3.743  | 41.700  | 4.428  |       |       |
|        | RACM               | 0.149 | 2.921  | 13.241  | 2.030  | 0.330 | 0.354 |
|        | URMELL             | 0.149 | 3.072  | 14.836  | 2.213  | 0.319 | 0.362 |
|        | Schmuecke          | 0.310 | 2.548  | 7.700   | 1.492  |       |       |
|        | RACM               | 0.741 | 2.861  | 8.298   | 1.431  | 0.271 | 0.289 |
|        | URMELL             | 0.803 | 2.923  | 8.679   | 1.456  | 0.323 | 0.285 |
|        | Zinnwald           | 1.310 | 5.456  | 30.294  | 3.401  |       |       |
|        | RACM               | 0.420 | 2.841  | 14.668  | 1.972  | 0.697 | 0.146 |
|        | URMELL             | 0.455 | 3.098  | 12.595  | 2.067  | 0.702 | 0.149 |
|        | Bremen             | 1.900 | 14.266 | 71.560  | 9.801  |       |       |
|        | RACM               | 1.708 | 5.735  | 24.791  | 2.847  | 0.068 | 0.448 |
|        | URMELL             | 1.681 | 5.841  | 26.687  | 2.823  | 0.054 | 0.445 |
|        | Halle              | 0.022 | 10.336 | 58.510  | 10.168 |       |       |
|        | RACM               | 1.303 | 6.234  | 19.982  | 3.625  | 0.588 | 0.362 |
|        | URMELL             | 1.339 | 5.958  | 17.047  | 3.157  | 0.597 | 0.366 |

| NO | Measurement sites | Min   | Mean   | Max     | Stdv.  | R     | COD   |
|----|-------------------|-------|--------|---------|--------|-------|-------|
|    | Halle             | 0.282 | 1.560  | 22.539  | 2.279  |       |       |
|    | RACM              | 0.061 | 0.832  | 6.402   | 0.899  | 0.627 | 0.404 |
|    | URMELL            | 0.057 | 0.862  | 6.202   | 0.957  | 0.637 | 0.423 |
|    | Mannheim          | 0.000 | 3.023  | 54.000  | 6.684  |       |       |
|    | RACM              | 0.047 | 2.048  | 25.085  | 73.609 | 0.487 | 0.745 |
|    | URMELL            | 0.049 | 2.075  | 27.501  | 3.655  | 0.437 | 0.750 |
|    | Berlin Wedding    | 0.100 | 3.572  | 78.470  | 7.220  |       |       |
|    | RACM              | 0.227 | 3.013  | 47.609  | 4.474  | 0.546 | 0.436 |
|    | URMELL            | 0.228 | 3.114  | 38.686  | 4.501  | 0.416 | 0.441 |
|    | Osnabrück         | 0.092 | 1.608  | 58.241  | 4.465  |       |       |
|    | RACM              | 0.162 | 1.587  | 9.809   | 1.387  | 0.435 | 0.426 |
|    | URMELL            | 0.163 | 1.613  | 8.668   | 1.417  | 0.416 | 0.430 |
|    | Frankfurt Ost     | 0.374 | 7.097  | 70.733  | 10.413 |       |       |
|    | RACM              | 0.137 | 2.536  | 42.600  | 3.740  | 0.644 | 0.537 |
|    | URMELL            | 0.139 | 2.548  | 26.436  | 3.514  | 0.635 | 0.548 |
|    | Cologne           | 0.003 | 3.970  | 70.071  | 6.341  |       |       |
|    | RACM              | 0.249 | 5.872  | 85.201  | 7.874  | 0.424 | 0.459 |
|    | URMELL            | 0.243 | 5.624  | 51.345  | 6.731  | 0.394 | 0.462 |
|    | Frankfurt Hoechst | 0.374 | 13.429 | 100.809 | 11.665 |       |       |
|    | RACM              | 0.173 | 3.288  | 41.325  | 4.402  | 0.572 | 0.672 |
|    | URMELL            | 0.192 | 3.447  | 34.463  | 4.609  | 0.542 | 0.678 |
|    | Saarbruecken      | 0.350 | 26.399 | 184.550 | 25.373 |       |       |
|    | RACM              | 0.004 | 0.381  | 3.649   | 0.518  | 0.439 | 0.967 |
|    | URMELL            | 0.004 | 0.403  | 3.393   | 0.553  | 0.427 | 0.966 |
|    | Westerland        | 0.060 | 0.600  | 37.820  | 2.294  |       |       |
|    | RACM              | 0.002 | 0.257  | 2.045   | 0.365  | 0.109 | 0.619 |
|    | URMELL            | 0.002 | 0.279  | 2.279   | 0.405  | 0.110 | 0.621 |
|    | Schmuecke         | 0.050 | 0.328  | 2.850   | 0.405  |       |       |
|    | RACM              | 0.012 | 0.305  | 1.731   | 0.320  | 0.604 | 0.331 |
|    | URMELL            | 0.011 | 0.326  | 1.867   | 0.355  | 0.567 | 0.343 |
|    | Zingst            | 0.040 | 0.502  | 19.260  | 1.131  |       |       |
|    | RACM              | 0.003 | 0.401  | 3.603   | 0.555  | 0.555 | 0.532 |
|    | URMELL            | 0.003 | 0.434  | 3.767   | 0.591  | 0.529 | 0.553 |
|    | Waldhof           | 0.130 | 0.443  | 4.650   | 0.539  |       |       |
|    | RACM              | 0.010 | 0.273  | 2.137   | 0.364  | 0.636 | 0.492 |
|    | URMELL            | 0.009 | 0.293  | 2.297   | 0.403  | 0.607 | 0.510 |
|    | Karlsruhe         | 0.000 | 1.641  | 62.000  | 5.431  |       |       |
|    | RACM              | 0.052 | 1.326  | 17.899  | 1.922  | 0.759 | 0.776 |
|    | URMELL            | 0.050 | 1.246  | 10.179  | 1.523  | 0.472 | 0.784 |
|    | Leuna             | 0.092 | 1.608  | 58.241  | 4.465  |       |       |
|    | RACM              | 0.104 | 0.895  | 6.046   | 0.895  | 0.407 | 0.360 |
|    | URMELL            | 0.110 | 0.931  | 5.222   | 0.939  | 0.428 | 0.367 |

|                   |       | O <sub>3</sub> |       | NO <sub>2</sub> |       | NO    |  |
|-------------------|-------|----------------|-------|-----------------|-------|-------|--|
| Measurement sites | R     | COD            | R     | COD             | R     | COD   |  |
| Neuhaus           |       |                |       |                 |       |       |  |
| RACM              | 0.951 | 0.061          |       |                 |       |       |  |
| URMELL            | 0.950 | 0.062          |       |                 |       |       |  |
| Tiefenbach        |       |                |       |                 |       |       |  |
| RACM              | 0.803 | 0.099          | 0.764 | 0.493           |       |       |  |
| URMELL            | 0.861 | 0.094          | 0.729 | 0.468           |       |       |  |
| Carlsfeld         |       |                |       |                 |       |       |  |
| RACM              | 0.893 | 0.038          |       |                 |       |       |  |
| URMELL            | 0.794 | 0.042          |       |                 |       |       |  |
| Spessart          |       |                |       |                 |       |       |  |
| RACM              | 0.959 | 0.052          |       |                 |       |       |  |
| URMELL            | 0.964 | 0.049          |       |                 |       |       |  |
| Witzenhausen      |       |                |       |                 |       |       |  |
| RACM              | 0.769 | 0.109          |       |                 |       |       |  |
| URMELL            | 0.834 | 0.100          |       |                 |       |       |  |
| Possen            |       |                |       |                 |       |       |  |
| RACM              | 0.933 | 0.086          |       |                 |       |       |  |
| URMELL            | 0.970 | 0.077          |       |                 |       |       |  |
| Zingst            |       |                |       |                 |       |       |  |
| RACM              | 0.968 | 0.017          | 0.597 | 0.139           | 0.910 | 0.477 |  |
| URMELL            | 0.926 | 0.026          | 0.498 | 0.152           | 0.914 | 0.489 |  |
| Waldhof           |       |                |       |                 |       |       |  |
| RACM              | 0.989 | 0.053          | 0.948 | 0.177           | 0.937 | 0.492 |  |
| URMELL            | 0.983 | 0.054          | 0.939 | 0.168           | 0.918 | 0.507 |  |
| Collmberg         |       |                |       |                 |       |       |  |
| RACM              | 0.804 | 0.125          | 0.876 | 0.221           |       |       |  |
| URMELL            | 0.868 | 0.114          | 0.900 | 0.223           |       |       |  |
| Simmerath         |       |                |       |                 |       |       |  |
| RACM              |       |                | 0.697 | 0.127           |       |       |  |
| URMELL            |       |                | 0.691 | 0.120           |       |       |  |
| Cottbus           |       |                |       |                 |       |       |  |
| RACM              | 0.992 | 0.039          | 0.763 | 0.357           |       |       |  |
| URMELL            | 0.981 | 0.043          | 0.716 | 0.368           |       |       |  |
| Neuglobsow        |       |                |       |                 |       |       |  |
| RACM              | 0.949 | 0.047          | 0.944 | 0.093           |       |       |  |
| URMELL            | 0.929 | 0.049          | 0.944 | 0.094           |       |       |  |
| Hummelshain       |       |                |       |                 |       |       |  |
| RACM              | 0.985 | 0.045          |       |                 |       |       |  |
| URMELL            | 0.977 | 0.045          |       |                 |       |       |  |

**Table S3-3:** R and COD values for the mean diurnal  $O_3$ , NO<sub>2</sub> and NO cycles for May 2014 between measured and modeled values using RACM and URMELL.

|                    | O <sub>3</sub> |       | NO <sub>2</sub> |       | NO    |       |
|--------------------|----------------|-------|-----------------|-------|-------|-------|
| Measurement sites  | R              | COD   | R               | COD   | R     | COD   |
| Eisenhuettenstadt  |                |       |                 |       |       |       |
| RACM               | 0.983          | 0.037 |                 |       |       |       |
| URMELL             | 0.969          | 0.040 |                 |       |       |       |
| Neuruppin          |                |       |                 |       |       |       |
| RACM               | 0.991          | 0.018 |                 |       |       |       |
| URMELL             | 0.982          | 0.022 |                 |       |       |       |
| Hof                |                |       |                 |       |       |       |
| RACM               | 0.919          | 0.060 | 0.911           | 0.453 |       |       |
| URMELL             | 0.948          | 0.055 | 0.948           | 0.461 |       |       |
| Spreewald          |                |       |                 |       |       |       |
| RACM               | 0.986          | 0.044 |                 |       |       |       |
| URMELL             | 0.970          | 0.051 |                 |       |       |       |
| Elsterwerda        |                |       |                 |       |       |       |
| RACM               | 0.985          | 0.045 | 0.899           | 0.478 |       |       |
| URMELL             | 0.987          | 0.046 | 0.931           | 0.462 |       |       |
| Potsdam            |                |       |                 |       |       |       |
| RACM               | 0.983          | 0.020 | 0.772           | 0.350 |       |       |
| URMELL             | 0.988          | 0.019 | 0.856           | 0.365 |       |       |
| Bitterfeld         |                |       |                 |       |       |       |
| RACM               | 0.991          | 0.024 | 0.822           | 0.304 |       |       |
| URMELL             | 0.978          | 0.031 | 0.837           | 0.297 |       |       |
| Leipzig-West       |                |       |                 |       |       |       |
| RACM               | 0.963          | 0.060 | 0.683           | 0.217 |       |       |
| URMELL             | 0.987          | 0.040 | 0.817           | 0.229 |       |       |
| Kellerwald         |                |       |                 |       |       |       |
| RACM               | 0.962          | 0.037 |                 |       |       |       |
| URMELL             | 0.963          | 0.027 |                 |       |       |       |
| Halle              |                |       |                 |       |       |       |
| RACM               | 0.973          | 0.073 | 0.897           | 0.262 | 0.964 | 0.400 |
| URMELL             | 0.993          | 0.052 | 0.954           | 0.273 | 0.965 | 0.427 |
| Berlin Marienfelde |                |       |                 |       |       |       |
| RACM               | 0.958          | 0.048 | 0.651           | 0.184 |       |       |
| URMELL             | 0.959          | 0.047 | 0.634           | 0.175 |       |       |
| Luette             |                |       |                 |       |       |       |
| RACM               | 0.977          | 0.054 |                 |       |       |       |
| URMELL             | 0.948          | 0.065 |                 |       |       |       |
| Mannheim           |                |       |                 |       |       |       |
| RACM               | 0.985          | 0.057 | 0.901           | 0.205 | 0.740 | 0.541 |
| URMELL             | 0.981          | 0.055 | 0.896           | 0.191 | 0.730 | 0.553 |
| Rostock            |                |       |                 |       |       |       |
| RACM               | 0.970          | 0.067 | 0.589           | 0.427 |       |       |
| URMELL             | 0.940          | 0.076 | 0.380           | 0.437 |       |       |

|                   | O <sub>3</sub> |       | NO <sub>2</sub> |       | NO    |       |
|-------------------|----------------|-------|-----------------|-------|-------|-------|
| Measurement sites | R              | COD   | R               | COD   | R     | COD   |
| Salzgitter        |                |       |                 |       |       |       |
| RACM              | 0.977          | 0.038 | 0.616           | 0.176 |       |       |
| URMELL            | 0.983          | 0.039 | 0.556           | 0.184 |       |       |
| Hannover          |                |       |                 |       |       |       |
| RACM              | 0.973          | 0.030 | 0.920           | 0.220 |       |       |
| URMELL            | 0.982          | 0.027 | 0.917           | 0.228 |       |       |
| Eggenstein        |                |       |                 |       |       |       |
| RACM              | 0.994          | 0.063 |                 |       |       |       |
| URMELL            | 0.970          | 0.101 |                 |       |       |       |
| Erfurt            |                |       |                 |       |       |       |
| RACM              | 0.929          | 0.051 | 0.626           | 0.493 |       |       |
| URMELL            | 0.966          | 0.038 | 0.716           | 0.498 |       |       |
| Niederzier        |                |       |                 |       |       |       |
| RACM              | 0.958          | 0.052 |                 |       |       |       |
| URMELL            | 0.972          | 0.055 |                 |       |       |       |
| Wiesbaden         |                |       |                 |       |       |       |
| RACM              | 0.954          | 0.060 | 0.944           | 0.268 |       |       |
| URMELL            | 0.963          | 0.061 | 0.936           | 0.275 |       |       |
| Leuna             |                |       |                 |       |       |       |
| RACM              | 0.930          | 0.054 | 0.731           | 0.400 | 0.786 | 0.302 |
| URMELL            | 0.964          | 0.036 | 0.830           | 0.401 | 0.737 | 0.335 |
| Osnabrück         |                |       |                 |       |       |       |
| RACM              | 0.928          | 0.048 | 0.821           | 0.258 | 0.822 | 0.287 |
| URMELL            | 0.952          | 0.039 | 0.842           | 0.274 | 0.782 | 0.299 |
| Frankfurt Ost     |                |       |                 |       |       |       |
| RACM              | 0.950          | 0.054 | 0.868           | 0.325 | 0.956 | 0.559 |
| URMELL            | 0.972          | 0.037 | 0.925           | 0.342 | 0.940 | 0.589 |
| Neubrandenburg    |                |       |                 |       |       |       |
| RACM              | 0.948          | 0.075 | 0.158           | 0.697 |       |       |
| URMELL            | 0.960          | 0.076 | 0.189           | 0.699 |       |       |
| Soest             |                |       |                 |       |       |       |
| RACM              | 0.959          | 0.064 | 0.852           | 0.196 |       |       |
| URMELL            | 0.959          | 0.070 | 0.866           | 0.188 |       |       |
| Trier             |                |       |                 |       |       |       |
| RACM              | 0.980          | 0.163 | 0.796           | 0.359 |       |       |
| URMELL            | 0.989          | 0.170 | 0.828           | 0.364 |       |       |
| Cologne           |                |       |                 |       |       |       |
| RACM              | 0.917          | 0.100 | 0.821           | 0.141 | 0.971 | 0.263 |
| URMELL            | 0.946          | 0.086 | 0.847           | 0.120 | 0.948 | 0.281 |
| Frankfurt Hoechst |                |       |                 |       |       |       |
| RACM              | 0.953          | 0.047 | 0.941           | 0.362 | 0.932 | 0.682 |
| URMELL            | 0.960          | 0.048 | 0.948           | 0.370 | 0.917 | 0.691 |

|                   |       | O <sub>3</sub> | NO <sub>2</sub> |       | NO    |       |
|-------------------|-------|----------------|-----------------|-------|-------|-------|
| Measurement sites | R     | COD            | R               | COD   | R     | COD   |
| Riedstadt         |       |                |                 |       |       |       |
| RACM              | 0.924 | 0.092          | 0.588           | 0.180 |       |       |
| URMELL            | 0.937 | 0.079          | 0.654           | 0.154 |       |       |
| Hamburg           |       |                |                 |       |       |       |
| RACM              | 0.969 | 0.076          |                 |       |       |       |
| URMELL            | 0.965 | 0.075          |                 |       |       |       |
| Koblenz           |       |                |                 |       |       |       |
| RACM              | 0.940 | 0.102          | 0.510           | 0.441 |       |       |
| URMELL            | 0.962 | 0.106          | 0.581           | 0.454 |       |       |
| Berlin Wedding    |       |                |                 |       |       |       |
| RACM              | 0.964 | 0.039          | 0.811           | 0.209 | 0.791 | 0.352 |
| URMELL            | 0.973 | 0.039          | 0.780           | 0.220 | 0.797 | 0.389 |
| Duisburg          |       |                |                 |       |       |       |
| RACM              | 0.970 | 0.070          | 0.905           | 0.074 |       |       |
| URMELL            | 0.968 | 0.068          | 0.908           | 0.075 |       |       |
| Bottrop           |       |                |                 |       |       |       |
| RACM              | 0.955 | 0.077          | 0.903           | 0.063 |       |       |
| URMELL            | 0.957 | 0.084          | 0.933           | 0.053 |       |       |
| Saarbruecken      |       |                |                 |       |       |       |
| RACM              | 0.966 | 0.223          | 0.229           | 0.776 | 0.737 | 0.978 |
| URMELL            | 0.968 | 0.240          | 0.213           | 0.778 | 0.724 | 0.976 |
| Karlsruhe         |       |                |                 |       |       |       |
| RACM              | 0.971 | 0.078          | 0.947           | 0.130 | 0.899 | 0.410 |
| URMELL            | 0.988 | 0.058          | 0.906           | 0.167 | 0.800 | 0.441 |
| Zartau            |       |                |                 |       |       |       |
| RACM              | 0.987 | 0.042          | 0.928           | 0.132 |       |       |
| URMELL            | 0.983 | 0.042          | 0.935           | 0.129 |       |       |
| Schwedt           |       |                |                 |       |       |       |
| RACM              | 0.993 | 0.027          |                 |       |       |       |
| URMELL            | 0.983 | 0.033          |                 |       |       |       |
| Schwartenberg     |       |                |                 |       |       |       |
| RACM              | 0.804 | 0.110          |                 |       |       |       |
| URMELL            | 0.857 | 0.113          |                 |       |       |       |
| Bremen            |       |                |                 |       |       |       |
| RACM              | 0.976 | 0.074          | 0.516           | 0.433 |       |       |
| URMELL            | 0.973 | 0.072          | 0.455           | 0.424 |       |       |
| Westerland        |       | 0.046          |                 |       |       | 0.000 |
| KACM              | 0.984 | 0.046          | 0.411           | 0.147 | 0.831 | 0.636 |
| UKMELL            | 0.978 | 0.051          | 0.354           | 0.134 | 0.833 | 0.623 |
| Schmuecke         | 0.755 | 0.089          | 0.571           | 0.126 | 0.907 | 0.259 |
| KACM              | 0.755 | 0.088          | 0.571           | 0.136 | 0.805 | 0.258 |
| URMELL            | 0.844 | 0.089          | 0.507           | 0.137 | 0.805 | 0.275 |

|                   | O <sub>3</sub> |       | NO <sub>2</sub> |       | NO |     |
|-------------------|----------------|-------|-----------------|-------|----|-----|
| Measurement sites | R              | COD   | R               | COD   | R  | COD |
| Zinnwald          |                |       |                 |       |    |     |
| RACM              | 0.912          | 0.114 | 0.108           | 0.342 |    |     |
| URMELL            | 0.943          | 0.115 | 0.097           | 0.306 |    |     |
| Radebeul          |                |       |                 |       |    |     |
| RACM              | 0.968          | 0.085 |                 |       |    |     |
| URMELL            | 0.980          | 0.078 |                 |       |    |     |



**Fig. S3-1:** Distribution of the dominant land use type left with red marked area indicating an isoprene-dominated area and b) the selected measurement sites with indication for better ozone correlation values in green for URMELL, red for RACM and yellow if correlation  $R_{RACM}$ - $R_{URMELL}$  values are within 0.01 for the entire time series (edge color) and the mean daily concentration cycles (fill color) right. Circles mark the remote background, squares the urban background, triangles traffic/industrial impacted sites.

## S3.2 Additional information about remote sites

## S3.2.1 BVOC emissions

Table S3.2-1 the BVOC emission parameters of the four common German tree species. Beech (*Fagus sylvatica*) has neither isoprene nor monoterpene pool emissions but releases high amounts of synthesis monoterpenes and OVOCs. Therefore, no isoprene and monoterpene nighttime emission occur for beech. Oak species are the dominant isoprene emitters in Germany (in the case of Simmeranth *Quercus petraea*) with only minor contributions to pool monoterpenes and moderate OVOC emissions. Spruce (*Picea abies*) have moderate isoprene and pool monoterpene but higher synthesis monoterpene and OVOC emissions. Pine trees (*Pinus sylvestris*) do not emit isoprene but higher amounts of pool and synthesis monoterpenes. Therefore, the tree species composition at the measurement site impacts the BVOC mixture which affects the  $O_3$  concentration.

 Table S3.2-1
 Summary of the standard emission factors for isoprene, monoterpene and OVOCs of the four dominant tree species

| Tree species     | Isoprene in µg m <sup>-2</sup> h <sup>-1</sup> | Monoterpenes in µg m | OVOCs in µg m <sup>-2</sup> h <sup>-1</sup> |        |
|------------------|------------------------------------------------|----------------------|---------------------------------------------|--------|
|                  | (PAR & T)                                      | MTS (PAR & T)        | MTP(T)                                      | (T)    |
| Fagus sylvatica  | 0.0                                            | 7208.74              | 0.0                                         | 3410.0 |
| Quercus petraea  | 14400.0                                        | 0.0                  | 96.0                                        | 640.0  |
| Picea abies      | 1600.0                                         | 3360.0               | 640.0                                       | 3680.0 |
| Pinus sylvestris | 0.0                                            | 1750.0               | 1750.0                                      | 1400.0 |

Fig. S3.2-1–S3.2-4 show the time series as well as the average daily profiles for the four selected sites. Additional time series of BVOC and OH concentrations are presented in Fig S3.2-2 to S3.2-8. Spreewald is a monoterpene dominated site with only little isoprene contribution (Fig. S3.3-5). Therefore, isoprene chemistry only plays a minor role there. Especially during night, the continuous monoterpene emissions significantly deplete  $O_3$  resulting in a more pronounced daily cycle compared to the diminished cycles at the other three locations. For Spreewald, night time concentrations are nearly matched, while the daytime  $O_3$  peak is under predicted for both simulations. But, the slower  $O_3$  night-time decay causes a slightly lower correlation value for pine. This also transfers to urban environments within low isoprene concentration areas and applies to most of the red marked sites in the east as well as Eggenstein at the south west of the domain in Fig. S3-1b. For Schmuecke (Fig. S3.2-8) and Kellerwald (Fig. S3.2-6), monoterpenes are still dominating, but with much higher portions of synthesis emissions. Furthermore, isoprene and OVOCs become more

important for both sites. Here,  $O_3$  declines after 15 UTC, but this  $O_3$  reduction stagnates or even slightly increases again for a short time between 20 UTC and roughly 2 UTC when NO<sub>3</sub> oxidation becomes sufficient. Afterwards  $O_3$  decreases again to a minimum around 6 UTC. Compared to Kellerwald and Schmuecke, Simmerath does not show so strong night time ozone depletion due to lacking night time BVOC emissions (low monoterpene and isoprene concentration in Fig. S3.2-7), therefore no clear reduction in ozone concentration between 3 and 6 UTC is visible. For Kellerwald and Simmerath, the diurnal  $O_3$  cycle and concentrations are similar compared to the measurements. But, there is a significant offset between the modeled and measured  $O_3$  concentration for Schmuecke of yet unknown cause.



**Fig. S3.2-1:** Time series of  $O_3$  in a), b) and c); of NO<sub>2</sub> in d), e) and f); of NO in g) h) and i) for Spreewald (pine) measurements in grey for a), d) and g) black line otherwise as well as modeled concentrations using RACM (red line) and URMELL (yellow line).



**Fig. S3.2-2:** Time series of  $O_3$  in a), b) and c); of  $NO_2$  in d), e) and f); of NO in g) h) and i) for Kellerwald (beech) measurements in grey for a), d) and g) black line otherwise as well as modeled concentrations using RACM (red line) and URMELL (yellow line).



**Fig. S3.2-3:** Time series of  $O_3$  in a), b) and c); of  $NO_2$  in d), e) and f); of NO in g) h) and i) for Simmerath (oak) measurements in grey for a), d) and g) black line otherwise as well as modeled concentrations using RACM (red line) and URMELL (yellow line).



**Fig. S3.2-4:** Time series of  $O_3$  in a), b) and c); of  $NO_2$  in d), e) and f); of NO in g) h) and i) for Schmuecke (spruce) measurements in grey for a), d) and g) black line otherwise as well as modeled concentrations using RACM (red line) and URMELL (yellow line).



**Fig. S3.2-5:** Time series of modeled OH in a), isoprene in b),  $\alpha$ - and  $\beta$ -pinene in c), limonene and myrcene in d) for Spreewald (pine) using RACM (red line) and URMELL (yellow line).



**Fig. S3.2-6:** Time series of modeled OH in a), isoprene in b),  $\alpha$ - and  $\beta$ -pinene in c), limonene and myrcene in d) for Kellerwald (beech) using RACM (red line) and URMELL (yellow line).



**Fig. S3.2-7:** Time series of modeled OH in a), isoprene in b),  $\alpha$ - and  $\beta$ -pinene in c), limonene and myrcene in d) for Simmerath (oak) using RACM (red line) and URMELL (yellow line).



**Fig. S3.2-8:** Time series of modeled OH in a), isoprene in b),  $\alpha$ - and  $\beta$ -pinene in c), limonene and myrcene in d) for Schmuecke (spruce) using RACM (red line) and URMELL (yellow line).

# Supplement S4 – CTM simulations

For the model comparison also map plots of  $NO_2$ , OH, monoterpene and isoprene concentrations are provided for the 20<sup>th</sup> of May 2014 for 3, 13 and 19 UTC using RACM and URMELL. Also included is the difference between RACM and URMELL.



**Fig. S4-1:** NO<sub>2</sub> concentration for the 20th of May 2014 at 3 UTC, 13 UTC and 19 UTC for RACM (left), URMELL (middle) and the difference between RACM and URMEL (right).



**Fig. S4-2:** OH concentration for the 20th of May 2014 at 3 UTC, 13 UTC and 19 UTC for RACM (left), URMELL (middle) and the difference between RACM and URMEL (right).



**Fig. S4-3:** Monoterpene concentration for the 20th of May 2014 at 3 UTC, 13 UTC and 19 UTC for RACM (left), URMELL (middle) and the difference between RACM and URMEL (right).



**Fig. S4-4:** Isoprene concentration for the 20th of May 2014 at 3 UTC, 13 UTC and 19 UTC for RACM (left), URMELL (middle) and the difference between RACM and URMEL (right).

# References

- 1 P. O. Wennberg, K. H. Bates, J. D. Crounse, L. G. Dodson, R. C. McVay, L. A. Mertens, T. B. Nguyen, E. Praske, R. H. Schwantes, M. D. Smarte, J. M. St Clair, A. P. Teng, X. Zhang and J. H. Seinfeld, Gas-Phase Reactions of Isoprene and Its Major Oxidation Products, *Chem. Rev.*, 2018, **118**, 3337–3390.
- 2 L. Vereecken, P. T. M. Carlsson, A. Novelli, F. Bernard, S. S. Brown, C. Cho, J. N. Crowley, H. Fuchs, W. Mellouki, D. Reimer, J. Shenolikar, R. Tillmann, L. Zhou, A. Kiendler-Scharr and A. Wahner, Theoretical and experimental study of peroxy and alkoxy radicals in the NO<sub>3</sub>-initiated oxidation of isoprene, *Phys. Chem. Chem. Phys.*, 2021, 23, 5496–5515.
- 3 M. G. Schultz, S. Stadtler, S. Schröder, D. Taraborrelli, B. Franco, J. Krefting, A. Henrot, S. Ferrachat, U. Lohmann, D. Neubauer, C. Siegenthaler-Le Drian, S. Wahl, H. Kokkola, T. Kühn, S. Rast, H. Schmidt, P. Stier, D. Kinnison, G. S. Tyndall, J. J. Orlando and C. Wespes, The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0, *Geosci. Model Dev.*, 2018, **11**, 1695–1723.
- 4 L. Chen, Y. Huang, Y. Xue, Z. Jia and W. Wang, *OH-Initiated Atmospheric Degradation of Hydroxyalkyl Hydroperoxides: Mechanism, Kinetics, and Structure-Activity Relationship*, Aerosols/Atmospheric Modelling/Troposphere/Chemistry (chemical composition and reactions), 2021.
- 5 R. A. Cox, M. Ammann, J. N. Crowley, H. Herrmann, M. E. Jenkin, V. F. McNeill, A. Mellouki, J. Troe and T. J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates, *Atmos. Chem. Phys.*, 2020, 20, 13497–13519.
- 6 M. E. Jenkin, R. Valorso, B. Aumont and A. R. Rickard, Estimation of rate coefficients and branching ratios for reactions of organic peroxy radicals for use in automated mechanism construction, *Atmos. Chem. Phys.*, 2019, **19**, 7691–7717.
- 7 L. Sheps, B. Rotavera, A. J. Eskola, D. L. Osborn, C. A. Taatjes, K. Au, D. E. Shallcross, M. A. H. Khan and C. J. Percival, The reaction of Criegee intermediate CH<sub>2</sub> OO with water dimer: primary products and atmospheric impact, *Phys. Chem. Chem. Phys.*, 2017, **19**, 21970–21979.
- 8 A. P. Teng, J. D. Crounse and P. O. Wennberg, Isoprene Peroxy Radical Dynamics, *J. Am. Chem. Soc.*, 2017, **139**, 5367–5377.
- 9 J.-F. Müller, T. Stavrakou and J. Peeters, Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1) Part 1: Chemical mechanism, *Geosci. Model Dev.*, 2019, **12**, 2307–2356.
- 10 M. E. Jenkin, R. Valorso, B. Aumont, A. R. Rickard and T. J. Wallington, Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aromatic organic compounds for use in automated mechanism construction, *Atmos. Chem. Phys.*, 2018, **18**, 9329–9349.
- 11 M. A. H. Khan, M. E. Jenkin, A. Foulds, R. G. Derwent, C. J. Percival and D. E. Shallcross, A modeling study of secondary organic aerosol formation from sesquiterpenes using the STOCHEM global chemistry and transport model: SOA FORMATION FROM SESQUITERPENES, *J. Geophys. Res. Atmos.*, 2017, **122**, 4426–4439.
- 12 M. E. Jenkin, R. Valorso, B. Aumont, A. R. Rickard and T. J. Wallington, Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction, *Atmos. Chem. Phys.*, 2018, **18**, 9297–9328.
- 13 K. H. Bates, D. J. Jacob, K. Li, P. D. Ivatt, M. J. Evans, Y. Yan and J. Lin, Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models, *Atmos. Chem. Phys.*, 2021, 21, 18351–18374.
- 14 T. B. Nguyen, G. S. Tyndall, J. D. Crounse, A. P. Teng, K. H. Bates, R. H. Schwantes, M. M. Coggon, L. Zhang, P. Feiner, D. O. Milller, K. M. Skog, J. C. Rivera-Rios, M. Dorris, K. F. Olson, A. Koss, R. J. Wild, S. S. Brown, A. H. Goldstein, J. A. de Gouw, W. H. Brune, F. N. Keutsch, J. H. Seinfeld and P. O. Wennberg, Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene, *Phys. Chem. Chem. Phys.*, 2016, **18**, 10241–10254.
- 15 B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, B. Rappenglück and J. A. de Gouw, Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region, *Atmospheric Chemistry and Physics*, 2015, **15**, 1975–1993.
- 16 D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams and J. Xu, A large and ubiquitous source of atmospheric formic acid, *Atmos. Chem. Phys.*, 2015, **15**, 6283–6304.