Electronic Supplementary Material (ESI) for Environmental Science: Atmospheres. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Ab Initio Rate Coefficients for the Reaction of OH and H₂O₂ under Upper Troposphere and Lower Stratosphere Conditions

Thanh Lam Nguyen¹ and John F. Stanton^{1,*}

¹Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, FL 32611, USA

*Correspondences: <u>johnstanton@chem.ufl.edu</u>, <u>tlam.nguyen@chem.ufl.edu</u>

Table of contents:

Page S2:Table S1: a comparison of different levels of theory.

Page S3:Table S2: Collisional parameters.

Pages S4-S6: Table S3: Grid geometries/energies/rovibrational data along the barrierless association pathway of OH and H_2O_2 leading to PRC[†].

Pages S7-S9: Optimized geometries of various species

Pages S10-S17:Rovibrational parameters and anharmonic constants for various species.Pages S18-S28:One dimensional hindered rotor (1DHR) treatments for H_2O_2 and TS1.

Table S1. A comparison of relative energies (kcal/mol) of various species in the OH + H_2O_2 reaction reported in the literature and obtained with amHEAT-345(Q) level of theory in this work.

Species	amHEAT a)	CASPT2 ^{b)}	CCSD(T)/6-31G* c)	MPW1K ^d	CCSD(T)/CBS e)
$OH + H_2O_2$	0.00	0.0	0.0	0.0	0.0
PRC	-3.60	-3.7	-8.4	-4.4	-3.9
TS1	+0.75	-0.9	+4.9	+0.1	+1.2
PPC	-38.22	n/a	n/a	-38.3	-38.0
$H_2O + HO_2$	-31.48	-31.4	-34.3	-30.7	-31.4

- a) This work.
- b) From ref. (Bahri et al., 2003).
- c) From ref. (Atadinc et al., 2005).
- d) From ref. (Ginovska et al., 2007).
- e) From ref. (Buszek et al., 2012).

Bahri, M., Tarchouna, Y., Jaidane, N., Ben Lakhdar, Z., and Flament, J. P.: Ab initio study of the hydrogen abstraction reaction $H_2O_2+OH \rightarrow HO_2+H_2O$, J Mol Struc-Theochem, 664, 229-236, 10.1016/j.theochem.2003.09.007, 2003.

Atadinc, F., Gunaydin, H., Ozen, A. S., and Aviyente, V.: A quantum mechanical approach to the kinetics of the hydrogen abstraction reaction $H_2O_2+OH \rightarrow HO_2+H_2O$. Int J Chem Kinet, 37, 502-514, 10.1002/kin.20102, 2005.

Ginovska, B., Camaioni, D. M., and Dupuis, M.: Reaction pathways and excited states in H₂O₂+OH -> HO₂+H₂O: A new ab initio investigation, J Chem Phys, 127, Artn 084309 10.1063/1.2755765, 2007.

Buszek, R. J., Torrent-Sucarrat, M., Anglada, J. M., and Francisco, J. S.: Effects of a Single Water Molecule on the OH+H₂O₂ Reaction, J Phys Chem A, 116, 5821-5829, 10.1021/jp2077825, 2012.

Table S2. Collisional parameters and energies are used in the E,J-resolved 2DME model.

Parameters	Values
Air (N ₂ :O ₂ =4:1)	Mass = 28.8 g/mol, σ = 3.668 Å, ϵ/k_{B} = 86.2 K ¹⁻²
H ₃ O ₃	Mass = 51 g/mol, σ = 4.08 Å, ϵ/k_B = 421 K ¹⁻²
E _{max}	30,000 cm ⁻¹ above H_3O_3 when $T \leq 5$ 0; 0 K
ΔE_{grain}	$10 \text{ cm}^{-1} \text{ when } T \le 5 0 0 K$
<_E_d>	2 $2 \left(\frac{T}{3} \right)^{0} \left(\begin{pmatrix} t & b & \bar{m} \\ 0 & 0 \end{pmatrix} \right)^{0}$, for the fixed-J ME model
	2 $2 \left(\frac{T}{3} \right)^{0} \left(\stackrel{\cdot}{l} \left(\stackrel{\theta}{\delta} \frac{\bar{m}}{\bar{m}} \right) \right)$, for the E,J-resolved ME model
J _{max}	200 with T ≤ 5 0 0 K
ΔJ	5 for T \geq 200 K; and 2 for T < 200 K

- 1) From Hippler et al. (Hippler et al., 1983)
- 2) From the Multiwell software package.(Barker et al., Jan. 2022)

Hippler, H., Troe, J., and Wendelken, H. J.: Collisional Deactivation of Vibrationally Highly Excited Polyatomic-Molecules .3. Direct Observations for Substituted Cycloheptatrienes, J Chem Phys, 78, 6718-6724, Doi 10.1063/1.444671, 1983.

Barker, J. R., Nguyen, T. L., Stanton, J. F., Aieta, C., Ceotto, M., Gabas, F., Kumar, T. J. D., Li, C. G. L., Lohr, L. L., Maranzana, A., Ortiz, N. F., Preses, J. M., Simmie, J. M., Sonk, J. A., and Stimac, P. J.: MULTIWELL Program Suite, in, Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109-2143. , Jan. 2022.

Type of mode	OH—H ₂ O ₂ = 4.50 Å	4.75 Å	5.00 Å	5.25 Å	5.50 Å
IMAG	40.7714	35.1540i	46.8227i	45.1677i	39.7626i
vib	68.3256	59.0471	54.6751	46.9005	39.5815
vib	80.5695	72.0093	70.4167	61.0524	50.2346
vib	302.9196	267.0282	234.3111	203.8667	178.3994
vib	388.7760	340.1727	289.5646	247.3645	213.7562
vib	408.4206	394.8521	394.1622	392.7085	390.9095
vib	895.1889	892.6494	892.4796	893.3696	894.3325
vib	1324.5713	1324.5855	1324.5817	1324.5931	1324.4141
vib	1426.8430	1425.7949	1425.5042	1425.4838	1425.4149
vib	3695.3271	3703.1851	3711.0959	3718.7860	3724.9716
vib	3798.6746	3799.5596	3800.3774	3800.9773	3801.4422
vib	3802.6842	3803.0334	3803.0387	3803.0328	3803.0625
A (cm ⁻¹)	2.9948	3.3422	3.3515	3.1892	2.9533
B (cm ⁻¹)	0.0937	0.0838	0.0750	0.0674	0.0609
C (cm ⁻¹)	0.0919	0.0825	0.0740	0.0665	0.0600
Rel. E (kcal/mol)	1.1832	1.7161	2.2283	2.6139	2.8913

Table S3. Calculated relative energies (kcal/mol) and ro-vibrational parameters of grid geometries along the barrier-less association of OH and H_2O_2 leading to PRC.

(To be continued)

	1		1	1	1
Type of mode	5.75 Å	6.00 Å	6.25 Å	6.50 Å	6.75 Å
IMAG	33.9915i	28.5906i	24.0503i	20.3427i	17.4266i
vib	35.9778	31.8349	26.6077	23.2697	21.8965
vib	54.9320	50.3715	47.1529	43.6634	41.8316
vib	156.9454	139.8368	124.0547	111.3463	98.9606
vib	186.6366	166.0136	147.6793	132.2352	120.2337
vib	391.9473	390.7913	390.2570	389.3720	387.9523
vib	895.1191	895.6271	896.0770	896.4025	896.5556
vib	1324.3946	1324.0853	1323.8613	1323.6207	1323.2317
vib	1425.5515	1425.5354	1425.6229	1425.6999	1425.6933
vib	3729.6539	3732.6606	3735.3416	3737.3534	3738.5638
vib	3801.8545	3802.1335	3802.4333	3802.7048	3802.8695
vib	3803.1738	3803.2250	3803.3684	3803.4888	3803.5553
A (cm ⁻¹)	2.6970	2.4356	2.2238	2.0377	1.8705
B (cm ⁻¹)	0.0551	0.0501	0.0457	0.0419	0.0385
C (cm ⁻¹)	0.0544	0.0494	0.0451	0.0412	0.0379
Rel. E (kcal/mol)	3.1147	3.2602	3.3595	3.4306	3.4832

Table S3. (Continued)

(To be continued)

Type of mode	7.00 Å	7.25 Å	7.50 Å	7.75 Å	8.00 Å
IMAG	14.8451i	12.9891i	11.3910i	10.0293i	8.9579i
vib	19.4098	21.4436	13.1904	13.2439	11.4684
vib	41.3047	37.5877	31.9898	32.9408	30.0673
vib	97.9466	87.1622	73.9034	74.3942	65.7912
vib	114.9041	104.0326	90.7500	87.8867	79.9498
vib	387.7356	387.0591	386.2042	385.6309	385.0783
vib	896.5110	896.6874	896.9430	896.8722	896.9706
vib	1323.0037	1322.8160	1322.6668	1322.4178	1322.2744
vib	1425.8091	1425.9430	1426.0522	1426.1446	1426.2580
vib	3738.3445	3739.5516	3741.1893	3740.9040	3741.5885
vib	3802.9097	3803.1254	3803.4048	3803.4313	3803.5985
vib	3803.4556	3803.6131	3803.7875	3803.7572	3803.8487
A (cm ⁻¹)	1.6813	1.6216	1.5327	1.4203	1.3573
B (cm ⁻¹)	0.0354	0.0327	0.0304	0.0282	0.0262
C (cm ⁻¹)	0.0348	0.0322	0.0299	0.0277	0.0258
Rel. E (kcal/mol)	3.5423	3.5684	3.5605	3.5964	3.6000

Table S3. (Continued)

(The end of Table S3)

Optimized geometries of various species in the OH + H₂O₂ reaction

 $H_2O_2(C_2, {}^1A_1)$ Optimized at ae-CCSD(T)/cc-pVQZ level of theory Η O 1 R1 O 2 R2 1 A1 H 3 R1 2 A1 1 T1 R1 = 0.960957646491903 R2 = 1.449516137189599 A1 = 99.997368939888048 T1 = 112.439744901600434**OH** ($C_{\infty v}$, $^{2}\Pi$) Optimized at ae-CCSD(T)/cc-pVQZ level of theory Η O 1 R1 R1 = 0.967976529283547 $HO_2(C_s, {}^2A'')$ Optimized at ae-CCSD(T)/cc-pVQZ level of theory Η O 1 R1 O 2 R2 1 A1 R1 = 0.968666185912004 R2 = 1.327756340067187 A1 = 104.300831099874273 $H_2O(C_{2v}, {}^1A_1)$ Optimized at ae-CCSD(T)/cc-pVQZ level of theory Η O 1 R1 H 2 R1 1 A1 R1 = 0.956232853776853 A1 = 104.245881335704212**PRC** (C₁, 2 A): van der Waals complex of OH and H₂O₂ Optimized at ae-CCSD(T)/cc-pVQZ level of theory Η O 1 R1 O 2 R2 1 A1 H 3 R3 2 A2 1 T1 O 1 R4 2 A3 3 T2 H 5 R 5 1 A 4 2 T 3 R1 = 0.967288488911262 R2 = 1.451400599408027

A1	=	99.644425751111626
R3	=	0.961214978657093
A2	=	100.185603166143622
T1	=	114.482095120863633
R4	=	2.081487011327985
A3	=	139.855803360315406
T2	=	10.204265266116137
R5	=	0.974441630778625

- A4 = 73.562652828307264
- T3 = -3.142937680089966

PPC (C₁, 2 A): van der Waals complex of HO₂ and H₂O Optimized at ae-CCSD(T)/cc-pVQZ level of theory Η O 1 R1 O 2 R2 1 A1 H 3 R3 2 A2 1 T0 O 4 R4 3 A3 2 T0 H 5 R5 4 A4 3 T3 R1 = 0.982839113241171 R2 = 1.325760542193833 A1 = 102.663950196043331 R3 = 2.282378287905783 A2 = 88.250222560329703

 $\begin{array}{rcl} T0 &=& 0.0000000000000\\ R4 &=& 0.962020260245092\\ A3 &=& 113.989460714354848\\ R5 &=& 0.956785612050913\\ 1056785612050913 \end{array}$

- A4 = 105.333997355706842
- T3 = 121.536830291282101

TS1a (C₁, ²A): H-abstraction from **PRC** to **PPC** Optimized at ae-CCSD(T)/cc-pVQZ level of theory H O 1 R1 O 2 R2 1 A1 H 3 R3 2 A2 1 T1 O 4 R4 3 A3 1 T2 H 5 R5 4 A4 3 T3 R1 = 0.962935313099540 R2 = 1.411873196416155 A1 = 101.285925123970742

- A4 = 104.270430783681988
- T3 = -43.146271540265630

TS1b (C_1 , ²A): H-abstraction from **PRC** to **PPC** Optimized at ae-CCSD(T)/cc-pVQZ level of theory Η O 1 R1 O 2 R2 1 A1 H 3 R3 2 A2 1 T1 O 4 R4 3 A3 1 T2 H 5 R5 3 A4 2 T3 R1 = 0.962880375755570 R2 = 1.417182996277398 A1 = 100.629878362399964 R3 = 1.059977334526446 A2 = 102.277958066201833 T1 = 126.504218558327906 R4 = 1.308529387445732 A3 = 145.592495763111998 T2 = -63.478184439443162 R5 = 0.966413789255112 A4 = 92.847603140259054 T3 = -32.407044533209053 **TS1c** (C_1 , ²A): H-abstraction from **PRC** to **PPC**

Optimized at fc-CCSD(T)/ANO1 level of theory Η O 1 R1 O 2 R2 1 A1 H 3 R3 2 A2 1 T1 X 4 R0 3 A3 2 T2 O 4 R4 5 A3 3 T0 H 6 R5 3 A4 2 T3 R1 = 0.967996359635115 R2 = 1.422799946731776 A1 = 101.703021793412333 R3 = 1.055786637304783 A2 = 103.630891793116433 T1 = 82.336545808511858 R0 = 1.000000818629781 A3 = 101.639984464023570 T2 = -96.205207262072648 R4 = 1.322662372914322 T0 = R5 = 0.970913831664662 A4 = 92.256897776352616

T3 = 70.218366072567576

Ro-vibrational parameters and anharmonic constants of various species in the $OH+H_2O_2$ reaction

 $H_2O_2(C_2, {}^1A_1)$ Calculated at ae-CCSD(T)/aug-cc-pCVTZ Har. vib. frequencies (cm⁻¹) 7 382.8277 (1DHR) 8 900.8763 9 1319.6088 10 1426.1990 3777.7699 11 12 3777.8810 Zero-point energy: 16.5618 kcal/mol Rotational constants (in cm-1): 0.8476795201 0.8746394600

10.0755083013

Calculated at ae-CCSD(T)/aug-cc-pCVDZ

ANHARMONICITY CONSTANTS X(ij) (cm-1)

(0111-1)

(*) Near-zero denominators were removed

ΙJ	X(IJ)
77	-35.1309
78	-2.4370
79	-12.4320
7 10	24.1197
7 11	1.9399
7 12	3.1720
8 8	-7.8252
89	-16.0692
8 10	-18.0315
8 11	-2.4707
8 12	-2.6205
99	-10.5113
9 10	-14.8896
9 1 1	-11.0980
9 12	-9.7829
10 10	-11.0384
10 11	-17.3841
10 12	-18.5014
11 11	-47.1968
11 12	-186.0538
12 12	-46.5443

OH ($C_{\infty v}$, $^{2}\Pi$)

Calculated at ae-CCSD(T)/aug-cc-pCVTZ Har. vib. frequencies (cm⁻¹) 6 3719.5510

Zero-point energy: 5.3174 kcal/mol Rotational constants (in cm-1): 18.8071967494 18.8071967494

Calculated at ae-CCSD(T)/aug-cc-pCVDZ

ANHARMONICITY CONSTANTS X(ij) (cm-1)

(*) Near-zero denominators were removed

ΙJ	X(IJ)

6 6 -88.3986

Calculated at ae-CCSD(T)/aug-cc-pCVDZ

ANHARMONICITY CONSTANTS X(ij) (cm-1)

(*) Near-zero denominators were removed

I J	X(IJ)
777 879 888 8999	-8.7277 -15.2687 -2.7041 -12.7652 -23.6028 -105.6170

$H_2O(C_{2v}, {}^1A_1)$

Calculated at ae-CCSD(T)/aug-cc-pCVTZ

- Har. vib. frequencies (cm⁻¹)
 - 7 1645.5174
 - 8 3813.5687 9 3920.9478

Zero-point energy: 13.4094 kcal/mol = 56.1051 kJ/mol = 4690.017 cm-1

Calculated at ae-CCSD(T)/aug-cc-pCVDZ

ANHARMONICITY CONSTANTS X(ij) (cm-1) (*) Near-zero denominators were removed

1 J X(IJ)

77	-14.1879
78	-18.5582
79	-23.1097
8 8	-45.6381
89	-175.1331
99	-51.0722

PRC (C₁, ²A): van der Waals complex of OH and H₂O₂ **Calculated at ae-CCSD(T)/aug-cc-pCVDZ** Har. vib. frequencies (cm⁻¹)

11a1. v	10. Inequenci			
7	56.82			
8	126.6678			
9	180.7000			
10	354.0624			
11	420.3868			
12	550.8952			
13	849.6317			
14	1323.7388			
15	1407.5215			
16	3607.7750			
17	3731.4592			
18	3748.0254			
Zero-point en	ergy: 23.30	32 kcal/mol =	97.5008 kJ/mol =	8150.432 cm-1
Rotational con	nstants (in cn	n-1):		
0.129825	57433	0.1481115041	0.96844341	114
Calculated at	fc-CCSD(T)	/ANO1		
Har. v	ib. frequenci	es (cm ⁻¹)		
7	158.4982			
8	183.2669			
9	251.1837			
10	288.9430			
11	447.4001			
12	572.5988			
13	893.7082			
14	1330.0903			
15	1483.7886			
16	3646.9477			
17	3716.4272			
18	3804.8908			
Zero-point en	ergy: 23.98	50 kcal/mol =	100.3532 kJ/mol =	8388.872 cm-1
Rotational co	onstants (in ci	m-1):		
0.161728	86010	0.1969533703	0.84521271	111

PPC (C₁, ²A): van der Waals complex of HO₂ and H₂O Calculated at fc-CCSD(T)/ANO1

Har. vib. frequencies (cm⁻¹)

	1
7	136.6811
8	215.0644
9	261.6981
10	292.0863
11	490.7935
12	679.6185
13	1155.8707
14	1563.6210

15	1656	6.3154		
16	3447	7.1263		
17	3787	7.7997		
18	3917	7.6320		
Zero-point en	nergy:	25.1666 kcal/mol	= 105.2972 kJ/m	$nol = 8802.154 \text{ cm} \cdot 1$
Rotational c	onstant	ts (in cm-1):		
0.17098	81808	0.20123195	1.056	1072100

TS1a (C₁, 2 A): H-abstraction from **PRC** to **PPC** Calculated at ae-CCSD(T)/aug-cc-pCVTZ

Ha	vib. frequencies (cm ⁻¹)
1	1757.7135i
8	161.3404 (1DHR)
9	184.0366
10	323.1823 (1DHR)
11	400.1764
12	762.7402
13	958.4413
14	1252.7653
15	1413.1269
16	1760.7771
17	3746.4554
18	3751.6825
Zero-poin	hergy: $21.0357 \text{ kcal/mol} = 88.0136 \text{ kJ/mol} = 7357.362 \text{ cm-1}$
Rotational	onstants (in cm-1):
0.181	08324 0.2040482051 1.2715775004

Calculated at ae-CCSD(T)/aug-cc-pCVDZ

-----ANHARMONICITY CONSTANTS X(ij) (cm-1) -----_____ ΙJ X(IJ) _____ 7 7 -539.0814 78 -71.2132i 79 33.3557i 7 10 54.1541i 711 96.4597i 7 12 174.1993i 7 13 24.9273i 7 14 -161.3973i 7 1 5 -17.3343i -841.9557i 7 16 717 -13.5202i 7 18 22.0676i 8 8 -40.0246 89 -16.2058 8 10 14.5094 8 1 1 -10.2028 8 1 2 -10.8210 8 1 3 -5.8214 8 1 4 -94.0916 8 1 5 -4.7027

8 16	32 7004
0 10	52.7904
8 1 7	1.2662
8 1 8	3 1/63
0 10	5.1405
99	0.0012
0.10	0 4517
910	0.4317
911	1.6166
0.12	0 2111
912	-0.2111
913	-0.8304
0.14	20 1041
914	-29.1941
915	-5.6321
0.16	10 0015
916	10.8915
917	-0.6401
0.10	0.0200
918	-0.9299
10.10	-3 4314
10 10	1 0010
10 11	1.0019
10.12	8 6966
10 12	0.0900
10 13	2.6280
10.14	12 9985
10 1 7	12.9905
10 15	4.9087
10.16	-23 2394
10 10	-23.2374
10 17	-4.1790
10.18	-0.0362
10 10	-0.0302
11 11	18.7700
11 12	25 6066
11 12	23.0000
11 13	11.0030
11 14	-21 8928
11 14	21.0720
11 15	1.0162
11.16	49 4698
11 10	-7070
11 17	-0.6790
11 18	3 8129
11 10	5.0127
12 12	6.6671
12.13	3 8459
12 13	5.0459
12 14	-12.4703
12 15	1.0108
12 13	1.0196
12 16	4.4200
12 17	2 6568
12 17	-2.0508
12 18	-6.2723
13 13	11 0767
15 15	-11.9707
13 14	-11.5791
13 15	-16 4027
15 15	-10.4027
13 16	15.0570
13 17	0 0027
1317	-0.9027
13 18	0.3997
14 14	-81 3129
14 14	-01.5129
14 15	-35.1058
14 16	06 2061
14 10	90.2001
14 17	0.1469
1/18	5 6560
14 10	5.0500
15 15	-11.1948
15 16	8 1 2 8 5
15 10	0.1205
15 17	-21.9590
15 19	3 8282
10 10	-3.0302
16 16	-28.9251
16 17	1 0/25
101/	1.0423
16 18	-17.2646
1717	-70 5914
1/1/	= / \/

17 18	-89.1505
18 18	-66.0077

TS1b (C₁, ²A): H-abstraction from **PRC** to **PPC** Calculated at ae-CCSD(T)/aug-cc-pCVTZ Har. vib. frequencies (cm⁻¹) 1889.7873i 1 8 122.6037 9 232.4750 10 367.0679 419.9558 11 12 734.8056 13 950.9419 14 1336.7353

15 1486.5548 16 1596.6677

17 3746.0820

18 3750.5787

Zero-point energy: 21.0782 kcal/mol = 88.1915 kJ/mol = 7372.234 cm-1

Rotational constants (in cm-1): 0.1862130986 0.2145271048

1.1873436974

Calculated at ae-CCSD(T)/aug-cc-pCVDZ

ANHARMONICITY CONSTANTS X(ij)

(cm-1)

ΙJ	X(IJ)
77	-568.3942
78	7.6495i
79	-9.4186i
7 10	84.6058i
7 11	51.1025i
7 12	89.7204i
7 13	-39.5788i
7 14	9.3575i
7 15	12.1140i
7 16	-704.9867i
7 17	20.8433i
7 18	-10.2089i
8 8	5.3111
89	-32.0001
8 10	8.2912
8 11	5.6914
8 12	9.9433
8 13	26.7212
8 14	-34.0575
8 15	-36.2493
8 16	31.7453
8 17	2.6061
8 18	-0.2960
99	-21.3278
9 10	-4.6037
9 1 1	9.4263

912	5 0864
2 1 2	210001
9 13	32.8841
0 1/	25 6263
714	-25.0205
9 1 5	-41.9041
0.16	20 22 64
916	28.3364
917	4 5324
2 10	0.2465
918	0.3465
10.10	1 2137
10 10	-1.2137
10 11	-13.8940
10.12	4.0570
10.12	4.05/0
10.13	20 1045
10 15	20.1015
10 14	4.1159
10.15	5.0521
10 15	5.0521
10 16	-15.0256
10.17	0 1079
1017	0.19/8
10.18	-4.2592
11 11	15.0007
11 11	-15.9287
11 12	-14.0322
1112	-14.0322
11 13	21.2123
11 14	0 7070
11 14	0./0/0
11 15	-4.2661
11 10	55 (1(7
11 16	55.6167
11 17	-0.3551
11 17	-0.3331
11 18	-0.9973
12 12	0.8012
12 12	-0.0913
12 13	30.8845
10 14	2 2617
12 14	2.2017
12 15	-2 5026
12 15	2.3020
12 16	-9.1746
12 17	-8 8051
12 17	-0.0031
12 18	-3.0916
12 12	5 8006
13 13	-3.8090
13 14	-12 6368
10 17	11.0007
13 15	-11.2837
13 16	15 2525
15 10	13.2323
13 17	-0.6144
12 18	0 8232
15 16	-0.8232
14 14	-11.1154
14 15	20 2495
14 13	-30.2463
14 16	6.5937
1 4 1 7	1.0(12
14 1 /	1.0643
14 18	-13 3972
14 10	-13.3772
15 15	-23.2641
15 16	11 2562
15 10	-41.5505
15 17	3.6788
15 10	0.0701
12 18	-8.5/31
16 16	-49 0294
1010	12.0227
16 17	-20.0122
16.18	-2 0302
10 10	-2.0372
17 17	-62.2520
17 10	106 8427
1/10	-100.842/
18 18	-65.8613

TS1c (C₁, ²A): H-abstraction from **PRC** to **PPC Calculated at fc-CCSD(T)/ANO1** Har. vib. frequencies (cm⁻¹)

1	1641.2478i		
8	121.8505		
9	256.0236		
10	318.7858		
11	456.2019		
12	730.2368		
13	954.5131		
14	1392.7325		
15	1401.7443		
16	1492.8503		
17	3756.9177		
18	3769.6303		
Zero-point ene	ergy: 20.9453 kcal/mol =	87.6354 kJ/mol =	7325.743 cm-1
Rotational const	tants (in cm-1):		
0.1821171780	0.2067888858	1.1679258717	

1DHR treatments for H_2O_2 and TS1

Fig. S1: Torsional potential energy curve (cm-1) for H_2O_2 calculated at ae-CCSD(T)/aug-cc-pCVTZ level of theory.

 $V(\theta in rad)$

 $= 809.601 + 1026.71\cos(\theta) + 645.21\cos(2\theta) + 43.5448\cos(3\theta) + 2.40657\cos(4\theta) - 0.139588\cos(6\theta) + 0.107161\cos(7\theta) + 0.846987\cos(8\theta) + 0.0121486\cos((9\theta))$

Fig. S2: Effective rotational constant for the torsional vibration in H_2O_2 calculated at ae-CCSD(T)/aug-cc-pCVTZ level of theory.

 $B_{eff}(\theta \text{ in rad})$

 $= 40.2935 + 1.44162\cos(\theta) + 0.295664\cos(2\theta) + 0.1194\cos(3\theta) + 0.153894\cos(2\theta) + 0.0260459\cos(6\theta) + 0.0170418\cos(7\theta) + 0.0141807\cos(8\theta) + 0.01349\cos(9\theta), in cm^{-1}$

A list of torsional eigenvalues (in cm⁻¹) calculated for H₂O₂

1 170.880407166364 (torsional ZPE) 2 182.686061772580 3 425.955748655930 4 543.653395632472 5 743.558462138967 951.267960499802 6 1177.22306656419 7 8 1412.60330952693 9 1652.71541039051 10 1897.05031399662 11 2122.97830666411 2383.03428446402 12 13 2509.83123864532 14 2888.76801969643 15 2910.15242745519 16 3463.08632361049 17 3464.57615242976 18 4126.40963507574 19 4126.47629282033 20 4877.48813168047 21 4877.49007677618 22 5713.42726574173 23 5713.42728595436

24	6632.58090159240
25	6622 58000275626
23	0052.58090575050
26	7634.03506128665
27	7634 03506157507
21	/034.0330013/30/
28	8717.24529909824
29	8717 24529913342
20	0001 0(7220075(0
30	9881.80/3380/360
31	9881.86733807991
32	11127 6732584044
22	11127.0732501011
33	1112/.6/32584052
34	12454.5065894629
35	12454 5065894635
55	12454.5005854055
36	13862.2566717271
37	13862.2566717275
20	15250 9422715670
50	13330.8432713070
39	15350.8432/156/2
40	16920.2069666849
11	16020 2060666855
41	10920.2009000855
42	18570.3029310999
43	18570 3029311001
11	20201 0068004641
44	20301.0908004041
45	20301.0968004644
46	22112.5618521960
17	22112 5618521963
	22112.3010321303
48	24004.6770401084
49	24004.6770401086
50	25977 4255980460
51	25977.1255900100
51	23977.4233980464
52	28030.7940306845
53	28030.7940306847
51	20164 7712728459
54	30104.7713728438
55	30164.7713728462
56	32379.3486382846
57	37379 3486382850
57	32377.3480382830
58	34674.5184042633
59	34674.5184042635
60	37050 2744948314
60	27050.2744940314
61	37050.2744948316
62	39506.6117367889
63	39506 6117367891
65	42042 5257(00027
64	42043.525/69803/
65	42043.5257698042
66	44661 0128973305
60	44((1.0120072200
0/	44001.01289/3308
68	47359.0699685765
69	47359.0699685771
70	50127 6042842206
/0	3013/.6942843206
71	50137.6942843212

Fig. S3: (First) torsional potential energy curve (cm⁻¹) in TS1 calculated at fc-CCSD(T)/ANO1 level of theory.

 $V(\theta in rad)$

= $162.495 - 56.561\cos(\theta) + 112.924\cos(2\theta) + 10.6556\cos(3\theta) + 16.3473\cos(4\theta) - 2.40405\cos(6\theta) + 9.40682\cos(7\theta) - 7.0922\cos(8\theta) + 2.93191\cos(9\theta) - 6.3218 - 1.38695\cos(11\theta) - 3.8245\cos(12\theta) - 2.75904\cos(13\theta) - 1.62862\cos(14\theta) - 4.1\cos(15\theta) + 69.681\sin(\theta) - 93.5381\sin(2\theta) + 112.474\sin(3\theta) - 4.41864\sin(4\theta) + \sin(5\theta) + 7.79593\sin(6\theta) + 13.9519\sin(7\theta) + 7.09443\sin(8\theta) + 6.99612\sin(9\theta) \sin(10\theta) - 0.105336\sin(11\theta) + 5.91558\sin(12\theta) - 1.14115\sin(13\theta) + 1.98525\sin(-0.313506\sin(15\theta) + 1.62159\sin(16\theta), in cm^{-1}$

Fig. S4: Effective rotational constant for the (first) torsional vibration in TS1 calculated at fc-CCSD(T)/ANO1 level of theory.

$$\begin{split} B_{eff}(\theta \ in \ rad) &= 17.2102 - 1.58256\cos{(\theta)} + 0.193691\cos{(2\theta)} + 1.21684\cos{(3\theta)} + 0.243705\cos{(2\theta)} \\ &= 0.463423\cos{(6\theta)} + 0.107632\cos{(7\theta)} + 0.468284\cos{(8\theta)} - 0.131467\cos{(2\theta)} \\ &= 1.22968\sin{(\theta)} + 0.288289\sin{(2\theta)} + 0.709313\sin{(3\theta)} + 0.913825\sin{(4\theta)} + 0.1\sin{(5\theta)} + 0.414191\sin{(6\theta)} - 0.519961\sin{(7\theta)} - 0.110282\sin{(8\theta)} - 0.00340622\sin{(2\theta)} \\ &= cm^{-1} \end{split}$$

A list of torsional eigenvalues (in cm⁻¹) calculated for the (first) torsional vibration in TS1

1 66.8566055796270 (ZPE) 90.6556435201120 2 3 135.635785628552 204.087157451529 4 225.493070170724 5 303.330484163356 6 7 362.713129210742 8 425.193673321536 9 487.198837976727 10 585.222954401800 11 623.504689327563 12 775.821859759148 13 795.208741929463 14 999.189164560921 15 1006.99617047763 16 1254.47663965656 17 1257.90951643050

18	1543.84222410686
10	1544 44574966252
19	1344.443/4800332
20	1866.34616286730
21	1866.86971658541
22	2222 27210610825
22	2223.27319010833
23	2223.52751401327
24	2614.37317445240
25	2614 45502000402
25	2014.4330333399403
26	3039.58048153673
27	3039.59927040674
28	3498 88800625279
20	2408 80504421667
29	3498.89394421007
30	3992.29633916516
31	3992.29869383931
32	4519 79083111815
22	4510 701 40202 400
33	4519./9149392488
34	5081.36203836743
35	5081.36252079148
36	5677 00317140446
50	5077.00517149440
37	5677.00340125797
38	6306.70862491898
39	6306 70867429695
10	6070 47424449772
40	09/0.4/424448//2
41	6970.47425295067
42	7668.29695702972
43	7668 29696508292
11	8400 17428162826
44	8400.17438102820
45	8400.17438532941
46	9166.10464086833
47	9166 10464131234
10	0066 08625200281
48	9900.08023299281
49	9966.08625317893
50	10800.1180368427
51	10800 1180369972
50	11((0.100020(070
32	11008.1990380978
53	11668.1990387409
54	12570.3284819938
55	12570 3284820083
55	12570.5264620065
30	13506.5057293700
57	13506.5057293733
58	14476.7302535700
59	14476 7302535723
60	15401 001(152220
60	15481.0016153338
61	15481.0016153346
62	16519.3194462890
63	16519 3194462894
65	10517.517402074
64	17501 (02425(247
65	17591.6834356247
05	17591.6834356247 17591.6834356248
66	17591.6834356247 17591.6834356248 18698.0933195971
65 67	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973
66 67	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973
65 66 67 68	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973 19838.5488732110
63 66 67 68 69	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973 19838.5488732110 19838.5488732115
63 66 67 68 69 70	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973 19838.5488732110 19838.5488732115 21013.0499035688
65 66 67 68 69 70 71	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973 19838.5488732110 19838.5488732115 21013.0499035688 21013.0499035689
63 66 67 68 69 70 71 71	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973 19838.5488732110 19838.5488732115 21013.0499035688 21013.0499035689
 66 67 68 69 70 71 72 	17591.6834356247 17591.6834356248 18698.0933195971 18698.0933195973 19838.5488732110 19838.5488732115 21013.0499035688 21013.0499035689 22221.5962445176

- 4	00464 1055500114
/4	23464.18//523114
75	23464.1877523116
76	24740.8243020741
77	24740.8243020746
78	26051.5057848985
79	26051.5057848987
80	27396.2321054528
81	27396.2321054528
82	28775.0031799964
83	28775.0031799965
84	30187.8189347268
85	30187.8189347269
86	31634.6793043951
87	31634.6793043951
88	33115.5842311416
89	33115.5842311416
90	34630.5336635129
91	34630.5336635130
92	36179.5275556281
93	36179.5275556282
94	37762.5658664695
95	37762.5658664697
96	39379.6485592757
97	39379.6485592758
98	41030.7756010219
99	41030.7756010221
100	42715.9469619731
101	42715.9469619732
102	44435.1626152981
103	44435.1626152982
104	46188.4225367352
105	46188.4225367353
106	47975.7267043022
107	47975.7267043023
108	49797.0750980441
109	49797.0750980444
110	51652.4676998129
111	51652.4676998131

Fig. S5: (Second) torsional potential energy curve (cm⁻¹) in TS1 calculated at fc-CCSD(T)/ANO1 level of theory.

 $V(\theta \text{ in } rad) = 912.329 + 912.329\cos(2\theta), \text{ in } cm^{-1}$

Fig. S6: Effective rotational constant for the (second) torsional vibration in TS1 calculated at fc-CCSD(T)/ANO1 level of theory.

 $B_{eff}(\theta \text{ in } rad) = 13.842 - 0.157805\cos(2\theta) + 2.53207\cos(4\theta) - 0.111167\cos(6\theta), \text{ in } cm^{-1}$

A list of torsional eigenvalues (in cm⁻¹) calculated for the (second) torsional vibration in TS1

1 157.938765745004 (ZPE) 2 157.938766138411 3 478.798503308855 4 478.798546076736 5 767.696776097367 6 767.698608279295 7 1030.26268423918 8 1030.30489975628 9 1269.91042148368 10 1270.50760849790 11 1485.37851792595 12 1490.84778299697 13 1665.02806336978 14 1695.99357918308 15 1802.01363879341 16 1897.98227225581 17 1938.09007787866 18 2114.02465765428 19 2122.99838840100 20 2356.66569088383 21 2358.11152607795 22 2630.05616455975 23 2630.25216549286 24 2934.08237635438 25 2934.10633349302 26 3267.85781478259 27 3267.86055598156 28 3630.67819867462 29 3630.67849925763 30 4022.07028790178 31 4022.07031997761 32 4441.71604732780 33 4441.71605069320 34 4889.39533964759 35 4889.39533999719 36 5364.95121632478 5364.95121636103 37 38 5868.26893062000 39 5868.26893062382 40 6399.26279946729 41 6399.26279946781 42 6957.86768011892 43 6957.86768011902 44 7544.03326794898 45 7544.03326794911 46 8157.72018112232 47 8157.72018112239 48 8798.89721172466

49	8798.89721172484
50	9467.53935823074
51	9467.53935823084
52	10163 6263931146
52	10163 6263031147
55	10105.0205951147
54	1000/.1410041930
33	1088/.1418041931
56	11638.0/20015236
5/	11638.0/20015239
58	12416.4057159230
59	12416.4057159231
60	13222.1335376955
61	13222.1335376957
62	14055.2475592564
63	14055.2475592565
64	14915.7410956429
65	14915.7410956431
66	15803.6084640259
67	15803.6084640260
68	16718.8448083691
69	16718.8448083692
70	17661.4459589376
71	17661 4459589376
72	18631 4083189423
73	18631 4083189425
74	19628 7287724795
75	10628.7287724795
75	20652 4046002012
70	20055.4040095015
// 70	20035.4040095014
70	21/03.43340298/1
/9	21/05.43346298/2
80	22/84.813259848/
81	22784.8132598488
82	23891.5421764906
83	23891.5421764907
84	25025.6186043851
85	25025.6186043851
86	26187.0411201680
87	26187.0411201681
88	27375.8084606208
89	27375.8084606209
90	28591.9195015120
91	28591.9195015121
92	29835.3732396331
93	29835.3732396331
94	31106.1687774860
95	31106.1687774861
96	32404 3053101875
97	32404 3053101875
98	33729 7821142272
00	33729.782114272
99 100	35123.1021142213
100	35002.3703311002
101	33002.3703311882
102	26462 7520022846
103	30402./339923840
104	3/8/0.24/9436136

105	37870.2479456158
106	39305.0799148704
107	39305.0799148704
108	40767.2494618406
109	40767.2494618407
110	42256.7561877278
111	42256.7561877278
112	43773.5997290436
113	43773.5997290436
114	45317.7797539227
115	45317.7797539227
116	46889.2959588779
117	46889.2959588780
118	48488.1480659354
119	48488.1480659355
120	50114.3358201041
121	50114.3358201042