Supplementary Material.

From fossil to green chemicals: Sustainable pathways and new carbon feedstocks for the global chemical industry

Gabriel Lopez^a*, Dominik Keiner^a, Mahdi Fasihi^a, Tuomas Koiranen^b, Christian Breyer^a

^a School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland. E-mail: Gabriel.Lopez@lut.fi

^b School of Engineering Science, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland.

Table of Contents

1.	Chemic	al Demand Modelling	2
2.	Financia	al Assumptions	9
3.	Physical	l Assumptions1	2
4.	Supplen	nentary Results1	4
4	.1. Glo	bal Chemical and Feedstock Results1	4
4	.2. Glo	bal Chemical Flows1	6
	4.2.1.	BAU1	6
	4.2.2.	NZE 2050H2	0
	4.2.3.	NZE 2050L2	4
4	I.3. Geo	ographical Results2	8
	4.3.1.	BAU	8
	4.3.2.	NZE 20502	9
	4.3.3.	NZE 2040	3
	4.3.4.	NZE 2060	8
4	.4. Fin	ancial Results4	2
4	.5. Che	emical Feedstock Per Capita4	5
	4.5.1.	BAU	5
	4.5.2.	NZE 2050	6
	4.5.3.	NZE 2040	7
	4.5.4.	NZE 2060	8
Re	ferences	4	9

1. Chemical Demand Modelling

Table S1. Distribution of	primary chemical dem	nands among downstrea	m chemicals modelled	d according to
Horton. ¹				

Distribution of Ethylene Demands	
Polyethylene	61%
Ethylene oxide	15%
Ethylene dichloride	9%
Styrene	5%
Others	10%
Distribution of Propylene Demands	
Polypropylene	60%
Propylene Oxide	7%
Acrylonitrile	10%
Cumene	4%
Isopropanol	1%
Others	18%
Distribution of Benzene Demands	
Styrene	49%
Cumene	20%
Others	31%
Distribution of Mixed Xylenes Demands	
Para-xylenes	93%
Others	7%

Table S2. Share of final chemicals to plastic production according to global chemical flows from Levi and Cullen². Final chemicals not listed here are assumed to not be used for any plastic production.

Chemical-to-plastic	Share
Polyethylene-to-plastic	100%
Vinyl chloride-to-plastic	100%
Other ethylene-to-plastic	100%
Polypropylene-to-plastic	100%
Terephthalic acid-to-plastic	33.1%
Ethylene Glycol-to-plastic	33%
Styrene-to-plastic	57%
Other Benzene-to-plastics	11%
Toluene-to-plastics	7%

Table S3. Plastic collection CAGR by region from 1990-2019, collection-to-recycling ratio in 2019, and collection-to-recycling growth rate by OECD region.

	Plastic collection CAGR (1990- 2019)	Collection -to- recycling ratio	Collection -to- recycling CAGR BAU	Collection -to- recycling growth rate p.a.	Collection -to- recycling growth rate p.a.	Collection -to- recycling growth rate p.a.
)		(2000- 2019)	NZE 2050	NZE 2040	NZE 2060
United States	4%	50.7%	0.2%	16%	25%	12%
Canada	5%	51.1%	0.2%	16%	24%	12%
Other OECD America	5%	70.3%	0.1%	10%	15%	7%
OECD Europe	12%	56.3%	0.4%	15%	22%	11%
OECD Non-EU	12%	54.4%	0.2%	15%	23%	11%
OECD Asia	12%	56.5%	0.3%	15%	22%	11%
OECD Oceania	5%	59.9%	0.1%	13%	20%	10%
Non-OECD Latin America	5%	70.5%	0.01%	10%	15%	7%
Non-OECD Other EU	13%	59.0%	0.1%	14%	20%	10%
Non-OECD Eurasia	5%	58.2%	0.1%	14%	21%	10%
MENA	5%	66.6%	0.003%	11%	17%	8%
Non-OECD Other Africa	5%	70.0%	0.1%	10%	15%	8%
Other Non-OECD Asia	5%	61.8%	0.1%	13%	19%	10%
China	12%	63.3%	0.03%	12%	18%	9%
India	12%	67.5%	0.1%	11%	16%	8%
Total	7%	60.2%	0.3 %	13%	20%	10%

Table S4.	Recycling	rate by regio	n in the BA	U scenario.
-----------	-----------	---------------	-------------	-------------

Recycling rate by region	2020	2030	2040	2050	2060	2070	2080	2090	2100
United States	4.7%	6.3%	8.4%	11.3%	15.1%	20.2%	27.1%	34.8%	35.4%
Canada	6.8%	9.1%	12.2%	16.4%	22.0%	29.4%	34.4%	35.0%	35.7%
Other OECD America	10.7%	14.3%	19.2%	25.7%	34.4%	46.1%	47.3%	48.2%	49.2%
OECD Europe	16.0%	21.4%	28.7%	35.8%	36.5%	37.2%	37.9%	38.7%	39.4%
OECD Non-EU	8.6%	11.6%	15.5%	20.8%	27.9%	35.9%	36.6%	37.3%	38.0%
OECD Asia	13.4%	18.0%	24.1%	32.3%	36.6%	37.3%	38.0%	38.7%	39.5%
OECD Oceania	7.2%	9.7%	13.0%	17.4%	23.3%	31.2%	40.4%	41.1%	41.9%
Non-OECD Latin America	10.7%	14.4%	19.2%	25.8%	34.5%	46.2%	47.5%	48.4%	49.3%
Non-OECD Other EU	6.8%	9.2%	12.3%	16.5%	22.1%	29.6%	39.6%	40.5%	41.3%
Non-OECD Eurasia	5.0%	6.7%	9.0%	12.0%	16.1%	21.5%	28.9%	38.7%	40.7%
MENA	5.7%	7.6%	10.2%	13.7%	18.4%	24.6%	33.0%	44.2%	46.6%
Non-OECD Other Africa	6.0%	8.0%	10.8%	14.4%	19.3%	25.9%	34.6%	46.4%	48.9%
Other Non-OECD Asia	9.4%	12.6%	16.9%	22.6%	30.3%	40.6%	41.6%	42.4%	43.2%
China	14.4%	19.3%	25.8%	34.6%	41.1%	41.8%	42.6%	43.4%	44.3%
India	15.0%	20.1%	26.9%	36.1%	43.7%	44.6%	45.4%	46.3%	47.2%
Total	10.0%	13.4%	18.0%	24.0%	32.2%	39.7%	40.5%	41.3%	42.1%

Table S5. Recycling rate by region in the NZE 2050 scenario.

Recycling rate by region	2020	2030	2040	2050	2060	2070	2080	2090	2100
United States	4.7%	10.3%	45.1%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%

Canada	6.8%	12.7%	45.6%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
Other OECD America	10.7%	16.5%	49.2%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Europe	16.0%	22.8%	48.0%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Non-EU	8.6%	14.7%	46.4%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Asia	13.4%	19.9%	47.6%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Oceania	7.2%	13.0%	47.0%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Latin America	10.7%	16.5%	49.3%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Other EU	6.8%	12.6%	46.8%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Eurasia	5.0%	10.6%	46.4%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
MENA	5.7%	11.4%	47.9%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Other Africa	6.0%	11.7%	48.5%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
Other Non-OECD Asia	9.4%	15.3%	47.7%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
China	14.4%	20.5%	48.8%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
India	15.0%	20.9%	49.5%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%
Total	10.0%	16.0%	47.5%	59.9%	60.0%	60.0%	60.0%	60.0%	60.0%

Table S6. Recycling rate by region in the NZE 2040 scenario.

Recycling rate by region	2020	2030	2040	2050	2060	2070	2080	2090	2100
United States	4.7%	26.1%	59.1%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Canada	6.8%	27.7%	59.2%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Other OECD America	10.7%	32.0%	59.2%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Europe	16.0%	34.5%	59.4%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Non-EU	8.6%	29.3%	59.2%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Asia	13.4%	32.8%	59.3%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
OECD Oceania	7.2%	28.8%	59.1%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Latin America	10.7%	32.0%	59.2%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Other EU	6.8%	28.5%	59.1%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Eurasia	5.0%	27.1%	59.1%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
MENA	5.7%	28.6%	59.1%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Non-OECD Other Africa	6.0%	29.1%	59.1%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Other Non-OECD Asia	9.4%	30.4%	59.2%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
China	14.4%	33.8%	59.3%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
India	15.0%	34.4%	59.3%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%
Total	10.0%	30.7%	59.2%	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%

Table S7.	Recycling r	ate by regio	n in the NZE	2060 scenario.

Recycling rate by region	2020	2030	2040	2050	2060	2070	2080	2090	2100
United States	4.7%	5.9%	11.5%	47.3%	59.9%	60.0%	60.0%	60.0%	60.0%
Canada	6.8%	8.5%	14.3%	47.8%	59.9%	60.0%	60.0%	60.0%	60.0%
Other OECD America	10.7%	11.9%	17.5%	50.6%	59.9%	60.0%	60.0%	60.0%	60.0%
OECD Europe	16.0%	19.1%	25.1%	50.1%	59.9%	60.0%	60.0%	60.0%	60.0%
OECD Non-EU	8.6%	10.5%	16.3%	48.5%	59.9%	60.0%	60.0%	60.0%	60.0%
OECD Asia	13.4%	16.1%	22.0%	49.6%	59.9%	60.0%	60.0%	60.0%	60.0%
OECD Oceania	7.2%	8.5%	14.2%	48.8%	59.9%	60.0%	60.0%	60.0%	60.0%
Non-OECD Latin America	10.7%	11.9%	17.5%	50.6%	59.9%	60.0%	60.0%	60.0%	60.0%
Non-OECD Other EU	6.8%	8.1%	13.8%	48.7%	59.9%	60.0%	60.0%	60.0%	60.0%
Non-OECD Eurasia	5.0%	6.0%	11.6%	48.2%	59.9%	60.0%	60.0%	60.0%	60.0%

MENA	5.7%	6.5%	12.2%	49.4%	59.9%	60.0%	60.0%	60.0%	60.0%
Non-OECD Other Africa	6.0%	6.7%	12.5%	49.8%	59.9%	60.0%	60.0%	60.0%	60.0%
Other Non-OECD Asia	9.4%	10.9%	16.6%	49.4%	59.9%	60.0%	60.0%	60.0%	60.0%
China	14.4%	16.5%	22.2%	50.5%	59.9%	60.0%	60.0%	60.0%	60.0%
India	15.0%	16.8%	22.4%	51.0%	59.9%	60.0%	60.0%	60.0%	60.0%
Total	10.0%	11.7%	17.4%	49.4%	59.9%	60.0%	60.0%	60.0%	60.0%

Table S8. Plastic waste incineration CAGR by region from 1990-2019, collection-to-recycling ratio in 2019, and collection-to-recycling growth rate by OECD region.

	Plastic incineration	Plastic incineration-	Collection-to- recycling	Collection-to- recycling
	CAGR	growth rate	growth rate	growth rate
	(1990-2019)	p.a. NZE 2050	p.a. NZE 2040	p.a. NZE 2060
United States	1%	7%	10%	5%
Canada	1%	12%	18%	9%
Other OECD America	1%	13%	20%	10%
OECD Europe	11%	-1%	-2%	-1%
OECD Non-EU	5%	6%	8%	4%
OECD Asia	7%	-11%	-16%	-8%
OECD Oceania	1%	9%	14%	7%
Non-OECD Latin America	1%	13%	20%	10%
Non-OECD Other EU	4%	12%	19%	9%
Non-OECD Eurasia	3%	13%	19%	10%
MENA	2%	13%	20%	10%
Non-OECD Other Africa	2%	13%	20%	10%
Other Non-OECD Asia	5%	12%	18%	9%
China	11%	5%	8%	4%
India	8%	12%	18%	9%
Total	4%	7%	10%	5%

Table S9. Plastic incineration rate by region in the BAU scenario.

Incineration rate by	2020	2020	2040	2050	2060	2070	2000	2000	2100
region	2020	2030	2040	2030	2000	2070	2080	2090	2100
United States	19.3%	21.9%	24.9%	28.2%	32.0%	36.3%	41.2%	46.8%	53.1%
Canada	4.1%	4.7%	5.4%	6.1%	6.9%	7.8%	8.9%	10.1%	11.5%
Other OECD America	0.5%	0.5%	0.6%	0.7%	0.8%	0.9%	1.0%	1.2%	1.3%
OECD Europe	49.1%	50.7%	57.5%	64.2%	63.5%	62.8%	62.1%	61.3%	60.6%
OECD Non-EU	24.3%	26.6%	30.2%	34.3%	38.9%	44.1%	50.0%	56.8%	62.0%
OECD Asia	77.0%	82.0%	75.9%	67.7%	63.4%	62.7%	62.0%	61.3%	60.5%
OECD Oceania	11.6%	13.2%	15.0%	17.0%	19.3%	21.9%	24.9%	28.2%	32.0%
Non-OECD Latin America	0.6%	0.6%	0.7%	0.8%	0.9%	1.1%	1.2%	1.4%	1.6%
Non-OECD Other EU	2.7%	3.0%	3.4%	3.9%	4.4%	5.0%	5.7%	6.4%	7.3%
Non-OECD Eurasia	1.1%	1.2%	1.3%	1.5%	1.7%	2.0%	2.2%	2.5%	2.9%
MENA	0.6%	0.7%	0.8%	0.9%	1.0%	1.2%	1.3%	1.5%	1.7%
Non-OECD Other Africa	0.5%	0.6%	0.7%	0.7%	0.8%	1.0%	1.1%	1.2%	1.4%
Other Non-OECD Asia	4.6%	5.0%	5.7%	6.5%	7.4%	8.3%	9.5%	10.7%	12.2%
China	26.3%	27.3%	31.0%	35.2%	39.9%	45.3%	51.4%	56.6%	55.7%

India	4.5%	4.8%	5.4%	6.2%	7.0%	7.9%	9.0%	10.2%	11.6%
Total	19.8%	21.9%	24.8%	28.2%	32.0%	36.3%	41.2%	46.7%	53.0%

Incineration rate by									
region	2020	2030	2040	2050	2060	2070	2080	2090	2100
United States	19.3%	26.3%	33.3%	40.1%	40.0%	40.0%	40.0%	40.0%	40.0%
Canada	4.1%	11.1%	18.1%	25.1%	32.0%	39.0%	40.0%	40.0%	40.0%
Other OECD America	0.5%	7.4%	14.4%	21.4%	28.4%	35.3%	40.0%	40.0%	40.0%
OECD Europe	49.1%	56.1%	52.0%	40.1%	40.0%	40.0%	40.0%	40.0%	40.0%
OECD Non-EU	24.3%	31.2%	38.2%	40.1%	40.0%	40.0%	40.0%	40.0%	40.0%
OECD Asia	77.0%	80.1%	52.4%	40.1%	40.0%	40.0%	40.0%	40.0%	40.0%
OECD Oceania	11.6%	18.6%	25.6%	32.6%	39.5%	40.0%	40.0%	40.0%	40.0%
Non-OECD Latin America	0.6%	7.5%	14.5%	21.5%	28.5%	35.4%	40.0%	40.0%	40.0%
Non-OECD Other EU	2.7%	9.7%	16.7%	23.6%	30.6%	37.6%	40.0%	40.0%	40.0%
Non-OECD Eurasia	1.1%	8.0%	15.0%	22.0%	29.0%	35.9%	40.0%	40.0%	40.0%
MENA	0.6%	7.6%	14.6%	21.5%	28.5%	35.5%	40.0%	40.0%	40.0%
Non-OECD Other Africa	0.5%	7.5%	14.5%	21.4%	28.4%	35.4%	40.0%	40.0%	40.0%
Other Non-OECD Asia	4.6%	11.6%	18.5%	25.5%	32.5%	39.5%	40.0%	40.0%	40.0%
China	26.3%	33.3%	40.3%	40.1%	40.0%	40.0%	40.0%	40.0%	40.0%
India	4.5%	11.4%	18.4%	25.4%	32.4%	39.3%	40.0%	40.0%	40.0%
Total	19.8%	26.8%	33.8%	40.1%	40.0%	40.0%	40.0%	40.0%	40.0%

Table S10. Plastic incineration rate by region in the NZE 2050 scenarios.

Table S11.	Plastic	incineration	rate by	region in	n the N	ZE 2040 s	scenarios.

Incineration rate by									
region	2020	2030	2040	2050	2060	2070	2080	2090	2100
United States	19.3%	29.8%	40.2%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
Canada	4.1%	14.6%	25.1%	35.5%	40.0%	40.0%	40.0%	40.0%	40.0%
Other OECD America	0.5%	10.9%	21.4%	31.9%	40.0%	40.0%	40.0%	40.0%	40.0%
OECD Europe	49.1%	59.6%	40.6%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
OECD Non-EU	24.3%	34.7%	40.8%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
OECD Asia	77.0%	67.2%	40.7%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
OECD Oceania	11.6%	22.1%	32.6%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
Non-OECD Latin America	0.6%	11.0%	21.5%	32.0%	40.0%	40.0%	40.0%	40.0%	40.0%
Non-OECD Other EU	2.7%	13.2%	23.6%	34.1%	40.0%	40.0%	40.0%	40.0%	40.0%
Non-OECD Eurasia	1.1%	11.5%	22.0%	32.4%	40.0%	40.0%	40.0%	40.0%	40.0%
MENA	0.6%	11.1%	21.5%	32.0%	40.0%	40.0%	40.0%	40.0%	40.0%
Non-OECD Other Africa	0.5%	11.0%	21.4%	31.9%	40.0%	40.0%	40.0%	40.0%	40.0%
Other Non-OECD Asia	4.6%	15.0%	25.5%	36.0%	40.0%	40.0%	40.0%	40.0%	40.0%
China	26.3%	36.8%	40.7%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
India	4.5%	14.9%	25.4%	35.9%	40.0%	40.0%	40.0%	40.0%	40.0%
Total	19.8%	30.3%	40.7%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%

Table S12. Plastic incineration rate by region in the NZE 2060 scenarios.	
---	--

Incineration rate by region	2020	2030	2040	2050	2060	2070	2080	2090	2100
United States	19.3%	24.6%	29.8%	35.0%	40.1%	40.0%	40.0%	40.0%	40.0%
Canada	4.1%	9.4%	14.6%	19.8%	25.1%	30.3%	35.5%	40.0%	40.0%

Other OECD America	0.5%	5.7%	10.9%	16.2%	21.4%	26.6%	31.9%	37.1%	40.0%
OECD Europe	49.1%	54.3%	59.6%	49.9%	40.1%	40.0%	40.0%	40.0%	40.0%
OECD Non-EU	24.3%	29.5%	34.7%	40.0%	40.1%	40.0%	40.0%	40.0%	40.0%
OECD Asia	77.0%	82.2%	78.0%	50.4%	40.1%	40.0%	40.0%	40.0%	40.0%
OECD Oceania	11.6%	16.9%	22.1%	27.3%	32.6%	37.8%	40.0%	40.0%	40.0%
Non-OECD Latin America	0.6%	5.8%	11.0%	16.3%	21.5%	26.7%	32.0%	37.2%	40.0%
Non-OECD Other EU	2.7%	8.0%	13.2%	18.4%	23.6%	28.9%	34.1%	39.3%	40.0%
Non-OECD Eurasia	1.1%	6.3%	11.5%	16.8%	22.0%	27.2%	32.4%	37.7%	40.0%
MENA	0.6%	5.8%	11.1%	16.3%	21.5%	26.8%	32.0%	37.2%	40.0%
Non-OECD Other Africa	0.5%	5.7%	11.0%	16.2%	21.4%	26.7%	31.9%	37.1%	40.0%
Other Non-OECD Asia	4.6%	9.8%	15.0%	20.3%	25.5%	30.7%	36.0%	40.0%	40.0%
China	26.3%	31.6%	36.8%	42.0%	40.1%	40.0%	40.0%	40.0%	40.0%
India	4.5%	9.7%	14.9%	20.2%	25.4%	30.6%	35.9%	40.0%	40.0%
Total	19.8%	25.0%	30.3%	35.5%	40.1%	40.0%	40.0%	40.0%	40.0%

Once primary chemical demands were determined, chemical production technologies defined in Sections 1.1 and 1.2 were applied to meet the demand, which were allocated to be satisfied by fossil routes and by e-chemical and bio-chemical routes. For each production technology, there are several co-products, which could be used to reduce the demand for other technologies. The most notable is the steam cracker, which has both propylene and BTX aromatic coproduction. Since ethylene is the most widely produced HVC, ethylene demand was first satisfied by the chemical production model. After this step, the propylene demand was recalculated according to the propylene co-product of steam crackers. The remaining propylene demand was met by catalytic crackers and propane dehydrogenation, the former of which also has a BTX co-product. Fossil BTX demands were then recalculated based on the by-products from steam crackers and catalytic crackers, with the remaining BTX demand being supplied by toluene hydrodealkylation, toluene disproportionation, and naphtha catalytic cracking, representing refinery sourced BTX aromatics. The co-production of the BTX aromatic chemicals led to some overproduction, especially in regions with heavier feedstocks and thus higher shares of BTX aromatic co-products. HVC demands for e-chemical and bio-chemical routes were met by methanol-to-olefins and methanol-to-aromatics, and it was assumed that production ratios of the main products could be controlled by process conditions². Production matrices for each technology are shown in Table S13-Table S15.

Feedstock		Unit	Naphtha	Ethane	Propane	Butane	Gas Oil	MTO ³
Co-products	Propylene	t/t _{ethylene}	0.53	0.04	0.4	0.43	0.58	0.63
	C4 chemicals	t/t _{ethylene}	0.34	0.04	0.1	0.26	0.36	0.18
	Pygas ¹	t/t _{ethylene}	0.75	0.02	0.16	0.18	0.50	0
	Hydrogen	t/t _{ethylene}	0.05	0.08	0.05	0.04	0.03	0.01
	Fuel grade products ²	t/t _{ethylene}	0.63	0.11	0.75	0.60	0.46	0.06

Table S13. Olefin production matrix by feedstock.

¹ composition of pygas assumed to be 30% benzene, 18.5% toluene, and 8.50% xylenes according to Levi and Cullen²

² includes C1 chemicals and residual fuel oil

³ ratio of ethylene and propylene assumed to be adjustable according to Levi and Cullen²

 Table S14. Propylene production matrix by feedstock.

Feedstock		Unit	Propane	Refinery Oil
Co-products	C4 chemicals	t/t _{propylene}	0.04	0.8
	Pygas ¹	t/t _{propylene}	0	1.3
	Hydrogen	t/t _{propylene}	0.03	-
	Fuel grade products ²	t/t _{propylene}	0	1.3

¹ composition of pygas assumed to be 30% benzene, 18.5% toluene, and 8.50% xylenes according to Levi and Cullen²

² includes C1 chemicals and residual fuel oil

Table S15. Aromatic production matrix by feedstock.

Feedstock		Unit	Naphtha	\mathbf{MTA}^1
Co-products	Benzene	$t/t_{\rm BTX}$	0.14	0.084
	Toluene	t/t_{BTX}	0.409	0.295
	Xylenes	$t/t_{\rm BTX}$	0.455	0.621
	Hydrogen	t/t_{BTX}	0.203	-
	Dry gas	t/t_{BTX}	-	0.016
	LPG		0.089	1.214
	Pentane		0.076	0.263
	C6+ alkane		0.290	-
	C9+		0.322	0.176

¹ ratio of BTX chemicals assumed to be adjustable as is the case for MTO²

2. Financial Assumptions

Table S16. Financial assumptions by technology. For chemical feedstocks, units are provided per unit energy, and for chemicals produced with feedstock inputs, units are provided per tonne.

Device		unit	2020	2030	2040	2050	Ref
Solar PV fixed	capex	€/kW _p	475	306	207	166	3
tilted	opex _{fix}	€/(kW _p ·a)	8.53	6.23	4.47	3.70	3
	lifetime	vear	35	40	40	40	4
) our	20				
Solar PV single-	canex	€/kW.	523	337	228	183	3
axis tracking	opex _e	€/(kW _x ·a)	9.40	6.86	4 92	4 07	3
axis tracking	lifetime	C/(Kwp d)	9.40	40	40	40	
	metime	year		40	40	40	
Wind nower	canex	€/kW.	1150	1000	940	900	4,5
(onshore)	opeya	% of capey p a	2	2	2	2	
(unshure)	lifatima	70 OI Capex p.a.	2	25	25	25	
	menne	year	23	23	23	23	
Alkaline water	canex	€/kWuo uw	965	489	283	212	6–8
electrolyser	opeya	$\frac{0}{2}$ of capey p a	3 5	3 5	3.5	3.5	
ciccu oryser	opex _{fix}		0.0011	0.0005	0.0005	0.0002	
	opex _{var}	t/kwn _{H2,LHV}	0.0011	0.0003	0.0003	0.0002	
	lifetime	year	30	30	30	30	
	efficiency, LHV	%	62.5	65.0	67.5	70.0	
H ₂ compressor	canex	€/kWu2100	34 32	34 32	34 32	34 32	3,9
112 compressor	opeys	$\frac{0}{10}$ of capey p a	1	1	л Л	1	9
	lifatima	70 OI Capex p.a.	4		20	20	
	menne	year	30	30	30	30	
H ₂ storage	capex	€/MWh _{H2 I HV}	1011	1006	1004	1003	3,10
- 8	opexfix	% of capex p.a.	4	4	4	4	11
	lifetime	vear	30	30	30	30	
	metime	your	50	50	50	50	
NH ₃ Synthesis	capex	€/kW _{NH3 LHV}	1053	1053	1053	1053	3
Plant	opex _{fiv}	% of capex p.a.	4%	4%	4%	4%	
(including Air	opex	€/MWh _{NH2} LHV	2.095	2.095	2.095	2 095	
Senaration	lifetime	vear	30	30	30	30	
Unit N ₂ huffer	metime	year	50	50	50	50	
and 30 days of							
NH ₂ storage)							
(iii, storage)							
МеОН	capex	€/kW _{MeOH,LHV}	832	714	613	561	
Svnthesis Unit -	opex _{fix}	% of capex p.a.	4	4	4	4	
incl. 30 days	Opex	€/MWh _{Mo} OH LHV	1 9899	1 9899	1 9899	1 9899	
storage	lifetime	vear	30	30	30	30	
storage	metime	year	50	50	50	50	
Coal-to-	capex	€/kW _{MeOH,LHV}	990	990	990	990	12
Methanol	opex _{fix}	% of capex p.a.	5	5	5	5	12
	lifetime	vear	25	25	25	25	
		5					
Natural Gas-to-	capex	€/kW _{MeOH,LHV}	409	409	409	409	12
Methanol	opex _{fix}	% of capex p.a.	2.5	2.5	2.5	2.5	12
	lifetime	vear	25	25	25	25	
Oil-to-	capex	€/kW _{MeOH,LHV}	390	390	390	390	13
Methanol	opex _{fix}	% of capex p.a.	2.5	2.5	2.5	2.5	13
	lifetime	Year	25	25	25	25	
							14
Biomass-to-	capex	€/kW _{MeOH,LHV}	1488	1488	1488	1488	14
Methanol	opex _{fix}	% of capex p.a.	5	5	5	5	14
	lifetime	year	20	20	20	20	

Coal-to- Ammonia	capex opex _{fix} lifetime	€/kW _{NH3,LHV} % of capex p.a. year	3024 5 25	3024 5 25	3024 5 25	3024 5 25	12 12
Natural Gas-to- Ammonia	capex opex _{fix} lifetime	€/kW _{NH3,LHV} % of capex p.a. year	1258 2.5 25	1258 2.5 25	1258 2.5 25	1258 2.5 25	12 12
Oil-to- Ammonia	capex opex _{fix} lifetime	€/kW _{NH3,LHV} % of capex p.a. year	1673 2.5 25	1673 2.5 25	1673 2.5 25	1673 2.5 25	12 12
Biomass-to- Ammonia	capex opex _{fix} lifetime	€/kW _{NH3,LHV} % of capex p.a. year	8788 5 25	8788 5 25	8788 5 25	8788 5 25	12 12
Chlor-alkali electrolyser	capex opex _{fix} lifetime	€/tCl ₂ ·a % of capex p.a. year	1000 15 20	1000 15 20	1000 15 20	1000 15 20	15 15 16
Naphtha Steam Cracker	capex opex _{fix} lifetime	€/tEthylene•a % of capex p.a. year	3349 2.5 25	3349 2.5 25	3349 2.5 25	3349 2.5 25	13 13
Ethane Steam Cracker	capex opex _{fix} lifetime	€/tEthylene•a % of capex p.a. year	1563 2.5 25	1563 2.5 25	1563 2.5 25	1563 2.5 25	13 13
Propane Steam Cracker	capex opex _{fix} lifetime	€/tEthylene•a % of capex p.a. year	2832 2.5 25	2832 2.5 25	2832 2.5 25	2832 2.5 25	13 13
Gas Oil Steam Cracker	capex opex _{fix} lifetime	€/tEthylene•a % of capex p.a. year	4321 2.5 25	4321 2.5 25	4321 2.5 25	4321 2.5 25	13 13
Butane Steam Cracker	capex opex _{fix} lifetime	€/tEthylene•a % of capex p.a. year	2910 2.5 25	2910 2.5 25	2910 2.5 25	2910 2.5 25	13 13
Propane Dehydrogenatio n	capex opex _{fix} lifetime	€/tPropylene•a % of capex p.a. year	1691 2.5 25	1691 2.5 25	1691 2.5 25	1691 2.5 25	13 13
Refinery Oil Catalytic Cracking	capex opex _{fix} lifetime	€/tPropylene•a % of capex p.a. year	5223 2.5 25	5223 2.5 25	5223 2.5 25	5223 2.5 25	13 13
Naphtha Catalytic Reforming	capex opex _{fix} lifetime	€/tBTX · a % of capex p.a. year	371 4 20	371 4 20	371 4 20	371 4 20	17
Methanol-to- Olefins	capex opex _{fix} lifetime	€/tOlefin•a % of capex p.a. year	444 2.5 25	444 2.5 25	444 2.5 25	444 2.5 25	18 18
Methanol-to- Aromatics	capex opex _{fix} lifetime	€/tBTX·a % of capex p.a. year	261 2.5 25	261 2.5 25	261 2.5 25	261 2.5 25	19,20

CO ₂ Direct Air	capex	€/tCO2·a	730	338	237	199	21
Capture	opex _{fix}	% of capex p.a.	4	4	4	4	21
-	lifetime	vear	20	20	20	20	21
		5					
Heat Pump DH	capex	€/kW _{th}	660	590	554	530	22
	opex _{fix}	% of capex p.a.	0.3	0.3	0.4	0.4	22
	opex _{var}	€/kWh _{th}	0.002	0.002	0.002	0.002	22
	lifetime	year	25	25	25	25	
	efficiency	-	3.3	3.5	3.6	3.7	22
Electric Rod	capex	€/kW _{th}	100	75	75	75	22
Heating DH	opex _{fix}	% of capex p.a.	1.5	2	2	2	22
	opex _{var}	€/kWh _{th}	0.001	0.001	0.001	0.001	22
	lifetime	year	35	35	35	35	
	efficiency	%	100	100	100	100	22
	-						
Natural Gas	capex	€/kW _{th}	75	100	100	100	22
Heating DH	opex _{fix}	% of capex p.a.	3.7	3.7	3.7	3.7	22
	opex _{var}	€/kWh _{th}	0.0002	0.0002	0.0002	0.0002	22
	lifetime	year	35	35	35	35	
	efficiency	%	97	97	97	97	

Table S17. Direct levelised cost of electricity by major region. These costs match a defined near baseload profile.

Region		2020	2030	2040	2050
Europe	€/MWh _{el}	75.5	69.7	58.5	55.6
Eurasia	€/MWh _{el}	72.7	56.2	51.5	57.5
MENA	€/MWh _{el}	72.3	61.2	53.4	52.4
Sub-					
Saharan	€/MWh _{el}				
Africa		62.6	49.2	42.8	43.8
SAARC	€/MWh _{el}	66.4	67.3	49.6	45.9
Northeast	E/MWh.				
Asia	C/IVI VV IIel	69.4	64.2	62.5	60.2
Southeast	€/MWb.				
Asia	$C/1VI VV II_{el}$	62.6	62.2	49.5	46.2
North	€/MWb.				
America	$C/1VI VV II_{el}$	70.5	62	51.9	53.9
South	€/MWb				
America	U/IVI VV IIel	57.7	48.1	42.3	37.7

Table S18. Indirect levelised cost of electricity applied to electrolysers by major region. These costs are generation costs without need for matching a load profile.

Region		2020	2030	2040	2050
Europe	€/MWh _{el}	40.3	28.6	22.7	17.9
Eurasia	€/MWh _{el}	42.4	31.4	24.0	18.8
MENA	€/MWh _{el}	31.7	24.2	15.7	11.0
Sub-					
Saharan	€/MWh _{el}	32.0	19.7	13.6	10.0
Africa					
SAARC	€/MWh _{el}	40.0	24.0	14.8	11.1
Northeast		22.1	26.2	10.1	12.5
Asia	$\epsilon/1$ VI VV Π_{el}	52.1	20.2	19.1	15.5
Southeast		21.2	10.2	12.5	10.7
Asia	$\mathcal{E}/1$ VI VV Π_{el}	51.5	19.5	15.5	10.7
North		41.6	267	20.4	145
America	ϵ /IVI W h _{el}	41.0	20.7	20.4	14.5

3. Physical Assumptions

Table S19. Feedstock and process energy demands for chemical technologies considered.

Device	Demand	unit	value	Temperature level [°C]	Ref
Water Electrolyser	Electricity	$MWh_{\rm H2,LHV}/MWh_{el}$	0.625-		3
Natural Gas-to- Ammonia	Feedstock	$MWh_{th}/MWh_{\rm NH3,LHV}$	1.481		3
	Electricity	MWhel/MWhNH3 LHV	0.016		12
Coal-to-Ammonia	Feedstock	MWh _{th} /MWh _{NH3 LHV}	2.011		23
	Electricity	MWhel/MWhNH3 LHV	0.196		12
Oil-to-Ammonia	Feedstock	MWh _{th} /MWh _{NH3 LHV}	2.222		23
	Electricity	MWh _{el} /MWh _{NH3,LHV}	0.196		
Biomass-to-Ammonia	Feedstock	MWh _{th} /MWh _{NH3,LHV}	2.381		12
	Electricity	MWh _{el} /MWh _{NH3,LHV}	0.265		12
Natural Gas-to- Methanol	Feedstock	MWh _{th} /MWh _{MeOH,LHV}	1.70		12
	Electricity	MWh _{el} /MWh _{MeOH,LHV}	0.015		12
Coal-to-Methanol	Feedstock	MWh _{th} /MWh _{MeOH,LHV}	2.36		12
	Electricity	MWhel/MWh _{MeOH,LHV}	0.186		12
Oil-to-Methanol	Feedstock	$MWh_{th}/MWh_{MeOH,LHV}$	1.87		24
	Electricity ¹	MWhel/MWh _{MeOH,LHV}	0.251		
Biomass-to-Methanol	Feedstock	$MWh_{th}/MWh_{MeOH,LHV}$	2.39		12
	Electricity	MWhel/MWh _{MeOH,LHV}	0.251		12
Power-to-Ammonia	Feedstock	$MWh_{H2,LHV}/MWh_{NH3,LHV}$	1.148		3
	Electricity	MWhel/MWh _{NH3,LHV}	0.141		3
Power-to-Methanol	Feedstock	$MWh_{H2,LHV}/MWh_{MeOH,LHV}$	1.210		25
	Electricity	$MWh_{el}/MWh_{MeOH,LHV}$	0.031		
	Heat	$MWh_{th}/MWh_{MeOH,LHV}$	0.396	100	25
	CO_2	$t_{\rm CO2}/\rm{MWh}_{\rm MeOH,LHV}$	0.264		
	Excess heat	$MWh_{th}/MWh_{MeOH,LHV}$	0.006	35-60	25– 27
Naphtha Steam Cracker	Feedstock	$MWh_{\text{th}}/t_{\text{ethylene}}$	41.2		28
	Electricity	MWhel/tethylene	0.044		28
	Heat	MWh _{th} /t _{ethylene}	6.194	790-850	28,29
	Water	$t_{\rm H20}/t_{\rm ethylene}$	400		28
Ethane Steam Cracker	Feedstock	$MWh_{th}/t_{ethylene}$	17.1		28
	Electricity	$MWh_{el}/t_{ethylene}$	0.140		28
	Heat	$MWh_{th}/t_{ethylene}$	5.833	790-850	28,29
-	Water	t _{H20} /t _{ethylene}	206		28
Propane Steam Cracker	Feedstock	$MWh_{th}/t_{ethylene}$	30.7		28
	Electricity	MWh _{el} /t _{ethylene}	0.180		28
	Heat	$MWh_{th}/t_{ethylene}$	6.833		28
	Water	$t_{\rm H20}/t_{\rm ethylene}$	206		28
Butane Steam Cracker	Feedstock	MWh _{th} /t _{ethylene}	31.6		28
	Electricity	MWh _{el} /t _{ethylene}	0.180	700.050	∠ð 28.20
	Heat	$MW h_{th}/t_{ethylene}$	6.899	790-850	20,29
	Water	t _{H20} /t _{ethylene}	206		20
Gas Oil Steam Cracker	Feedstock	$MW h_{th}/t_{ethylene}$	43.3		28
	Liectricity	$N N N h_{el} / t_{ethylene}$	0.3	700.950	28 29
	Weter	trace /t	0.094	/90-830	28
Propana	vv ater Foodstook	H20/Lethylene	200		29
	recustock	IVI VV IIth/ Lpropylene	10./		-

Dehydrogenation

	Electricity	$MWh_{el}/t_{propylene}$	0.078		29
	Heat	MWh _{th} /t _{propylene}	2.632	500-680	29
	Water	t _{H20} /t _{propylene}	95.4		29
Refinery Oil Catalytic Cracking	Feedstock	$MWh_{th}/t_{propylene}$	58.6		29
	Electricity	MWh _{el} /t _{propylene}	0.176		29
	Heat	MWh _{th} /t _{propylene}	1.805	530-560	29
	Water	t _{H20} /t _{propylene}	336		29
Naphtha Catalytic Reforming	Feedstock	MWh_{th}/t_{BTX}	24.80		17
	Electricity	MWhel/tBTX	0.188		17
	Heat	MWh_{th}/t_{BTX}	1.947	525	17
Methanol-to-Olefins	Feedstock	MWh_{th}/t_{olefin}	16.338		20
	Electricity	MWh _{el} /t _{olefin}	2.150		20
	Heat	MWh_{th}/t_{olefin}	0.313	500	20,29
	Excess Heat	MWh _{th} /t _{olefin}	1.239	500	31,32
	Water	t _{H2O} /t _{olefin}	1.685		31
	byproduct				
Methanol-to- Aromatics	Feedstock	$MWh_{th}\!/t_{BTX}$	34.47		19,20
	Electricity	MWh _{el} /t _{BTX}	0.702		19,20
	Heat	MWh_{th}/t_{BTX}	1.577	400	19,20
	Excess Heat	MWh_{th}/t_{BTX}	2.838	400	31,33
	Water	$t_{\rm H2O}/t_{\rm BTX}$	3.224		19,34
	byproduct				

¹ Electricity demand for Biomass-to-Methanol route assumed ² HVC refers to ethylene, propylene, benzene, toluene, and mixed xylenes

4. Supplementary Results 4.1. Global Chemical and Feedstock Results

Figure S1. Chemical feedstock demands for the global chemical industry from 2020 to 2100 in 10-year intervals for the NZE 2040H (top left), NZE 2040L (top right), NZE 2060H (bottom left), and NZE2060L scenarios. Fossil feedstocks compose coal, fossil methane, and all oil feedstocks for HVC production.

Figure S2. Direct (for chemical production plants), indirect (for water electrolysis), and heating electricity demands for the NZE 2040H (top left), NZE 2040L (top right), NZE 2060H (bottom left), and NZE 2060L (bottom right) scenarios.

Figure S3. Process heating demands and excess heat from exothermic reactions in the Power-to-Methanol, MTO, and MTA processes from 2020 to 2100 for NZE2040H (top left), NZE 2040L (top right), NZE 2060H (bottom left), and NZE 2060L (bottom right) scenarios. Note that the value listed for heat pumps is the electricity input and is thus in TWh_{el}.

Figure S4. Chemical industry emissions by source for the NZE 2040H (top left), NZE 2040L (top right), NZE 2060H (bottom left), and NZE 2060L (bottom right) scenarios.

4.2. Global Chemical Flows

4.2.1. BAU

Figure S5. Global chemical flows in 2030 for the BAU scenario.

Figure S6. Global chemical flows in 2040 for the BAU scenario.

BAU 2070

Figure S7. Global chemical flows in 2070 for the BAU scenario.

Figure S8. Global chemical flows in 2100 for the BAU scenario.

BAU 2100

4.2.2. NZE 2050H

NZE 2050 High Biomass 2030

Figure S9. Global chemical flows in 2030 for the NZE2050H scenario.

NZE 2050 High Biomass 2040

Figure S10. Global chemical flows in 2040 for the NZE2050H scenario.

Figure S11. Global chemical flows in 2070 for the NZE2050H scenario.

NZE 2050 High Biomass 2100

Figure S12. Global chemical flows in 2100 for the NZE2050H scenario.

4.2.3. NZE 2050L

NZE 2050 Low Biomass 2030

Figure S13. Global chemical flows in 2030 for the NZE2050L scenario.

NZE 2050 Low Biomass 2040

Figure S14. Global chemical flows in 2040 for the NZE2050L scenario.

Biomass 2070

Figure S15. Global chemical flows in 2070 for the NZE2050L scenario.

NZE 2050 Low Biomass 2100

Figure S16. Global chemical flows in 2100 for the NZE2050L scenario.

4.3. Geographical Results

Figure S17. Total fossil feedstock (left) and electricity demand (right) in 2030 (top), 2040 (second from top), 2070 (second from bottom), and 2100 (bottom) for the BAU scenario.

4.3.2. NZE 2050

Figure S18. Total fossil feedstock (left), electricity (middle), and e-hydrogen demands (right) in 2030 (top) and 2040 (bottom) for the NZE 2050H (top of each row) and NZE 2050L (bottom of each row).

1.4 3.2 7.6 18 42 98 230 540 1300 Estimated Total Electricity Demand for Chemicals (NZE 2050 High Biomass) 2070 [TWh_{el}]

1.7 3.9 9.2 21 50 120 270 640 150 Estimated Total Electricity Demand for Chemicals (NZE 2050 Low Biomass) 2070 [TWh_{e]}]

Total: 20844.4 TWh

0.75 1.7 4.1 9.6 23 53 120 290 680 Estimated Total Hydrogen Demand for Chemicals (NZE 2050 High Biomass) 2070 [TWh_{th}]

0.95 2.2 5.2 12 29 67 160 370 86 Estimated Total Hydrogen Demand for Chemicals (NZE 2050 Low Biomass) 2070 [TWh_{th}]

Figure S19. Total electricity (left) and e-hydrogen demands (right) in 2070 (top) and 2100 (bottom) for the NZE 2050H (top of each row) and NZE 2050L (bottom of each row).

Figure S20. Total CO₂ (left), methanol feedstock (middle), and biomass demands (right) in 2030 (top), 2040 (middle), and 2050 (bottom) for the NZE 2050H (top of each row) and NZE 2050L (bottom of each row).

Figure S21. Total CO_2 (left), methanol feedstock (middle), and biomass demands (right) in 2070 (top), and 2100 (bottom) for the NZE 2050H (top of each row) and NZE 2050L (bottom of each row).

4.3.3. NZE 2040

Figure S22. Total fossil feedstock (left), electricity (middle), and e-hydrogen demands (right) in 2030 for the NZE 2040H (top) and NZE 2040L (bottom).

1.7 4 9.6 23 55 130 320 770 1800 Estimated Total Electricity Demand for Chemicals (NZE 2040 High Biomass) 2040 [TWh_e]

0.91 2.2 5.2 13 30 73 180 420 1000 Estimated Total Hydrogen Demand for Chemicals (NZE 2040 High Biomass) 2040 [TWh_{th}]

Total: 19202.5 TWh_{th}

1.8 4.4 10 25 61 150 350 840 2000 Estimated Total Electricity Demand for Chemicals (NZE 2040 Low Biomass) 2040 [TWh_e]

1 2.5 5.9 14 34 82 200 470 1100 Estimated Total Hydrogen Demand for Chemicals (NZE 2040 Low Biomass) 2040 [TWh_{th}]

Total: 18140.8 TWh_{th}

1.7 3.9 9.3 22 52 120 290 660 1600 Estimated Total Electricity Demand for Chemicals (NZE 2040 High Biomass) 2050 [TWh_{el}]

0.91 2.1 5 12 28 66 160 370 870 Estimated Total Hydrogen Demand for Chemicals (NZE 2040 High Biomass) 2050 [TWh_{th}]

Figure S23. Total electricity (left) and e-hydrogen demands (right) in 2040 (top) and 2050 (bottom) for the NZE 2040H (top of each row) and NZE 2040L (bottom of each row).

0.73 1.7 4 9.3 22 51 120 280 660 Estimated Total Hydrogen Demand for Chemicals (NZE 2040 High Biomass) 2070 [TWh_{th}]

Total: 27142.8 TWh_{th}

1.7 3.9 9.1 21 50 120 270 640 1500 Estimated Total Electricity Demand for Chemicals (NZE 2040 Low Biomass) 2070 [TWh_{el}]

0.95 2.2 5.2 12 29 67 160 370 860 Estimated Total Hydrogen Demand for Chemicals (NZE 2040 Low Biomass) 2070 [TWh_{th}]

Total: 21717.9 TWh_{th}

1.3 3.2 7.7 18 43 100 250 590 1400 Estimated Total Electricity Demand for Chemicals (NZE 2050 High Biomass) 2100 [TWh_{el}]

.7 4 9.5 23 55 130 310 750 1800 Estimated Total Electricity Demand for Chemicals (NZE 2050 Low Biomass) 2100 [TWh_{ej}]

0.73 1.7 4.1 9.8 23 56 130 310 75 Estimated Total Hydrogen Demand for Chemicals (NZE 2050 High Biomass) 2100 [TWh_{th}]

0.94 2.3 5.4 13 31 73 180 420 1000 Estimated Total Hydrogen Demand for Chemicals (NZE 2050 Low Biomass) 2100 [TWh_{th}]

Figure S24. Total electricity (left) and e-hydrogen demands (right) in 2070 (top) and 2100 (bottom) for the NZE 2040H (top of each row) and NZE 2040L (bottom of each row).

Figure S25. Total CO₂ (left), methanol feedstock (middle), and biomass demands (right) in 2030 (top), 2040 (middle), and 2050 (bottom) for the NZE 2040H (top of each row) and NZE 2040L (bottom of each row).

Figure S26. Total CO₂ (left), methanol feedstock (middle), and biomass demands (right) in 2070 (top), and 2100 (bottom) for the NZE 2040H (top of each row) and NZE 2040L (bottom of each row).

Figure S27. Total fossil feedstock (left), electricity (middle), and e-hydrogen demands (right) in 2030 (top), 2040 (middle), and 2050 (bottom) for the NZE 2060H (top) and NZE 2060L (bottom).

1.4 3.4 7.9 19 43 100 240 560 1300 Estimated Total Electricity Demand for Chemicals (NZE 2060 High Biomass) 2070 [TWh_{el}]

0.79 1.8 4.3 10 24 56 130 310 720 Estimated Total Hydrogen Demand for Chemicals (NZE 2060 High Biomass) 2070 [TWh_{th}]

Total: 27143.0 TWh_{th}

1.7 3.9 9.2 21 50 120 270 640 1500 Estimated Total Electricity Demand for Chemicals (NZE 2060 Low Biomass) 2070 [TWh_e]

0.95 2.2 5.2 12 29 67 160 370 860 Estimated Total Hydrogen Demand for Chemicals (NZE 2060 Low Biomass) 2070 [TWh_{th}]

1.3 3.2 7.7 18 44 100 250 590 1400 Estimated Total Electricity Demand for Chemicals (NZE 2060 High Biomass) 2100 [TWh_{el}]

0.73 1.7 4.1 9.8 23 55 130 310 750 Estimated Total Hydrogen Demand for Chemicals (NZE 2060 High Biomass) 2100 [TWh_{th}]

0.94 2.3 5.4 13 31 74 180 420 1000 Estimated Total Hydrogen Demand for Chemicals (NZE 2060 Low Biomass) 2100 [TWh_{th}]

Figure S28. Total electricity (left) and e-hydrogen demands (right) in 2070 (top) and 2100 (bottom) for the NZE 2040H (top of each row) and NZE 2040L (bottom of each row).

Figure S29. Total CO₂ (left), methanol feedstock (middle), and biomass demands (right) in 2030 (top), 2040 (middle), and 2050 (bottom) for the NZE 2060H (top of each row) and NZE 2060L (bottom of each row).

Figure S30. Total CO_2 (left), methanol feedstock (middle), and biomass demands (right) in 2070 (top) and 2100 (bottom) for the NZE 2060H (top of each row) and NZE 2060L (bottom of each row).

Figure S31. Normalised Global annualised costs for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S32. Annualised costs in Europe for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S33. Annualised costs in Eurasia for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S34. Annualised costs in the Middle East and North Africa (MENA) for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S35. Annualised costs in sub-Saharan Africa for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S36. Annualised costs in the Southeast Asian Association for Regional Cooperation (SAARC) for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S37. Annualised costs in Northeast Asia for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S38. Annualised costs in Southeast Asia for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S39. Annualised costs in North America for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

Figure S40. Annualised costs in South America for the BAU (top left), NZE 2050H (top right), and NZE 2050L (bottom) scenarios.

4.5. Chemical Feedstock Per Capita

4.5.1. BAU

Figure S41. Chemical feedstock per capita over GDP per capita per global region for the BAU scenario in 2020 (top left), 2030 (top right), 2040 (second row left), 2050 (second row right), 2060 (third row left), 2070 (third row right), 2080 (fourth row left), 2090 (fourth row right), and 2100 (bottom)

4.5.2. NZE 2050

Figure S42. Chemical feedstock per capita over GDP per capita per global region for the NZE 2050 scenario in 2030 (top left), 2040 (top right), 2050 (second row left), 2060 (second row right), 2070 (third row left), 2080 (third row right), 2090 (bottom left), and 2100 (bottom right).

Figure S43. Chemical feedstock per capita over GDP per capita per global region for the NZE 2040 scenario in 2030 (top left), 2040 (top right), 2050 (second row left), 2060 (second row right), 2070 (third row left), 2080 (third row right), 2090 (bottom left), and 2100 (bottom right).

Figure S44. Chemical feedstock per capita over GDP per capita per global region for the NZE 2060 scenario in 2030 (top left), 2040 (top right), 2050 (second row left), 2060 (second row right), 2070 (third row left), 2080 (third row right), 2090 (bottom left), and 2100 (bottom right).

4.5.4. NZE 2060

References

- 1 R. Horton, *The Global Petrochemical Industry: Understanding the Complex Interactions Between Technology, Economics and Markets*, Nexant, 2019.
- 2 P. G. Levi and J. M. Cullen, *Environ. Sci. Technol.*, 2018, **52**, 1725–1734.
- 3 M. Fasihi, R. Weiss, J. Savolainen and C. Breyer, *Appl. Energy*, 2021, **294**, 116170.
- 4 D. Bogdanov, J. Farfan, K. Sadovskaia, A. Aghahosseini, M. Child, A. Gulagi, A. S. Oyewo, L. de Souza Noel Simas Barbosa and C. Breyer, *Nat. Commun.*, 2019, 10, 1077.
- 5 L. Neij, *Energy Policy*, 2008, **36**, 2200–2211.
- 6 M. Fasihi and C. Breyer, J. Clean. Prod., 2020, 243, 118466.
- 7 Agora Energiewende and Guidehouse, *Making renewable hydrogen cost-competitive: Policy instruments for supporting green H*₂, 2021.
- 8 ETOGAS, Power to Gas: Intelligente Konvertierung und Speicherung von Energie in der industriellen Umsetzung, https://goo.gl/E1vzLb, (accessed 28 September 2021).
- 9 L. Grond, P. Schulze and J. Holstein, Systems analyses power to gas, https://docplayer.net/7637393-Dnv-kema-energy-sustainability-final-report-systemsanalyses-power-to-gas-deliverable-1-technology-review.html, (accessed 28 September 2021).
- 10 R. Ahluwalia, D. Papadias, J. Peng and H. Roh, System level analysis of hydrogen storage. U.S. DOE hydrogen and fuel cells program, https://bit.ly/2ZQDwHl, (accessed 28 September 2021).
- 11 J. Michalski, U. Bünger, F. Crotogino, S. Donadei, G.-S. Schneider, T. Pregger, K.-K. Cao and D. Heide, *Int. J. Hydrogen Energy*, 2017, **42**, 13427–13443.
- 12 IEA, *The Future of Hydrogen. Seizing today's opportunities, Assumptions Annex*, Paris, 2019.
- 13 IEA, *The Future of Petrochemicals: Towards more sustainable plastics and fertilisers*, Paris, 2018.
- 14 A. Poluzzi, G. Guandalini, S. Guffanti, M. Martinelli, S. Moioli, P. Huttenhuis, G. Rexwinkel, J. Palonen, E. Martelli, G. Groppi and M. C. Romano, *Front. Energy Res.*, 2022, **9**, 795673.
- 15 A. M. Bazzanella and F. Ausfelder, *Low carbon energy and feedstock for the European chemical industry*, Frankfurt, 2017.
- 16 K. Roh, L. C. Brée, K. Perrey, A. Bulan and A. Mitsos, *Appl. Energy*, 2019, 255, 113880.
- 17 J. Jiang, X. Feng, M. Yang and Y. Wang, J. Clean. Prod., 2020, 277, 123525.
- 18 S. Jasper and M. M. El-Halwagi, *Processes*, 2015, **3**, 684–698.
- 19 D. Zhang, M. Yang and X. Feng, Comput. Chem. Eng., 2019, 126, 178–188.
- 20 Á. Galán-Martín, V. Tulus, I. Díaz, C. Pozo, J. Pérez-Ramírez and G. Guillén-Gosálbez, 2021.
- 21 M. Fasihi, O. Efimova and C. Breyer, J. Clean. Prod., 2019, 224, 957–980.
- D. Bogdanov, M. Ram, A. Aghahosseini, A. Gulagi, A. S. Oyewo, M. Child, U. Caldera, K. Sadovskaia, J. Farfan, L. De Souza Noel Simas Barbosa, M. Fasihi, S. Khalili, T. Traber and C. Breyer, *Energy*, 2021, 227, 120467.
- 23 International Fertilizer Industry Association, Energy Efficiency and CO2 Emissions in Ammonia Production, https://www.fertilizer.org/images/Library_Downloads/2009_IFA_energy_efficiency.p df, (accessed 12 July 2022).
- 24 M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti and E. Tzimas, *Appl. Energy*, 2016, **161**, 718–732.
- 25 M. Fasihi and C. Breyer, in 11th International Renewable Energy Storage Conference,

Düsseldorf, 2017.

- 26 M. J. Bos, S. R. A. Kersten and D. W. F. Brilman, *Appl. Energy*, 2020, **264**, 114672.
- H. Nieminen, A. Laari and T. Koiranen, *Processes*, 2019, 7, 405.
- A. Boulamanti and J. A. Moya, *Renew. Sustain. Energy Rev.*, 2017, 68, 1205–1212.
- 29 Z. Zhao, J. Jiang and F. Wang, J. Energy Chem., 2021, 56, 193–202.
- 30 H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Japan, 2006.
- 31 M. Rosental, T. Fröhlich and A. Liebich, *Front. Clim.*, 2020, **2**, 586199.
- 32 A. C. Dimian and C. S. Bildea, *Chem. Eng. Res. Des.*, 2018, **131**, 41–54.
- 33 F. M. Elimar, N. H. Rasmussen and N. H. Petersen, Aalborg University, 2021.
- 34 Á. Galán-Martín, V. Tulus, I. Díaz, C. Pozo, J. Pérez-Ramírez and G. Guillén-Gosálbez, *One Earth*, 2021, **4**, 565–583.