Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2023

# **Supplementary Information**

# Abnormal size effect enables ampere-level O<sub>2</sub> electroreduction to hydrogen peroxide in neutral electrolyte

Shan Ding,<sup>[a]</sup> Baokai Xia,<sup>[a]</sup> Ming Li,<sup>[a]</sup> Fengqian Lou,<sup>[a]</sup> Chi Cheng,<sup>[b]</sup> Tianqi Gao,<sup>[a]</sup>

Yuxiang Zhang,<sup>[a]</sup> Kang Yang,<sup>[a]</sup> Lili Jiang,<sup>[a]</sup> Zhihao Nie,<sup>[a]</sup> Hongxin Guan,<sup>[a]</sup> Jingjing Duan,<sup>[a]</sup> and Sheng Chen\*<sup>[a,b]</sup>

<sup>a</sup>Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China

<sup>b</sup> Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia

Correspondence and requests for materials should be addressed to:

sheng.chen@njust.edu.cn (S.C.)

#### **I. Experimental Section**

# **1.1 Chemicals**

Zinc acetate dihydrate (Zn (CH<sub>3</sub>COO)<sub>2</sub> 2H<sub>2</sub>O, AR, 99%), sodium hydroxide (NaOH, AR, 99%), cethyltetraethylammonium bromide (CTAB, AR, 99%), gelatin, potassium sulfate (K<sub>2</sub>SO<sub>4</sub>, AR, 98%), were purchased from Aladdin Reagent and directly used without further treatment or purification. Nafion solution (5 wt%) were brought from Alfa Aesar. Gas diffusion electrode (GDE, Shanghai Hesen). All aqueous solutions were prepared with high-purity de-ionized water (DI-water, resistance 18.25 M $\Omega$  cm<sup>-1</sup>).

# 1.2 Synthesis of S-, M- and L-ZnO crystals

In a typical chemical bath deposition (CBD) procedure, 60 mL of 0.2 M zinc acetate dihydrate (Zn (CH<sub>3</sub>COO)<sub>2</sub> 2H<sub>2</sub>O) aqueous solution and 60 mL of gelatin (0 ~ 175  $\mu$ M) were prepared, respectively. Next, the above solutions were mixed and reacted at 95 °C for 6 hrs. The as-produced products were washed with copious DI-water, centrifuged and freeze dried.

## **1.3 Physical characterizations**

Scanning electron microscopy (SEM) was performed on a field emission scanning electron microscope (FESEM, JEOL 7800F); Energy-dispersive X-ray spectroscopy (EDS) and element mapping were conducted on SEM (OXFORD X-Max<sup>N</sup> 150 10 KV); Transmission electron microscope (TEM) was conducted on an aberration-corrected TEM (FEI Titan 80-300, 300 KV acceleration voltage). X-ray diffractions were performed on X-ray diffractometer with Cu- Ka radiation (XRD, Smartlab 9 KW, 40 KV, 40 mA, Cu Ka radiation,  $\lambda$ =1.5418 Å); X-ray photoelectron spectroscopy (XPS) was collected between 0 and 1350 eV on an Axia Ultra (Thermo ESCALAB 250XI) XPS spectrometer equipped with an Al Ka source (1486.6 eV);

Atomic force microscope (AFM) was performed on Bruker D8 SPM. *In-situ* Raman was conducted on a HORIBA LabRAM HR Evolution Raman spectrometer with a 532 nm solid laser as an excitation source. Inductively coupled plasma mass spectrometry element analysis (ICP-MS) was conducted on an Agilent 7800 (RF Power:1300 W; Pump rate: 29 r min<sup>-1</sup>; Nebulizer flow: 0.86 L min<sup>-1</sup>; Auxiliary gas: 0.7 L min<sup>-1</sup>; Sample flush time: 40 s).

# 1.4 The ORR activities evaluated on rotating ring-disk electrode (RRDE) system.

The measurement has been operated on a RRDE configuration (Pine Research Instrumentation, USA) consisting of a glassy carbon disk electrode and a platinum ring electrode. The working electrodes were prepared by solution-casting method. Firstly, 5 mg of catalyst, 0.5 mg of acetylene black, 30  $\mu$ L of Nafion (5 wt%) were dispersed in 1 mL of isoproponal/DI-water (3:1 v/v) by sonication for 1 hr to form a uniform catalyst ink. Next, 10  $\mu$ L of the ink was dropped onto a rotating ring-disk electrode (electrode area: 0.2475 cm<sup>2</sup>) to form a uniform catalyst layer, which were then dried under ambient condition overnight. A standard three-electrode system was assembled by using the rotating ring-disk electrode loaded with catalyst as the working electrode, a Pt counter electrode and a saturated Ag/AgCl (saturated KCl) reference electrode. The ORR activities and selectivity were studied by linear sweep voltammetry (LSV) at the rotation speed of 1600 rpm with the fixed potential of +1.2 V (*vs.* RHE) in the Pt ring to detect the as-generated H<sub>2</sub>O<sub>2</sub> from the disk electrode in O<sub>2</sub>-saturated 0.6 M K<sub>2</sub>SO<sub>4</sub>.

The H<sub>2</sub>O<sub>2</sub> molar selectivity (%) was determined by comparing the disk current and H<sub>2</sub>O<sub>2</sub> oxidation current at the Pt ring according to the following equation:

Molar selectivity of H<sub>2</sub>O<sub>2</sub> (%) = 
$$\frac{n_{H_{2}O_{2}}}{n_{H_{2}O_{2}} + n_{H_{2}O}} = \frac{200 \times \frac{\text{Ir}}{\text{N}}}{|\text{Id}| + \frac{\text{Ir}}{\text{N}}}$$

The H<sub>2</sub>O<sub>2</sub> Faradaic efficiency (FE) of H<sub>2</sub>O<sub>2</sub> was calculated from the disk current ( $I_d$ ) and ring current ( $I_r$ ) of the RRDE according to the following equation:

Faradaic efficiency of H<sub>2</sub>O<sub>2</sub> (%) = 
$$\frac{100 \times \frac{\text{Ir}}{\text{N}}}{|\text{Id}|}$$

and the number of electrons transferred (*n*) can be obtained by the following equation:

The number of electrons transferred n = 
$$\frac{4 \times |Id|}{|Id| + \frac{Ir}{N}}$$

Where  $I_d$  is disk current,  $I_r$  is ring current, and N is the current collection efficiency of RRDE, which was determined to be 0.37.

All the measured potentials were converted to reversible hydrogen electrodes (RHE) according to  $E_{RHE} = E_{Ag/AgCl} + 0.059 \text{ pH} + 0.197.$ 

# 1.5 The ORR activities evaluated on flow-type electrolytic cells

A flow-type electrolytic cell system was applied to evaluate the potential for practical H<sub>2</sub>O<sub>2</sub> production. The working electrode was prepared by solution casting method. In detail, 5 mg of catalysts, 0.5 mg of acetylene black, 30  $\mu$ L of Nafion solution (5 wt%) were dispersed in 1 mL of isoproponal/ DI-water (3:1 v/v) by ultrasonication for 1 hr to form a uniform catalyst ink. Next, 1 mL of the homogeneous catalyst ink was sprayed on a 1×1 cm<sup>2</sup> gas diffusion electrolyte (GDE). The electrocatalytic test were conducted on a CHI 760E electrochemical workstation connected with a CHI 680C high current amplifier. This standard three-electrode three-phase flow cell was assembled by employing ZnO GDE (1×1 cm<sup>2</sup>) as working electrode, titanium-based metal oxide coated electrode (DSA, 2×2 cm<sup>2</sup>, IrO<sub>2</sub> coating) as counter electrode, and Ag/AgCl (saturated KCl) as reference electrode. Nafion 117 membrane was used as a proton exchange membrane (PEM) to separate the cathode

and anode compartments.  $0.6 \text{ M K}_2\text{SO}_4$  aqueous solution was used as the catholyte and anolyte, which was circulated through the flow cell by using a peristaltic pump at a rotate speed of 40 rpm, and O<sub>2</sub> was fed into the gas chamber with a continuous flow rate of 80 mL min<sup>-1</sup>.

All the electrochemical data was presented without *iR* correction, the current densities were normalized to the geometrical area. The calculation for hydrogen peroxide yield rate (mg  $h^{-1}$  cm<sup>-2</sup>) and Faradaic efficiency (FE) were described as follows:

$$Y(H_2O_2) = c(H_2O_2) \times V / (t \times S)$$

$$FE_{H2O2} (\%) = 2F \times c(H_2O_2) \times V / (34 \times Q)$$

Where  $c(H_2O_2)$  is hydrogen peroxide concentration, V is the volume of electrolyte, t is reaction time, S is the electrode area, F is the Faradaic constant, Q is the amount of electricity passed.

Further, the  $H_2O_2$  concentration was measured by a traditional titration method based on the mechanism that a colorless solution of  $Ti(SO_4)_2$  would be oxidized by  $H_2O_2$  to  $H_2TiO_4$  with yellow colour.

$$Ti^{4+} + H_2O_2 + 2H_2O = H_2TiO_4 + 4H^+$$

Thus, the concentration of  $H_2O_2$  after the reaction can be measured by UV-Vis spectroscopy. The principle is that the concentration of the solution is proportional to the ultraviolet absorbance at 408 nm.

# 2. Density functional theory computational details

Computations were conducted by using density functional theory (DFT) with spin polarization. The first-principles calculations were performed by the MedeA-Vienna Ab initio Simulation Package (VASP) in view of DFT methods<sup>1,2</sup>. The Perdew-Burke-Ernzerhof (PBE) generalized gradient approach (GGA)<sup>3,4</sup> was utilized to define the

exchange-correlation potential. The interaction between the atomic cores and electrons was described by using the projector augmented wave  $(PAW)^{5,6}$  pseudopotentials. The cut-off energy for plane wave expansion was set to be 400 eV, optimized from a range of a range cut-off energies. The Monkhrst-Pack K-point mesh of the Brillouin Zone in real space was sampled with  $1 \times 1 \times 1$  for all calculations. The convergence criterion was set to be 0.05 eV/Å and  $10^{-5}$  eV for force and energy, respectively, within the RMM-DIIS method for geometry optimization. The vacuum layer is set to be 15 Å to avoid interaction between two neighboring periodic cells. Hubbard-U correction approach (DFT+U) was carried out to improve the description of highly correlated Zn 3d orbitals with the value of U-J set to be 2.5 eV.

The detailed Gibbs free energy calculation for ORR has been carried out as follows:

$$G = E - TS + ZPE + G_U$$

where *G*, *E* and *ZPE* refer to chemical potential (partial molar Gibbs free energy), electronic energy and zero-point energy, respectively.  $G_U = -eU$ , in which *e* is the charge transferred in each elementary step and *U* is the applied electrode potential. The entropy term can be expressed as the sum of the translational, rotational, vibrational and electronic contributions as to:

$$S = S_t + S_r + S_v + S_e$$

Since  $S_e \approx 0$  at the fundamental electronic level.

For the case of solids and adsorbates, some approximations can be adopted:

1. As for gases, at the fundamental electronic level  $S_e \approx 0^7$ .

2. Translational and rotational motions can be omitted, therefore,  $S_t \approx 0$  and  $S_r \approx 0$ . In this case, all the entropy values come from the vibrational contribution:  $S = S_v$ . Similarly, translational and rotational contributions to heat capacity are neglected.

Ultimately, Gibbs free energy for different states were calculated as to:

$$G = E - TS_v + ZPE + G_U$$

#### 3. Techno-economic assessments

#### **3.1 Process simulation**

In this part, most process simulations were realized by software (for example, DWSIM, COCO and MATLAB). But the chemical reaction of electrolysis process is complex, and cannot find build-in models. Therefore, we have designed custom model according to two-electron-transfer ORR to H<sub>2</sub>O<sub>2</sub> (please see Fig. S17, ESI). The possible reactions inside the electrolysis device are listed follows:

Anodic reaction:  $H_2O - 4e^- \rightarrow 4H^+ + O_2$ Cathodic reaction:  $O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$ Side reaction:  $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ 

According to the experiment results, seldom H<sub>2</sub> has been generated in the whole reaction process, so the side reaction is determined as four-electron-transfer ORR (for example, the FE of O<sub>2</sub>-to-H<sub>2</sub>O<sub>2</sub> through two-electron-transfer ORR is 98.48%, and consequently the FE of O<sub>2</sub>-to-H<sub>2</sub>O through four-electron-transfer ORR is 1.52%). The change of reaction heat has also taken into account due to the enthalpy difference between products and reactants in the electrolysis device.

According to the practical production demand, the process flowsheet has been built (please see Fig. S18, ESI). The reaction area of  $H_2O_2$  electrolysis is 500 m<sup>2</sup>. The electrolyte is aqueous K<sub>2</sub>SO<sub>4</sub> solution. Non-random two liquid (NRTL) model is applied to the electrolyte system. The input of streams is shown in Table S7. Considering the running state of flow stock, the circulation of electrolyte is set as 25000 kg/hr. Further, since the utilization rates of gases are usually smaller than 20%, the circulation amount of gas is set as 15000 kg/hr.

In addition, the reaction current is calculated as:

# $I = I_{\text{S}} \times s_{\text{rea}}$

Where I is the total current,  $I_s$  is the current density and  $s_{rea}$  is the reaction area.

The production of H<sub>2</sub>O<sub>2</sub> is calculated according to Faraday law by taking account of the key substances are O<sub>2</sub>, H<sub>2</sub>O<sub>2</sub> and H<sub>2</sub>O:

$$m = \frac{I \times M \times t \times FE}{n \times F}$$

Where *m* represents the mass of  $H_2O_2$  (g), *M* is the molecular mass of  $H_2O_2$ , *Q* is the electricity quantity (C), *I* is current (A), *t* is time (s), and *n* is the electron transfer number of the reaction.

#### **3.2 Economic analysis**

# **3.2.1** Verify the accuracy of the simulation models.

The accuracy from simulation models has been firstly evaluated by comparing with our own calculations according to Faraday law. For L-ZnO, it can promote electrochemical reduction from O<sub>2</sub> to H<sub>2</sub>O<sub>2</sub> with FE of 98.48% at the current density is 1 A cm<sup>-2</sup>. If we aim to produce H<sub>2</sub>O<sub>2</sub> with a concentration of 70 wt%,

The total current is:

I = I<sub>S</sub> × s<sub>rea</sub> = 
$$1 \frac{A}{cm^2}$$
 × 500 m<sup>2</sup> ×  $\frac{10000 \text{ cm}^2}{m^2}$  = 5000000 A

The power needed is given as:

The yield rate of H<sub>2</sub>O<sub>2</sub>:

$$m/hr = \frac{I \times M \times t \times FE}{n \times F \times 1 hr} = \frac{500000 \text{ A} \times 34 \text{ g/mol} \times 3600 \text{ s} \times 98.48\%}{2 \times 96485 \text{ C/mol} \times 70\% \times 1 \text{ hr}}$$
$$= 4461815.678 \text{ g/hr} = 4461.82 \text{ kg/hr}$$

It is assumed the byproduct is H<sub>2</sub>O (O<sub>2</sub> + 4H<sup>+</sup> + 4e<sup>-</sup>  $\rightarrow$  2H<sub>2</sub>O), so the flow rate is:

byproduct(H<sub>2</sub>O) = 
$$\frac{I \times M \times t \times FE}{n \times F \times 1 hr}$$
  
=  $\frac{5000000 A \times 18 \text{ g/mol} \times 3600 \text{ s} \times 1.52\%}{4 \times 96485 \text{ C/mol} \times 1 hr} \times 2 = 25521.065 \text{ g/hr}$   
= 25.521 kg/hr

The cathode needs to separate 4461.82 kg/hr 70 wt% H<sub>2</sub>O<sub>2</sub>, that is, the amount of H<sub>2</sub>O required is:

The cathode theory requires 
$$H_2 0 = 4461.82 \text{ kg/hr} \times (1 - 70\%)$$

= 1338.546 kg/hr

Because the byproduct is H<sub>2</sub>O:

The actual need to replenish 
$$H_2O = 1338.546$$
 kg/hr  $- 25.521$ kg/hr

Because both the main and the side reactions consume O<sub>2</sub>, the theoretical value of

O<sub>2</sub> required in 1 hour is:

The consumption of oxygen 
$$= \frac{m_{H_2O_2} \times M_{O_2}}{M_{H_2O_2}} \times 1 + \frac{m_{H_2O} \times M_{O_2}}{M_{H_2O}} \times \frac{1}{2}$$
$$= \frac{4461.82 \text{ kg/hr} \times 0.7 \times 32 \text{ g/mol}}{34 \text{ g/mol}} \times 1$$
$$+ \frac{25.521 \text{ kg/hr} \times 32 \text{ g/mol}}{18 \text{ g/mol}} \times \frac{1}{2} = 2962.238 \text{ kg/hr}$$

The H<sub>2</sub>O consumption for the anodic OER reaction is:

Anode(H<sub>2</sub>O) = 
$$\frac{I \times M \times t \times 2}{n \times F}$$
 =  $\frac{5000000 \text{ A} \times 18 \text{ g/mol} \times 3600 \text{ s} \times 2}{4 \times 96485 \text{ g/mol} \times 1 \text{ hr}}$   
= 1679017.464 g/hr = 1679.017 kg/hr

The O<sub>2</sub> for the anodic OER reaction is:

Anode(O<sub>2</sub>) = 
$$\frac{I \times M \times t}{n \times F \times 1 \text{ hr}} = \frac{5000000 \text{ A} \times 32 \text{ g/mol} \times 3600 \text{ s}}{4 \times 96485 \text{ g/mol} \times 1 \text{ hr}}$$
  
= 1492459.968 g/hr = 1492.460 kg/hr

The above calculations consist well with our simulation results (please see Fig. 4 and Table S9), thus confirming the accuracy of the simulation models.

## **3.3 Calculation of capital input cost**

From the DOE H<sub>2</sub>A analysis for central grid electrolysis, the electrolysis cost for the stack component is \$1619 m<sup>-2</sup>. So we set the instillation factor as 1.2. Consequently, the cost for the reference electrolysis is:

Electrolyzer cost = 500 m<sup>2</sup> × 
$$\frac{\$1619}{m^2}$$
 × 1.2 = \$971400

From the  $H_2A$ , the balance of plant capital cost is 35% of the total cost, while the stack is 65%:

Bop capital cost = 
$$971400 \times \frac{0.35}{0.65} = 523061.539$$

The capital cost of membrane separation is estimated based on distillation.

Membrane separation cost = 
$$10664000 \times (\frac{428.509 \text{ L/min}}{1000 \text{ L/min}})^{0.7} \times 0.7$$
  
=  $4124578.851$ 

We depreciate the cost of fixed capital to each year with a period of 20 years of project operation, and the interest rate is 3.25%.

Depreciation of fixed capital

$$=\frac{(\$971400 + \$523061.539 + \$4124578.851) \times 3.25\%}{1 - \frac{1}{(1+3.25\%)^{20}}}$$
  
= \\$386478.204/year

# **3.4 Calculation of operating costs**

Commonly, the operation duration is 8000 hrs for each year, and the rest is used for equipment maintenance. Consequently, we simulate the energy consumption of various operations including heat exchanger, pump and compressor. The running results of operation cost are shown in Table S9-S12. Specifically, Assuming its price is 3 cents per kWh<sup>8,9</sup>, the electricity cost is calculated according to the electricity demand and price:

Electricity cost = 25141.152 kW × 
$$\frac{\$0.03}{kWh}$$
 × 8000  $\frac{h}{year}$  = \$6033876.48/year

The maintenance cost is assumed 2.5% of capital cost per year (from H<sub>2</sub>A):

Given the industrial  $O_2$  price set to be about < 0.1/kg (source: https://www.intratec.us/chemical-markets/oxygen-price), the total cost of  $O_2$  is:

$$O_2 \cos t = 2962 \text{ kg/hr} \times \$0.1/\text{kg} \times 8000 \text{ hr/year} = \$2369600/\text{year}$$

The industrial water is about \$0.00191/gallon or \$0.0005046/kg (https://www.fbgtx.org/673/Industrial-Water-Rates). The cost of water is:

The operating cost of membrane separation is:

According to the average wage of the American manufacturing industry, it is estimated that the labor cost in the first year will be \$500000, and the annual wage will increase by 5%. Therefore, the total labor cost for 20 years is \$16532977.05.

The cost price of H<sub>2</sub>O<sub>2</sub> is (Table S10):

The cost price of  $H_2O_2$ 

|   | $\left(\frac{\$386478.20}{\text{year}}\right)$ | $\frac{14}{14} + \frac{6033876.48}{\text{year}}$ | $+\frac{\$9661.955}{year}$ -                | +                               | + <u>\$14217.610</u> +<br>year + | 412457.88<br>year | $\left(\frac{51}{2}\right) \times 20$ year |
|---|------------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------------------|----------------------------------|-------------------|--------------------------------------------|
| _ |                                                |                                                  | + \$                                        | 16532977                        | .05                              |                   |                                            |
| - |                                                |                                                  | $\frac{4463 \text{kg}}{\text{h}} \times 70$ | $0\% \times \frac{8000h}{year}$ | × 20 year                        |                   |                                            |
| = | \$0.40 kg <sup>-</sup>                         | 1                                                |                                             |                                 |                                  |                   |                                            |

The is given by the product revenue minus operating costs, and 25% tax. The market price of 70 wt%  $H_2O_2$  is reported as \$0.556/kg.

First – year profit

$$= \left(\frac{4463 \text{kg}}{\text{h}} \times \frac{\$0.556}{\text{kg}} \times \frac{\$000 \text{h}}{\text{year}} - \frac{\$386478.204}{\text{year}} - \frac{\$6033876.48}{\text{year}} \right)$$
$$- \frac{\$9661.955}{\text{year}} - \frac{\$2369600}{\text{year}} - \frac{\$14217.610}{\text{year}} - \frac{\$412457.8851}{\text{year}}$$
$$- \$500000 \times (1 - 25\%) = \$7593848.899$$

Finally, the payback time should be:

payback time = 
$$\frac{\$386478.204 \times 20}{\$7593848.899/year} = 1$$
 year

In addition, The FNPV is analyzed, indicating that the scheme is feasible and the investment benefit is good (Table S11).

$$FNPV = \sum_{t=0}^{n} (Cl - CO)_{t} \times (1 + i)^{-t}$$

Where Cl is the present value of future cash flow, CO is the present value of the original investment, *i* is the discount rate, and *t* is the duration.

In addition, our on-site power generation method does not require transportation and storage costs. In contrast, the H<sub>2</sub>O<sub>2</sub> cost of the traditional industrial anthraquinone production process without transportation and storage cost is about \$1.5/kg (http://www.h2o2.com/faqs/FaqDetail.aspx?fId=25). Therefore, we can conclude that our strategy is competitive with the current anthraquinone method for H<sub>2</sub>O<sub>2</sub> production.

# **II. Supplementary Results**



**Fig. S1** Transmission electron microscopy (TEM) images of S-ZnO crystal (scale bar: 100 nm for a; 200 nm for b).



Fig. S2 Transmission electron microscopy (TEM) images of M-ZnO crystal (scale bar: 500 nm for a; 200 nm for b).



**Fig. S3** Transmission electron microscopy (TEM) images of L-ZnO crystal (scale bar: 500 nm for a, b).



Fig. S4 XRD patterns of S-, M- and L-ZnO crystals.



Fig. S5 X-ray photoelectron spectroscopy (XPS) survey of S-, M- and L-ZnO crystals.



Fig. S6 X-ray photoelectron spectroscopy (XPS) Zn 2p spectra of S-, M- and L-ZnO crystals.



Fig. S7 X-ray photoelectron spectroscopy (XPS) O 1s spectra of S-, M- and L-ZnO crystals.



Fig. S8 Optical image of rotating ring-disk electrode (RRDE) setup.



Fig. S9 The H<sub>2</sub>O<sub>2</sub> molar selectivity of S-, M- and L-ZnO evaluated by RRDE.



**Fig. S10** The H<sub>2</sub>O<sub>2</sub> Faradaic efficiencies (FE) of S-, M- and L-ZnO evaluated by RRDE.



**Fig. S11** Electric double layer capacitances of L-ZnO electrode in Ar- and O<sub>2</sub>saturated 0.6 M K<sub>2</sub>SO<sub>4</sub> electrolytes. (a, c) CVs measured at different scan rates from 100 to 200 mV s<sup>-1</sup> at the potential range of 0.631~0.731 V (*vs.* RHE); (b, d) the corresponding current densities at 0.681 V (*vs.* RHE) plotted against scan rates.

# Supplementary note.

The capacitances of L-ZnO electrode under Ar- and O<sub>2</sub>-saturated 0.6 M K<sub>2</sub>SO<sub>4</sub> were evaluated on the basis of CVs. The CVs of L-ZnO in Ar and O<sub>2</sub> display analogous rectangular shape of electrical double layer capacitor at the potential range of 0.631-0.731 V (*vs.* RHE). The plots of current density against scan rate show the linear relationship, and the slopes are the double layer capacitances. The values of double layer capacitances are 0.81 and 0.84 mF cm<sup>-2</sup> for L-ZnO electrode under Ar and O<sub>2</sub>, respectively.



**Fig. S12** The H<sub>2</sub>O<sub>2</sub> yield rates and Faradaic efficiencies (FE) of S-ZnO calculated by chronopotentiometry test in flow-type cell.



Fig. S13 The H<sub>2</sub>O<sub>2</sub> yield rates and Faradaic efficiencies (FE) of M-ZnO calculated by chronopotentiometry test in flow-type cell.



**Fig. S14** The H<sub>2</sub>O<sub>2</sub> yield rates and Faradaic efficiencies (FE) of L-ZnO calculated by chronopotentiometry test in flow-type cell.



**Fig. S15** The gas chromatography (GC) analyses of gaseous products collected from chronopotentiometric ORR test of L-ZnO electrode at 1 A cm<sup>-2</sup>.



Fig. S16 The XRD patterns of L-ZnO electrode before and after chronopotentiometry tests at 1 A cm<sup>-2</sup>.



**Fig. S17** The morphological characterizations of L-ZnO electrode after chronopotentiometry test at 1 A cm<sup>-2</sup>. (a) Transmission electron microscopy (TEM) image (scale bar: 500 nm); (b) High-resolution transmission electron microscopy (HRTEM) image (scale bar: 5 nm); (c) Lattice spacing showing in HRTEM image.



**Fig. S18** The X-ray photoelectron spectra (XPS) of L-ZnO electrode before and after chronopotentiometry tests at 1 A cm<sup>-2</sup>. (a) overall survey; (b) Zn 2p; (c) O 1s.



Fig. S19 The comparison of Gibbs free energy changes of L-ZnO (a) and S-ZnO (b).



**Fig. S20** The relative peak intensities of \*O<sub>2</sub> and \*OOH as a function of potentials for S- and M-ZnO.



**Fig. S21** Calibration curve for hydrogen peroxide measured by a traditional titration method in 0.6 M K<sub>2</sub>SO<sub>4</sub> electrolyte. (a) The standard UV-Vis adsorption spectra of H<sub>2</sub>TiO<sub>4</sub> with different H<sub>2</sub>O<sub>2</sub> concentrations; (b) Calibration curve used for estimation of H<sub>2</sub>O<sub>2</sub> concentrations.



Fig. S22 Model of ACM electrolysis.



Fig. S23 Flowsheet of the process simulations for H<sub>2</sub>O<sub>2</sub> production.



Fig. S24 FNPV analysis for L-ZnO at different current densities.



**Fig. S25** Schematic diagram of Route 2 (the circulation of oxygen produced by the anode to cathode by using molecular sieve).

| Current densities<br>(A cm <sup>-2</sup> ) | L-ZnO<br>(%) | M-ZnO<br>(%) | S-ZnO<br>(%) |
|--------------------------------------------|--------------|--------------|--------------|
| 0.05                                       | 96.23        | 91.28        | 77.96        |
| 0.1                                        | 96.38        | 89.71        | 77.22        |
| 0.2                                        | 96.62        | 89.52        | 76.99        |
| 0.3                                        | 95.54        | 85.16        | 76.21        |
| 0.4                                        | 95.48        | 85.37        | 75.60        |
| 0.5                                        | 95.08        | 86.85        | 75.51        |
| 0.6                                        | 95.66        | 86.12        | 76.04        |
| 0.7                                        | 96.76        | 86.31        | 79.46        |
| 0.8                                        | 98.46        | 86.72        | 79.19        |
| 0.9                                        | 98.84        | 88.62        | 80.86        |
| 1.0                                        | 98.48        | 85.85        | 81.56        |
| 1.1                                        | 95.72        | 84.78        | 76.16        |
| 1.2                                        | 92.56        | 82.27        | 74.31        |
| 1.3                                        | 91.06        | 80.30        | 72.07        |

**Table S1.** The comparison of Faradaic efficiencies (FE) of different ZnO samples in 0.6 M K<sub>2</sub>SO<sub>4</sub> electrolyte.

| Current densities<br>(A cm <sup>-2</sup> ) | L-ZnO<br>(mg h <sup>-1</sup> cm <sup>-2</sup> ) | M-ZnO<br>(mg h <sup>-1</sup> cm <sup>-2</sup> ) | S-ZnO<br>(mg h <sup>-1</sup> cm <sup>-2</sup> ) |
|--------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| 0.05                                       | 30.50                                           | 28.93                                           | 24.71                                           |
| 0.1                                        | 61.09                                           | 56.86                                           | 48.94                                           |
| 0.2                                        | 122.48                                          | 113.47                                          | 97.59                                           |
| 0.3                                        | 181.68                                          | 161.92                                          | 144.92                                          |
| 0.4                                        | 242.07                                          | 216.44                                          | 191.68                                          |
| 0.5                                        | 301.32                                          | 275.24                                          | 239.29                                          |
| 0.6                                        | 363.76                                          | 327.52                                          | 289.15                                          |
| 0.7                                        | 429.32                                          | 382.92                                          | 352.54                                          |
| 0.8                                        | 499.23                                          | 439.68                                          | 401.51                                          |
| 0.9                                        | 563.78                                          | 505.53                                          | 461.24                                          |
| 1.0                                        | 624.15                                          | 544.15                                          | 516.96                                          |
| 1.1                                        | 667.36                                          | 591.05                                          | 530.98                                          |
| 1.2                                        | 704.02                                          | 625.69                                          | 565.11                                          |
| 1.3                                        | 750.29                                          | 661.70                                          | 593.84                                          |

**Table S2.** The comparison of  $H_2O_2$  yield rates of ZnO samples in 0.6 M K<sub>2</sub>SO<sub>4</sub> electrolyte.

| Catalyst                                                             | Electrol<br>yte                           | H <sub>2</sub> O <sub>2</sub> yield<br>(mg cm <sup>-2</sup> h <sup>-1</sup> ) | Faradaic<br>efficiency (%) | <i>j</i><br>(mA cm <sup>-2</sup> ) | References                                                              |
|----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|----------------------------|------------------------------------|-------------------------------------------------------------------------|
| L-ZnO                                                                | 0.6 M<br>K <sub>2</sub> SO <sub>4</sub>   | 624.15                                                                        | 98.48                      | 1000                               | This work                                                               |
| B-C <sup>10</sup>                                                    | 1 M<br>Na2SO4                             | N/A                                                                           | 83.2                       | 300                                | Nat.<br>Commun.<br>2021, <b>12</b> ,<br>4225                            |
| Natural air<br>diffusion<br>electrode<br>(NADE) <sup>11</sup>        | 0.05 M<br>Na2SO4                          | 101.67                                                                        | 66.8                       | 240                                | Nat.<br>Commun.<br>2020, <b>11</b> ,<br>1731                            |
| Co SACs <sup>12</sup>                                                | 0.5 M<br>NaCl<br>(O <sub>2</sub> )        | 47.813                                                                        | 95.6                       | 50                                 | <i>Energy</i><br><i>Environ. Sci.</i><br>2021, <b>14</b> ,<br>5444-5456 |
| Co SACs <sup>12</sup>                                                | SACs <sup>12</sup> 0.5 M<br>NaCl<br>(air) |                                                                               | 72.4                       | 50                                 | <i>Energy</i><br><i>Environ. Sci.</i><br>2021, <b>14</b> ,<br>5444-5456 |
| N-doped<br>mesoporou<br>s carbon<br>(N-doped<br>CMK-3) <sup>13</sup> | 0.1 M<br>K2SO4                            | 18.601                                                                        | > 70                       | 3.0 in<br>RRDE                     | ACS Catal.<br>2018, <b>8</b> ,<br>2844-2856                             |
| N-doped<br>carbon<br>nanohorns<br>(g-N-<br>CNHs) <sup>14</sup>       | 0.1 M<br>PBS                              | 1.428                                                                         | ~ 90                       | ~ 0.5 in<br>RRDE                   | <i>Chem</i> 2018, <b>4</b> , 106-123                                    |
| O-CNTs <sup>15</sup>                                                 | 0.1 M<br>PBS                              | N/A                                                                           | ~ 85                       | ~ 1.62 in<br>RRDE                  | <i>Nat. Catal.</i><br>2018, <b>1</b> , 156-<br>162                      |
| <i>a</i> -PdSe <sub>2</sub><br>NPs/C <sup>16</sup>                   | 0.1 M<br>Na2SO4                           | 17.3088                                                                       | 96.3                       | 50                                 | <i>Adv. Mater.</i> 2023, <b>35</b> , 2208101                            |
| Ni <sub>3</sub> HAB <sub>2</sub> <sup>17</sup>                       | 0.05 M<br>NaPi                            | 13.24                                                                         | 73                         | 8.0                                | J. Am. Chem.<br>Soc. 2022,<br><b>144</b> , 15845-<br>15854              |
| CoPc-<br>OCNT <sup>18</sup>                                          | 0.3 M<br>K <sub>2</sub> SO <sub>4</sub>   | 195.959                                                                       | 96                         | 300                                | <i>Nat.</i><br><i>Commun.</i><br>2023, <b>14</b> , 172                  |
| Ni <sub>2-x</sub> P-V <sub>Ni</sub> <sup>19</sup>                    | 0.1 M<br>PBS                              | 1.3158                                                                        | 91.5                       | 14.91                              | <i>Adv. Mater.</i> 2022, <b>34</b> , 2106541                            |
| Co-rPB-1<br>(6) <sup>20</sup>                                        | 0.1 M<br>PBS                              | N/A                                                                           | > 90                       | 1.0                                | Angew.<br>Chem. Int.                                                    |

**Table S3.** The comparison of ZnO samples with the state-of-the art electrocatalysts.

|                                                                      |                 |       |      |                | <i>Ed.</i> 2020, <b>59</b> , 4902-4907                                    |
|----------------------------------------------------------------------|-----------------|-------|------|----------------|---------------------------------------------------------------------------|
| Fe-CNT <sup>21</sup>                                                 | 0.1 M<br>PBS    | 6.913 | > 80 | 20             | Nat.<br>Commun.<br>2019, <b>10</b> ,<br>3997                              |
| MCHS <sup>22</sup>                                                   | 0.1 M<br>PBS    | N/A   | > 90 | 3.0 in<br>RRDE | ACS Catal.<br>2020, <b>10</b> ,<br>7434-7442                              |
| Pd <sub>17</sub> Se <sub>15</sub> Pd <sub>3</sub><br>B <sup>23</sup> | 0.1 M<br>KPi    | N/A   | ~ 90 | -5.0           | Applied<br>Catalysis B:<br>Environmenta<br>l 2022, <b>309</b> ,<br>121265 |
| O-C (Al) <sup>24</sup>                                               | 0.5 M<br>Na2SO4 | 17.34 | ~ 92 | 30             | <i>Nat.</i><br><i>Commun.</i><br>2020, <b>11</b> ,<br>5478                |

**Table S4.** The inductively coupled plasma mass spectroscopy (ICP-MS) analysis of Zn percentages in L-ZnO before and after chronopotentiometry test at the current density of  $1 \text{ A cm}^{-2}$ .

| Test element | Test solution<br>element<br>concentrations<br>(µg L <sup>-1</sup> ) | Dilution<br>ratios | Elemental<br>concentrations of the<br>original solution of the<br>digestion (μg L <sup>-1</sup> ) | Sample element<br>contents (%) |
|--------------|---------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------|--------------------------------|
| Before test  | 170.616                                                             | 10000              | 1706163                                                                                           | 73.54                          |
| After test   | 117.839                                                             | 10000              | 1178392                                                                                           | 72.03                          |

| Entry           | Total Energy<br>(eV) | Energy of<br>*OOH (eV) | Energy of substrate (eV) | Adsorption<br>energy (eV) |
|-----------------|----------------------|------------------------|--------------------------|---------------------------|
| L-ZnO +<br>*OOH | -693.1908            | -13.8559               | -678.8265                | -0.5084                   |
| S-ZnO +<br>*OOH | -280.2802            | -13.8559               | -267.1229                | 0.6983                    |

**Table S5.** The comparison of the adsorption energies of \*OOH between L-/S-ZnO.

| Entry      | Total Energy<br>(eV) | Energy of *O<br>(eV) | Energy of<br>substrate (eV) | Adsorption<br>energy (eV) |
|------------|----------------------|----------------------|-----------------------------|---------------------------|
| L-ZnO + *O | -683.4017            | -3.9190              | -678.8265                   | 0.6562                    |
| S-ZnO + *O | -271.1171            | -3.9190              | -267.122911                 | -0.0752                   |

**Table S6.** The comparison of the adsorption energies of \*O between L- and S-ZnO.

| Entry | + *OOH  | + *O    |
|-------|---------|---------|
| L-ZnO | -0.5084 | 0.6562  |
| S-ZnO | 0.6983  | -0.0752 |

**Table S7.** The comparison of the formation energies of \*OOH and \*O between L-and S-ZnO.

| stream  | Components  | Temperature (°C) | Pressure<br>(atm) | Flow (kg/hr) |
|---------|-------------|------------------|-------------------|--------------|
| Anode   | 0.6 M K2SO4 | 20               | 1                 | 25000        |
| Cathode | 0.6 M K2SO4 | 20               | 1                 | 25000        |
| Gas     | 0.6 M K2SO4 | 25               | 1                 | 15000        |

 Table S8. The input of streams for techno-economic assessment.

| Curr<br>ent<br>densi<br>ties<br>(A<br>cm <sup>-2</sup> ) | Poten<br>tial<br>(V) | mater<br>ial | FE<br>(%) | H2O2<br>produ<br>ction<br>(70wt<br>%,<br>kg/hr) | H2O<br>consu<br>mptio<br>n of<br>anode<br>(kg/h) | H2O<br>consu<br>mptio<br>n of<br>catho<br>de<br>(kg/h) | O2<br>consu<br>mptio<br>n of<br>catho<br>de<br>(kg/h) | Electrol<br>ytic<br>power<br>(kW) | Current<br>(A) | Elec<br>trol<br>ytic<br>area<br>(m <sup>2</sup> ) | Anod<br>e<br>cycle<br>power<br>(kW) | Catho<br>de<br>cycle<br>power<br>(kW) | O2<br>cycle<br>power<br>(kW) | Electrol<br>yte<br>cooling<br>power<br>of<br>Anode<br>(kW) | Electrol<br>yte<br>cooling<br>power<br>of<br>cathode<br>(kW) | Cooli<br>ng<br>power<br>of<br>H2O2<br>(kW) | Cooling<br>power<br>of O <sub>2</sub><br>(kW) | Memb<br>rane<br>separa<br>tion<br>power<br>(kW) |
|----------------------------------------------------------|----------------------|--------------|-----------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------|----------------|---------------------------------------------------|-------------------------------------|---------------------------------------|------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-------------------------------------------------|
| -0.05                                                    | -2.0847              | L-ZnO        | 96.23     | 218                                             | 84                                               | 63                                                     | 146                                                   | 521.175                           | 250000         | 500                                               | 3.071                               | 3.091                                 | 843.881                      | 106.815                                                    | 108.22                                                       | 0.742                                      | 801.81                                        | 1.866                                           |
| -0.1                                                     | -2.2798              | L-ZnO        | 96.38     | 437                                             | 174                                              | 125                                                    | 293                                                   | 1139.9                            | 500000         | 500                                               | 3.089                               | 3.13                                  | 853.893                      | 284.927                                                    | 289.248                                                      | 3.974                                      | 837.587                                       | 3.732                                           |
| -0.2                                                     | -2.6026              | L-ZnO        | 96.62     | 876                                             | 359                                              | 251                                                    | 587                                                   | 2602.6                            | 1000000        | 500                                               | 3.126                               | 3.215                                 | 874.363                      | 647.605                                                    | 667.049                                                      | 18.365                                     | 910.463                                       | 7.449                                           |
| -0.3                                                     | -2.875               | L-ZnO        | 95.55     | 1298                                            | 564                                              | 366                                                    | 876                                                   | 4312.5                            | 1500000        | 500                                               | 3.156                               | 3.289                                 | 889.594                      | 949.895                                                    | 1001.722                                                     | 40.875                                     | 970.659                                       | 11.007                                          |
| -0.4                                                     | -3.1611              | L-ZnO        | 95.48     | 1731                                            | 802                                              | 489                                                    | 1167                                                  | 6322.2                            | 2000000        | 500                                               | 3.18                                | 3.361                                 | 896.907                      | 1163.27                                                    | 1268.538                                                     | 69.051                                     | 1012.289                                      | 14.536                                          |
| -0.5                                                     | -3.2386              | L-ZnO        | 95.08     | 2157                                            | 1042                                             | 608                                                    | 1456                                                  | 8096.5                            | 2500000        | 500                                               | 3.193                               | 3.418                                 | 892.72                       | 1259.995                                                   | 1419.209                                                     | 96.403                                     | 1026.145                                      | 17.881                                          |
| -0.6                                                     | -3.4858              | L-ZnO        | 95.66     | 2596                                            | 1293                                             | 732                                                    | 1752                                                  | 10457.4                           | 3000000        | 500                                               | 3.195                               | 3.475                                 | 886.177                      | 1328.793                                                   | 1555.485                                                     | 127.098                                    | 1035.005                                      | 21.462                                          |
| -0.7                                                     | -3.5898              | L-ZnO        | 96.76     | 3070                                            | 1531                                             | 883                                                    | 2056                                                  | 12564.3                           | 3500000        | 500                                               | 3.206                               | 3.53                                  | 873.617                      | 1358.771                                                   | 1633.759                                                     | 158.006                                    | 1029.976                                      | 24.938                                          |
| -0.8                                                     | -3.7195              | L-ZnO        | 98.46     | 3564                                            | 1762                                             | 1044                                                   | 2369                                                  | 14878                             | 4000000        | 500                                               | 3.198                               | 3.586                                 | 858.653                      | 1367.177                                                   | 1695.505                                                     | 190.242                                    | 1020.026                                      | 28.701                                          |
| -0.9                                                     | -3.9041              | L-ZnO        | 98.84     | 4029                                            | 1992                                             | 1188                                                   | 2671                                                  | 17568.45                          | 4500000        | 500                                               | 3.202                               | 3.637                                 | 843.606                      | 1376.037                                                   | 1750.549                                                     | 222.063                                    | 1008.83                                       | 31.987                                          |
| -1                                                       | -3.9726              | L-ZnO        | 98.48     | 4463                                            | 2207                                             | 1315                                                   | 2962                                                  | 19863                             | 5000000        | 500                                               | 3.201                               | 3.689                                 | 827.498                      | 1373.117                                                   | 1789.491                                                     | 252.042                                    | 994.248                                       | 34.866                                          |
| -1.1                                                     | -4.4653              | L-ZnO        | 95.72     | 4769                                            | 2452                                             | 1349                                                   | 3212                                                  | 24559.15                          | 5500000        | 500                                               | 3.204                               | 3.728                                 | 816.91                       | 1388.411                                                   | 1871.355                                                     | 280.805                                    | 989.636                                       | 37.16                                           |
| -1.2                                                     | -4.7117              | L-ZnO        | 92.56     | 5035                                            | 2691                                             | 1360                                                   | 3449                                                  | 28270.2                           | 6000000        | 500                                               | 3.205                               | 3.764                                 | 806.655                      | 1398.618                                                   | 1948.391                                                     | 308.769                                    | 984.554                                       | 38.916                                          |
| -1.3                                                     | -4.9874              | L-ZnO        | 91.06     | 5359                                            | 2986                                             | 1408                                                   | 3707                                                  | 32418.1                           | 6500000        | 500                                               | 3.209                               | 3.81                                  | 799.763                      | 1434.679                                                   | 2089.098                                                     | 352.635                                    | 989.557                                       | 41.26                                           |
| -0.05                                                    | -2.0292              | M-ZnO        | 91.28     | 207                                             | 87                                               | 55                                                     | 143                                                   | 507.3                             | 250000         | 500                                               | 3.071                               | 3.09                                  | 843.825                      | 104.196                                                    | 105.684                                                      | 0.687                                      | 801.376                                       | 1.773                                           |
| -0.1                                                     | -2.3105              | M-ZnO        | 89.71     | 406                                             | 172                                              | 104                                                    | 283                                                   | 1155.25                           | 500000         | 500                                               | 3.094                               | 3.128                                 | 855.581                      | 296.339                                                    | 300.651                                                      | 3.834                                      | 840.8                                         | 3.488                                           |
| -0.2                                                     | -2.7033              | M-ZnO        | 89.52     | 812                                             | 360                                              | 209                                                    | 566                                                   | 2703.3                            | 1000000        | 500                                               | 3.129                               | 3.208                                 | 879.335                      | 683.508                                                    | 704.821                                                      | 18                                         | 920.619                                       | 6.923                                           |
| -0.3                                                     | -3.0214              | M-ZnO        | 85.16     | 1157                                            | 571                                              | 274                                                    | 829                                                   | 4532.1                            | 1500000        | 500                                               | 3.162                               | 3.284                                 | 897.726                      | 998.742                                                    | 1060.838                                                     | 38.574                                     | 986.337                                       | 9.859                                           |
| -0.4                                                     | -3.1435              | M-ZnO        | 85.37     | 1545                                            | 804                                              | 364                                                    | 1107                                                  | 6287                              | 2000000        | 500                                               | 3.18                                | 3.342                                 | 901.331                      | 1167.65                                                    | 1280.448                                                     | 62.25                                      | 1017.933                                      | 13.095                                          |

**Table S9.** Simulated data of L-, M- and S-ZnO for techno-economic assessment.

| -0.5  | -3.3483 | M-ZnO | 86.85 | 1972 | 1050 | 484  | 1394 | 8370.75  | 2500000 | 500 | 3.192 | 3.401 | 899.275 | 1278.566 | 1452.949 | 90.366  | 1036.838 | 16.407 |
|-------|---------|-------|-------|------|------|------|------|----------|---------|-----|-------|-------|---------|----------|----------|---------|----------|--------|
| -0.6  | -3.5889 | M-ZnO | 86.12 | 2345 | 1304 | 566  | 1667 | 10766.7  | 3000000 | 500 | 3.199 | 3.455 | 893.608 | 1342.797 | 1586.424 | 117.218 | 1045.819 | 19.373 |
| -0.7  | -3.8198 | M-ZnO | 86.31 | 2738 | 1547 | 661  | 1946 | 13369.3  | 3500000 | 500 | 3.203 | 3.505 | 883.576 | 1374.126 | 1680.112 | 144.781 | 1044.917 | 22.484 |
| -0.8  | -3.9991 | M-ZnO | 86.72 | 3141 | 1780 | 762  | 2229 | 15996.4  | 4000000 | 500 | 3.204 | 3.553 | 870.571 | 1384.951 | 1745.169 | 172.487 | 1037.118 | 25.577 |
| -0.9  | -4.1885 | M-ZnO | 88.62 | 3616 | 2006 | 914  | 2533 | 18848.25 | 4500000 | 500 | 3.204 | 3.608 | 854.927 | 1388.675 | 1796.713 | 204.307 | 1024.724 | 28.989 |
| -1    | -4.3853 | M-ZnO | 85.85 | 3890 | 2231 | 928  | 2774 | 21926.5  | 5000000 | 500 | 3.209 | 3.637 | 842.955 | 1391.722 | 1847.865 | 226.421 | 1015.863 | 31.001 |
| -1.1  | -4.6821 | M-ZnO | 84.78 | 4228 | 2463 | 988  | 3033 | 25751.55 | 5500000 | 500 | 3.205 | 3.682 | 832.51  | 1395.156 | 1914.378 | 254.657 | 1007.507 | 33.374 |
| -1.2  | -4.9346 | M-ZnO | 82.27 | 4485 | 2712 | 994  | 3264 | 29607.6  | 6000000 | 500 | 3.209 | 3.711 | 821.71  | 1411.754 | 2000.997 | 283.291 | 1005.559 | 35.011 |
| -1.3  | -5.2708 | M-ZnO | 80.3  | 4722 | 3112 | 1230 | 3498 | 34260.2  | 6500000 | 500 | 3.215 | 3.754 | 826.061 | 1489.721 | 2121.708 | 315.218 | 1035.8   | 37.027 |
| -0.05 | -2.0335 | S-ZnO | 77.96 | 177  | 87   | 35   | 133  | 508.375  | 250000  | 500 | 3.071 | 3.088 | 845.062 | 110.782  | 112.514  | 0.625   | 803.514  | 1.514  |
| -0.1  | -2.3123 | S-ZnO | 77.22 | 350  | 174  | 67   | 264  | 1156.15  | 500000  | 500 | 3.091 | 3.124 | 857.726 | 306.227  | 311.946  | 3.434   | 844.397  | 2.998  |
| -0.2  | -2.5679 | S-ZnO | 76.99 | 698  | 357  | 132  | 528  | 2567.9   | 1000000 | 500 | 3.127 | 3.195 | 879.454 | 662.455  | 685.543  | 15.054  | 917.839  | 5.974  |
| -0.3  | -2.8319 | S-ZnO | 76.21 | 1035 | 569  | 190  | 789  | 4247.85  | 1500000 | 500 | 3.155 | 3.259 | 896.313 | 960.826  | 1020.502 | 33.299  | 979.643  | 8.852  |
| -0.4  | -3.0432 | S-ZnO | 75.6  | 1371 | 801  | 248  | 1048 | 6086.4   | 2000000 | 500 | 3.179 | 3.323 | 903.758 | 1156.013 | 1272.115 | 54.96   | 1018.945 | 11.617 |
| -0.5  | -3.2396 | S-ZnO | 75.51 | 1711 | 1048 | 307  | 1310 | 8099     | 2500000 | 500 | 3.191 | 3.374 | 903.634 | 1268.977 | 1450.668 | 78.218  | 1040.313 | 14.422 |
| -0.6  | -3.4505 | S-ZnO | 76.04 | 2065 | 1295 | 376  | 1576 | 10351.5  | 3000000 | 500 | 3.198 | 3.425 | 898.144 | 1331.736 | 1581.871 | 102.898 | 1049.248 | 17.309 |
| -0.7  | -3.7094 | S-ZnO | 79.46 | 2521 | 1541 | 516  | 1875 | 12982.9  | 3500000 | 500 | 3.203 | 3.482 | 887.356 | 1367.322 | 1677.614 | 133.178 | 1048.077 | 20.826 |
| -0.8  | -4.0076 | S-ZnO | 79.19 | 2870 | 1781 | 580  | 2139 | 16030.4  | 4000000 | 500 | 3.204 | 3.529 | 876.713 | 1384.994 | 1759.514 | 158.845 | 1044.453 | 23.528 |
| -0.9  | -4.2973 | S-ZnO | 80.86 | 3291 | 2012 | 691  | 2429 | 19337.85 | 4500000 | 500 | 3.205 | 3.568 | 862.661 | 1392.372 | 1813.884 | 188.214 | 1034.71  | 26.793 |
| -1    | -4.4761 | S-ZnO | 81.56 | 3700 | 2235 | 802  | 2710 | 22380.5  | 5000000 | 500 | 3.205 | 3.625 | 847.814 | 1391.664 | 1866.347 | 217.11  | 1022.258 | 29.588 |
| -1.1  | -4.7448 | S-ZnO | 76.16 | 3796 | 2463 | 699  | 2892 | 26096.4  | 5500000 | 500 | 3.208 | 3.639 | 840.356 | 1397.321 | 1935.674 | 231.331 | 1019.481 | 30.376 |
| -1.2  | -5.1278 | S-ZnO | 74.31 | 4038 | 2736 | 693  | 3122 | 30766.8  | 6000000 | 500 | 3.208 | 3.679 | 834.257 | 1424.035 | 2062.404 | 262.12  | 1022.991 | 32.195 |
| -1.3  | -5.4198 | S-ZnO | 72.07 | 4237 | 3408 | 1477 | 3338 | 35228.7  | 6500000 | 500 | 3.226 | 3.705 | 862.246 | 1587.34  | 2115.716 | 282.262 | 1110.322 | 33.557 |

| Current<br>density<br>(A cm <sup>-2</sup> ) | Material | Equipment<br>cost (\$) | Electricity<br>cost (\$) | O <sub>2</sub> cost<br>(\$) | H <sub>2</sub> O cost<br>(\$) | Maintenance<br>cost (\$) | Separation<br>cost (\$) | Labor cost<br>(\$) | Total cost<br>(\$) | 70 wt%<br>H2O2<br>production<br>(kg) | H2O2<br>production<br>(kg) | H2O2<br>average<br>cost (\$/kg) |
|---------------------------------------------|----------|------------------------|--------------------------|-----------------------------|-------------------------------|--------------------------|-------------------------|--------------------|--------------------|--------------------------------------|----------------------------|---------------------------------|
| 0.05                                        | L-ZnO    | 7729564.085            | 11475220.8               | 2336000                     | 11868.192                     | 193239.1021              | 8249357.703             | 16532977.05        | 46528226.93        | 34880000                             | 24416000                   | 1.905644943                     |
| 0.1                                         | L-ZnO    | 7729564.085            | 16413504                 | 4688000                     | 24140.064                     | 193239.1021              | 8249357.703             | 16532977.05        | 53830782.01        | 69920000                             | 48944000                   | 1.099844353                     |
| 0.2                                         | L-ZnO    | 7729564.085            | 27524328                 | 9392000                     | 49248.96                      | 193239.1021              | 8249357.703             | 16532977.05        | 69670714.9         | 140160000                            | 98112000                   | 0.710114103                     |
| 0.3                                         | L-ZnO    | 7729564.085            | 39276945.6               | 14016000                    | 75084.48                      | 193239.1021              | 8249357.703             | 16532977.05        | 86073168.02        | 207680000                            | 145376000                  | 0.592072749                     |
| 0.4                                         | L-ZnO    | 7729564.085            | 51615993.6               | 18672000                    | 104230.176                    | 193239.1021              | 8249357.703             | 16532977.05        | 103097361.7        | 276960000                            | 193872000                  | 0.531780565                     |
| 0.5                                         | L-ZnO    | 7729564.085            | 61514227.2               | 23296000                    | 133214.4                      | 193239.1021              | 8249357.703             | 16532977.05        | 117648579.5        | 345120000                            | 241584000                  | 0.486988292                     |
| 0.6                                         | L-ZnO    | 7729564.085            | 74006832                 | 28032000                    | 163490.4                      | 193239.1021              | 8249357.703             | 16532977.05        | 134907460.3        | 415360000                            | 290752000                  | 0.463994952                     |
| 0.7                                         | L-ZnO    | 7729564.085            | 84720494.4               | 32896000                    | 194896.704                    | 193239.1021              | 8249357.703             | 16532977.05        | 150516529          | 491200000                            | 343840000                  | 0.437751655                     |
| 0.8                                         | L-ZnO    | 7729564.085            | 96216422.4               | 37904000                    | 226545.216                    | 193239.1021              | 8249357.703             | 16532977.05        | 167052105.6        | 570240000                            | 399168000                  | 0.418500745                     |
| 0.9                                         | L-ZnO    | 7729564.085            | 109480132.8              | 42736000                    | 256740.48                     | 193239.1021              | 8249357.703             | 16532977.05        | 185178011.2        | 644640000                            | 451248000                  | 0.410368603                     |
| 1                                           | L-ZnO    | 7729564.085            | 120677529.6              | 47392000                    | 285078.816                    | 193239.1021              | 8249357.703             | 16532977.05        | 201059746.4        | 714080000                            | 499856000                  | 0.402235336                     |
| 1.1                                         | L-ZnO    | 7729564.085            | 143761723.2              | 51392000                    | 306877.536                    | 193239.1021              | 8249357.703             | 16532977.05        | 228165738.7        | 763040000                            | 534128000                  | 0.42717427                      |
| 1.2                                         | L-ZnO    | 7729564.085            | 162062745.6              | 55184000                    | 327061.536                    | 193239.1021              | 8249357.703             | 16532977.05        | 250278945.1        | 805600000                            | 563920000                  | 0.443819948                     |
| 1.3                                         | L-ZnO    | 7729564.085            | 183034132.8              | 59312000                    | 354753.984                    | 193239.1021              | 8249357.703             | 16532977.05        | 275406024.7        | 857440000                            | 600208000                  | 0.458850973                     |
| 0.05                                        | M-ZnO    | 7729564.085            | 11380809.6               | 2288000                     | 11848.008                     | 193239.1021              | 8249357.703             | 16532977.05        | 46385795.55        | 33120000                             | 23184000                   | 2.000767579                     |
| 0.1                                         | M-ZnO    | 7729564.085            | 16618392                 | 4528000                     | 22283.136                     | 193239.1021              | 8249357.703             | 16532977.05        | 53873813.08        | 64960000                             | 45472000                   | 1.184768936                     |
| 0.2                                         | M-ZnO    | 7729564.085            | 28429646.4               | 9056000                     | 45938.784                     | 193239.1021              | 8249357.703             | 16532977.05        | 70236723.13        | 129920000                            | 90944000                   | 0.772307388                     |
| 0.3                                         | M-ZnO    | 7729564.085            | 40946985.6               | 13264000                    | 68221.92                      | 193239.1021              | 8249357.703             | 16532977.05        | 86984345.46        | 185120000                            | 129584000                  | 0.671258377                     |
| 0.4                                         | M-ZnO    | 7729564.085            | 51533899.2               | 17712000                    | 94299.648                     | 193239.1021              | 8249357.703             | 16532977.05        | 102045336.8        | 247200000                            | 173040000                  | 0.589721086                     |
| 0.5                                         | M-ZnO    | 7729564.085            | 63128371.2               | 22304000                    | 123849.024                    | 193239.1021              | 8249357.703             | 16532977.05        | 118261358.2        | 315520000                            | 220864000                  | 0.535448775                     |
| 0.6                                         | M-ZnO    | 7729564.085            | 75737246.4               | 26672000                    | 150976.32                     | 193239.1021              | 8249357.703             | 16532977.05        | 135265360.7        | 375200000                            | 262640000                  | 0.515021934                     |
| 0.7                                         | M-ZnO    | 7729564.085            | 88924819.2               | 31136000                    | 178265.088                    | 193239.1021              | 8249357.703             | 16532977.05        | 152944222.2        | 438080000                            | 306656000                  | 0.498748507                     |
| 0.8                                         | M-ZnO    | 7729564.085            | 101947344                | 35664000                    | 205230.912                    | 193239.1021              | 8249357.703             | 16532977.05        | 170521712.9        | 502560000                            | 351792000                  | 0.484723112                     |

 $\label{eq:table_state} \textbf{Table S10.} \ H_2O_2 \ production \ costs \ under \ various \ current \ densities.$ 

| 0.9  | M-ZnO | 7729564.085 | 115936305.6 | 40528000 | 235749.12  | 193239.1021 | 8249357.703 | 16532977.05 | 189405192.7 | 578560000 | 404992000 | 0.46767638  |
|------|-------|-------------|-------------|----------|------------|-------------|-------------|-------------|-------------|-----------|-----------|-------------|
| 1.0  | M-ZnO | 7729564.085 | 130988030.4 | 44384000 | 255045.024 | 193239.1021 | 8249357.703 | 16532977.05 | 208332213.4 | 622400000 | 435680000 | 0.478177133 |
| 1.1  | M-ZnO | 7729564.085 | 149740891.2 | 48528000 | 278619.936 | 193239.1021 | 8249357.703 | 16532977.05 | 231252649.1 | 676480000 | 473536000 | 0.488352837 |
| 1.2  | M-ZnO | 7729564.085 | 168829641.6 | 52224000 | 299207.616 | 193239.1021 | 8249357.703 | 16532977.05 | 254057987.2 | 717600000 | 502320000 | 0.505769205 |
| 1.3  | M-ZnO | 7729564.085 | 192444979.2 | 55968000 | 350555.712 | 193239.1021 | 8249357.703 | 16532977.05 | 281468672.9 | 755520000 | 528864000 | 0.532213713 |
| 0.05 | S-ZnO | 7729564.085 | 11465016    | 2128000  | 9849.792   | 193239.1021 | 8249357.703 | 16532977.05 | 46308003.73 | 28320000  | 19824000  | 2.335956605 |
| 0.1  | S-ZnO | 7729564.085 | 16747646.4  | 4224000  | 19457.376  | 193239.1021 | 8249357.703 | 16532977.05 | 53696241.72 | 56000000  | 39200000  | 1.369802085 |
| 0.2  | S-ZnO | 7729564.085 | 27554596.8  | 8448000  | 39479.904  | 193239.1021 | 8249357.703 | 16532977.05 | 68747214.65 | 111680000 | 78176000  | 0.879390281 |
| 0.3  | S-ZnO | 7729564.085 | 39137755.2  | 12624000 | 61278.624  | 193239.1021 | 8249357.703 | 16532977.05 | 84528171.77 | 165600000 | 115920000 | 0.729194028 |
| 0.4  | S-ZnO | 7729564.085 | 50449488    | 16768000 | 84692.064  | 193239.1021 | 8249357.703 | 16532977.05 | 100007318   | 219360000 | 153552000 | 0.651292839 |
| 0.5  | S-ZnO | 7729564.085 | 61736625.6  | 20960000 | 109397.28  | 193239.1021 | 8249357.703 | 16532977.05 | 115511160.8 | 273760000 | 191632000 | 0.60277595  |
| 0.6  | S-ZnO | 7729564.085 | 73628779.2  | 25216000 | 134909.856 | 193239.1021 | 8249357.703 | 16532977.05 | 131684827   | 330400000 | 231280000 | 0.569374036 |
| 0.7  | S-ZnO | 7729564.085 | 86994998.4  | 3000000  | 166073.952 | 193239.1021 | 8249357.703 | 16532977.05 | 149866210.3 | 403360000 | 282352000 | 0.530777931 |
| 0.8  | S-ZnO | 7729564.085 | 102168864   | 34224000 | 190617.696 | 193239.1021 | 8249357.703 | 16532977.05 | 169288619.6 | 459200000 | 321440000 | 0.52665698  |
| 0.9  | S-ZnO | 7729564.085 | 118383633.6 | 38864000 | 218229.408 | 193239.1021 | 8249357.703 | 16532977.05 | 190171001   | 526560000 | 368592000 | 0.515939035 |
| 1.0  | S-ZnO | 7729564.085 | 133258132.8 | 43360000 | 245195.232 | 193239.1021 | 8249357.703 | 16532977.05 | 209568466   | 592000000 | 414400000 | 0.50571541  |
| 1.1  | S-ZnO | 7729564.085 | 151477372.8 | 46272000 | 255287.232 | 193239.1021 | 8249357.703 | 16532977.05 | 230709798   | 607360000 | 425152000 | 0.542652505 |
| 1.2  | S-ZnO | 7729564.085 | 174776107.2 | 49952000 | 276843.744 | 193239.1021 | 8249357.703 | 16532977.05 | 257710088.9 | 646080000 | 452256000 | 0.569832327 |
| 1.3  | S-ZnO | 7729564.085 | 197889955.2 | 53408000 | 394395.36  | 193239.1021 | 8249357.703 | 16532977.05 | 284397488.5 | 677920000 | 474544000 | 0.599306889 |

| J (A<br>cm <sup>-2</sup> )<br>Time<br>(year) | 1.3                  | 1.2                  | 1.1                  | -1                   | -0.9            | -0.8            | -0.7            | -0.6            | -0.5        | -0.4        | -0.3        | -0.2                 | -0.1                 | -0.05                |
|----------------------------------------------|----------------------|----------------------|----------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-------------|-------------|-------------|----------------------|----------------------|----------------------|
| 0                                            | -<br>7729564.<br>085 | -<br>7729564.<br>085 | -<br>772956<br>4.085 | -<br>7729564.<br>085 | -<br>7,729,564  | -7,729,564      | -7,729,564      | -7,729,564      | -7,729,564  | -7,729,564  | -7,729,564  | -7,729,564           | -7,729,564           | -7,729,564           |
| 1                                            | -<br>43418.65<br>779 | -<br>174594.3<br>846 | -<br>229281.<br>4577 | 232612.9<br>24       | 1,043,212       | -1,872,049      | -2,849,746      | -3,797,041      | -4,574,304  | -5,406,998  | -6,173,594  | -6,927,475           | -7,755,414           | -8,189,847           |
| 2                                            | 6996802.<br>699      | 6740697.<br>708      | 663392<br>7.708      | 6627423.<br>417      | 5,044,826       | 3,426,621       | 1,517,782       | -331,699        | -1,849,211  | -3,474,948  | -4,971,636  | -6,443,498           | -8,059,950           | -8,908,128           |
| 3                                            | 13684768<br>.62      | 13309683<br>.37      | 131533<br>10.59      | 13143784<br>.56      | 10,825,95<br>0  | 8,455,965       | 5,660,326       | 2,951,621       | 729,109     | -1,651,907  | -3,843,920  | -5,999,574           | -8,366,991           | -9,609,212           |
| 4                                            | 20037253<br>.16      | 19548853<br>.4       | 193452<br>39.86      | 19332835<br>.99      | 16,314,77<br>5  | 13,228,811      | 9,588,600       | 6,061,585       | 3,167,645   | 67,316      | -2,786,912  | -5,593,796           | -8,676,418           | -<br>10,293,91<br>8  |
| 5                                            | 26070231<br>.64      | 25473913<br>.28      | 252253<br>08.56      | 25210163<br>.88      | 21,525,22<br>1  | 17,757,371      | 13,312,806      | 9,006,449       | 5,473,053   | 1,687,665   | -1,797,244  | -5,224,348           | -8,988,117           | -<br>10,963,02<br>6  |
| 6                                            | 31798918<br>.63      | 31099820<br>.66      | 308083<br>67.18      | 30790612<br>.21      | 26,470,54<br>4  | 22,053,278      | 16,842,662      | 11,794,074      | 7,651,673   | 3,213,847   | -871,710    | -4,889,499           | -9,301,980           | -<br>11,617,27<br>9  |
| 7                                            | 37237804<br>.2       | 36440820<br>.88      | 361085<br>59.06      | 36088318<br>.1       | 31,163,36<br>9  | 26,127,612      | 20,187,422      | 14,431,949      | 9,709,543   | 4,650,347   | -7,256      | -4,587,603           | -9,617,904           | 12,257,38<br>3       |
| 8                                            | 42400688<br>.41      | 41510480<br>.95      | 411393<br>54.05      | 41116745<br>.48      | 35,615,71<br>9  | 29,990,923      | 23,355,902      | 16,927,203      | 11,652,412  | 6,001,435   | 799,027     | -4,317,089           | -9,935,791           | -<br>12,884,01<br>3  |
| 9                                            | 47300714<br>.2       | 46321721<br>.84      | 459135<br>80.58      | 45888717<br>.13      | 39,839,04<br>5  | 33,653,260      | 26,356,495      | 19,286,629      | 13,485,756  | 7,271,179   | 1,549,908   | -4,076,463           | -10,255,548          | -<br>13,497,81<br>0  |
| 10                                           | 51950398<br>.61      | 50886849<br>.21      | 504434<br>56.18      | 50416445<br>.24      | 43,844,25<br>4  | 37,124,194      | 29,197,195      | 21,516,695      | 15,214,792  | 8,463,453   | 2,248,027   | -3,864,303           | -10,577,084          | -<br>14,099,38<br>6  |
| 11                                           | 56361662<br>.68      | 55217582<br>.77      | 547406<br>16.61      | 54711560<br>.45      | 47641731<br>.69 | 40412837.6<br>7 | 31885617.8      | 23623560.4<br>7 | 16844485.64 | 9581944.051 | 2895894.701 | -<br>3679252.43<br>1 | -<br>10900316.0<br>9 | -<br>14689321.<br>7  |
| 12                                           | 60545859<br>.76      | 59325084<br>.11      | 588161<br>43.56      | 58785139<br>.55      | 51241370<br>.4  | 43527872.7<br>3 | 34429013.2<br>8 | 25613092.0<br>9 | 18379568.16 | 10630167.28 | 3495904.975 | -<br>3520020.55<br>6 | 11225162.9<br>5      | -<br>15268172.<br>27 |
| 13                                           | 64513802<br>.55      | 63219983<br>.35      | 626805<br>90.99      | 62647731<br>.9       | 54652590<br>.95 | 46477565.9<br>8 | 36834287.9      | 27490877.3<br>1 | 19824544.7  | 11611468.31 | 4050336.528 | 3385377.95           | 11551547.7           | -<br>15836465.       |

 Table S11. FNPV (\$) analysis of L-ZnO at different current densities.

|    |                          |                 |                 |                 |                 |                 |                 |                 |             |             |             | 3                    | 1                    | 34                   |
|----|--------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------|-------------|-------------|----------------------|----------------------|----------------------|
| 14 | 4 68275788<br>.88        | 66912404<br>.39 | 663440<br>10.31 | 66309384<br>.47 | 57884365<br>.62 | 49269790.8<br>5 | 39108018.8<br>2 | 29262237.3<br>8 | 21183706.04 | 12529033.92 | 4561359.776 | 3274153.70<br>6      | -<br>11879397.1<br>4 | -<br>16394703.<br>63 |
| 15 | <b>5</b> 71841626<br>.21 | 70411989<br>.06 | 698159<br>74.29 | 69779665<br>.83 | 60945239<br>.45 | 51912045.8<br>3 | 41256470.0<br>4 | 30932240.1<br>7 | 22461138.61 | 13385899.13 | 5031041.781 | 3185232.65<br>3      | -<br>12208641.4<br>9 | -<br>16943365.<br>94 |
| 10 | <b>6</b> 75220654<br>.95 | 73727920<br>.04 | 731055<br>99.85 | 73067688<br>.9  | 63843350<br>.59 | 54411472.3<br>4 | 43285607.2<br>6 | 32505712.2<br>2 | 23660734.25 | 14184954.43 | 5461351.174 | -3117552.74          | -<br>12539214.3<br>5 | -<br>17482908.<br>29 |
| 17 | <b>7</b> 78421770<br>.76 | 76868942<br>.74 | 762215<br>69.77 | 76182132<br>.64 | 66586449<br>.63 | 56774871.7<br>4 | 45201112.0<br>9 | 33987250.2<br>2 | 24786199.48 | 14928952.67 | 5854162.84  | 3070102.48<br>2      | -<br>12871052.4<br>4 | -<br>18013764.<br>94 |
| 18 | <b>8</b> 81453445<br>.68 | 79843386<br>.12 | 791721<br>53.37 | 79131262<br>.73 | 69181918<br>.1  | 59008721.5<br>1 | 47008395.6      | 35381231.9<br>9 | 25841064.33 | 15620515.63 | 6211262.386 | -<br>3041918.56<br>3 | -<br>13204095.5<br>3 | -<br>18536349.<br>51 |
| 19 | 9 84323748<br>.33        | 82659182<br>.55 | 819652<br>26.18 | 81922951<br>.25 | 71636786<br>.03 | 61119190.6<br>7 | 48712611.2      | 36691826.8<br>7 | 26828690.72 | 16262140.21 | 6534350.389 | -<br>3032083.53<br>9 | -<br>13538286.2<br>2 | -<br>19051055.<br>9  |
| 2( | 0 87040363<br>.1         | 85323886<br>.62 | 846082<br>88.72 | 84564695<br>.42 | 73957748<br>.69 | 63112154.5      | 50318666.8<br>6 | 37923005.6<br>7 | 27752280.48 | 16856204.44 | 6825046.447 | 3039723.65<br>1      | -<br>13873569.8<br>7 | -<br>19558259.<br>27 |

| Route       | D ( 1        | D ( )        | D ( )        | D ( 4        |  |  |
|-------------|--------------|--------------|--------------|--------------|--|--|
| Time (vear) | Route 1      | Route 2      | Koute 3      | Route 4      |  |  |
| 0           | -7729564.085 | -7729564.085 | -29344318.75 | -30174798.84 |  |  |
| 1           | -232612.924  | 372,790      | -17,527,788  | -17,616,978  |  |  |
| 2           | 6627423.417  | 7,809,401    | -7,289,063   | -6,700,509   |  |  |
| 3           | 13143784.56  | 14,874,881   | 2,445,098    | 3,679,121    |  |  |
| 4           | 19332835.99  | 21,586,902   | 11,698,720   | 13,547,476   |  |  |
| 5           | 25210163.88  | 27,962,297   | 20,494,687   | 22,928,903   |  |  |
| 6           | 30790612.21  | 34,017,094   | 28,854,791   | 31,846,588   |  |  |
| 7           | 36088318.1   | 39,766,561   | 36,799,789   | 40,322,615   |  |  |
| 8           | 41116745.48  | 45,225,237   | 44,349,446   | 48,378,015   |  |  |
| 9           | 45888717.13  | 50,406,970   | 51,522,589   | 56,032,817   |  |  |
| 10          | 50416445.24  | 55,324,946   | 58,337,147   | 63,306,098   |  |  |
| 11          | 54711560.45  | 59,991,726   | 64,810,196   | 70,216,026   |  |  |
| 12          | 58785139.55  | 64,419,272   | 70,957,997   | 76,779,903   |  |  |
| 13          | 62647731.9   | 68,618,976   | 76,796,039   | 83,014,207   |  |  |
| 14          | 66309384.47  | 72,601,687   | 82,339,072   | 88,934,633   |  |  |
| 15          | 69779665.83  | 76,377,738   | 87,601,145   | 94,556,127   |  |  |
| 16          | 73067688.9   | 79,956,970   | 92,595,636   | 99,892,924   |  |  |
| 17          | 76182132.64  | 83,348,756   | 97,335,287   | 104,958,581  |  |  |
| 18          | 79131262.73  | 86,562,021   | 101,832,233  | 109,766,010  |  |  |
| 19          | 81922951.25  | 89,605,267   | 106,098,033  | 114,327,507  |  |  |
| 20          | 84564695.42  | 92,486,590   | 110,143,692  | 118,654,782  |  |  |

# **Table S12.** FNPV (\$) analysis of different routes of L-ZnO at 1 A cm<sup>-2</sup>.

# References

- 1 G. Kresse, J. Furthmuller, Computational Materials Science, 1996, 6, 15-50.
- 2 Kresse Furthmuller, Physical review. B, Condensed matter, 1996, 54, 11169-11186.
- 3 Perdew, Burke Ernzerhof, Physical review letters, 1996, 77, 3865-3868.
- 4 Perdew, Burke Wang, Physical review. B, Condensed matter, 1996, 54, 16533-16539.
- 5 Blochl, Physical review. B, Condensed matter, 1994, 50, 17953-17979.
- 6 G. Kresse, D. Joubert, Physical Review B (Condensed Matter), 1999, 59, 1758-1775.
- Y. Sun, B. Xia, S. Ding, L. Yu, S. Chen, J. Duan, J. Mater. Chem. A, 2021, 9, 7 20040-20047.
- S. Chu, Y. Cui, N. Liu, Nat. Mater. 2016, 16, 16-22. 8
- 9 Z. Huang, R. G. Grim, J. A. Schaidle, L. Tao, Energy Environ. Sci., 2021, 14, 3664-3678.
- 10 Y. Xia, X. Zhao, C. Xia, Z. Y. Wu, P. Zhu, J. Y. T. Kim, X. Bai, G. Gao, Y. Hu, J. Zhong, Y. Liu, H. Wang, Nat. Commun., 2021, 12, 4225.
- Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li, X. Du, Nat. Commun., 2020, 11, 1731. 11
- Q. Zhao, Y. Wang, W. H. Lai, F. Xiao, Y. Lyu, C. Liao, M. Shao, Energy 12 Environ. Sci., 2021, 14, 5444-5456.
- 13 Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spöri, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B. Roldan Cuenya, P. Strasser, ACS Catal., 2018, 8, 2844-2856.
- D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado, L. Nasi, M. 14 Bevilacqua, C. Tavagnacco, F. Vizza, M. Prato, P. Fornasiero, Chem, 2018, 4, 106-123.
- 15 Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov, Y. Cui, *Nat. Catal.*, 2018, 1, 156-162.
- 16 Z. Yu, S. Lv, Q. Yao, N. Fang, Y. Xu, Q. Shao, C. W. Pao, J. F. Lee, G. Li, L. M. Yang, X. Huang, Adv. Mater., 2023, 35, e2208101.
- R. D. Ross, H. Sheng, Y. Ding, A. N. Janes, D. Feng, J. R. Schmidt, C. U. Segre, 17 S. Jin, J. Am. Chem. Soc., 2022, **144**, 15845-15854. P. Cao, X. Quan, X. Nie, K. Zhao, Y. Liu, S. Chen, H. Yu, J. G. Chen, Nat.
- 18 Commun., 2023, 14, 172.
- 19 Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang, Z. Pei, H. Wang, Y. Liu, Y. Wang, S. Li, X. Liao, W. Yan, S. Zhao, Adv. Mater., 2022, 34, e2106541.
- P. T. Smith, Y. Kim, B. P. Benke, K. Kim, C. J. Chang, Angew. Chem. Int. Ed., 20 2020, **59**, 4902-4907.
- K. Jiang, S. Back, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, 21 J. K. Norskov, S. Siahrostami, H. Wang, Nat. Commun., 2019, 10, 3997.
- 22 Y. Pang, K. Wang, H. Xie, Y. Sun, M. M. Titirici, G. L. Chai, ACS Catal., 2020, 10, 7434-7442.
- 23 J. Lee, S. W. Choi, S. Back, H. Jang, Y. J. Sa, Applied Catalysis B: Environmental, 2022, 309, 121265.
- Q. Yang, W. Xu, S. Gong, G. Zheng, Z. Tian, Y. Wen, L. Peng, L. Zhang, Z. Lu, 24 L. Chen, Nat. Commun., 2020, 11, 5478.