Electronic Supplementary Information for

Refined molecular microstructure and optimized carrier management of

 multicomponent organic photovoltaics toward 19.3% certified efficiencyShuixing Li, \ddagger^{a} Chengliang He, \ddagger^{a} Tianyi Chen, \ddagger^{a} Jiale Zheng, \ddagger^{b} Rui Sun, ${ }^{\mathrm{c}}$ Jin Fang, ${ }^{\mathrm{d}}$ Yiyao Chen, ${ }^{\text {e }}$ Youwen Pan, ${ }^{a}$ Kangrong Yan, ${ }^{a}$ Chang-Zhi Li, ${ }^{a}$ Minmin Shi, ${ }^{a}$ Lijian Zuo, ${ }^{a}$ Chang-Qi Ma, ${ }^{\text {d }}$ Jie Min, ${ }^{\text {c }}$ Yujing Liu* ${ }^{* b}$ and Hongzheng Chen*a
${ }^{a}$ State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Email: hzchen@zju.edu.cn

${ }^{b}$ College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
Email: yujingliu@zjut.edu.cn
${ }^{c}$ The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China.
${ }^{d}$ i-Lab \& Printable Electronics Research Centre, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
${ }^{e}$ Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
\ddagger S. Li, C. He, T. Chen and J. Zheng contributed equally to this work.

Supplementary Experimental Procedures

Materials

Polymer donor PM6 was purchased from Solarmer Materials. The other reagents and chemicals were purchased from commercial sources and used as received. BTP-S2 (Adv. Mater. 2020, 32, 2001160) and BTP-S9 (Nat. Commun. 2021, 12, 4627) were synthesized according to our previous reported work. The detailed synthetic procedures of BTP-S11, BTP-S12 and BTP-S15 are described below.

2-((Z)-2-((3,9-bis(2-butyloctyl)-10-(((Z)-1-(dicyanomethylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)-12,13-bis(2-ethylhexyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2',3':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indol-2-yl)methylene)-6,7-difluoro-3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (BTP-S11)

To a Schlenk tube were added Compound $1(0.4 \mathrm{~g}, 0.38 \mathrm{mmol})$, Compound $2(0.22 \mathrm{~g}, 0.8$ mmol), Compound $3(0.18 \mathrm{~g}, 0.8 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$. The mixture was frozen with liquid nitrogen, followed by three times of successive vacuum and nitrogen fill cycles. Under the protection of $\mathrm{N}_{2}, 1 \mathrm{~mL}$ pyridine was injected. Then, the reactant was refluxed at $65^{\circ} \mathrm{C}$ for 22 h . The crude product was purified using silica gel column chromatography with the mixture of petroleum ether and dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$) as the eluent, yielding a deep brown solid ($0.20 \mathrm{~g}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=9.21(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.56$ (dd, $J=9.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=18.1,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.16(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 4 \mathrm{H})$, 1.411.34 (m, 4H), 1.32-0.92 (m, 40H), 0.89-0.75 (m, 18H), 0.71-0.63 (m, 6H). MS (MALDI-TOF): Cald for $\mathrm{C}_{88} \mathrm{H}_{92} \mathrm{~F}_{4} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{5}\left(\mathrm{M}^{+}\right): 1530.05$, Found: 1530.09 .

2-((Z)-2-((3,9-bis(2-butyloctyl)-10-(((Z)-5,6-dichloro-1-(dicyanomethylene)-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)-12,13-bis(2-ethylhexyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indol-2-yl)methylene)-6,7-difluoro-3-oxo-2,3-dihydro-1 H -cyclopenta[b]naphthalen-1-ylidene)malononitrile (BTP-S12)

To a Schlenk tube were added Compound $1(0.53 \mathrm{~g}, 0.5 \mathrm{mmol})$, Compound $2(0.28 \mathrm{~g}, 1 \mathrm{mmol})$, Compound $4(0.26 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$. The mixture was frozen with liquid nitrogen, followed by three times of successive vacuum and nitrogen fill cycles. Under the protection of $\mathrm{N}_{2}, 1 \mathrm{~mL}$ pyridine was injected. Then, the reactant was refluxed at $65^{\circ} \mathrm{C}$ for 22 h . The crude product was purified using silica gel column chromatography with the mixture of petroleum ether and dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$) as the eluent, yielding a deep brown solid (0.19 $\mathrm{g}, 24 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=9.25(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H})$, 8.33 (s, 1H), 7.98 (s, 1H), 7.87-7.78 (m, 2H), 4.79 (t, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}$), 3.20 (dd, $J=14.6,7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.34-0.91(\mathrm{~m}, 40 \mathrm{H}), 0.90-$ $0.72(\mathrm{~m}, 18 \mathrm{H}), 0.70-0.60(\mathrm{~m}, 6 \mathrm{H})$. MS (MALDI-TOF): Cald for $\mathrm{C}_{88} \mathrm{H}_{92} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{5}(\mathrm{M}+)$: 1562.95, Found: 1562.47.

2-((Z)-2-((12,13-bis(2-butyloctyl)-10-(((Z)-5,6-dichloro-1-(dicyanomethylene)-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)-3,9-dinonyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4e]thieno[$\left.2^{\prime \prime}, 3^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]$ thieno $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ pyrrolo[3,2-g]thieno[$\left.2^{\prime}, 3^{\prime}: 4,5\right]$ thieno[3,2-b]indol-2-yl)methylene)-6,7-dichloro-3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1ylidene)malononitrile (BTP-S15)

To a Schlenk tube were added Compound 5 ($0.27 \mathrm{~g}, 0.25 \mathrm{mmol}$), Compound 4 ($0.13 \mathrm{~g}, 0.5$ mmol), Compound $6(0.16 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$. The mixture was frozen with liquid nitrogen, followed by three times of successive vacuum and nitrogen fill cycles. Under
the protection of $\mathrm{N}_{2}, 0.6 \mathrm{~mL}$ pyridine was injected. Then, the reactant was refluxed at $65^{\circ} \mathrm{C}$ for 21 h . The crude product was purified using silica gel column chromatography with the mixture of petroleum ether and dichloromethane $(1: 1, \mathrm{v} / \mathrm{v})$ as the eluent, yielding a black solid $(0.09 \mathrm{~g}$, 22%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=9.17$ (d, $J=18.2 \mathrm{~Hz}, 2 \mathrm{H}$), $9.03(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H})$, $8.25(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 4.89-4.74(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.11(\mathrm{~m}, 4 \mathrm{H})$, 2.22-2.12 (m, 2H), 1.92-1.80 (m, 4H), 1.54-1.47 (m, 4H), 1.42-1.33 (m, 4H), 1.32-1.21 (m, 20 H), $1.16-0.84(\mathrm{~m}, 34 \mathrm{H}), 0.74-0.65(\mathrm{~m}, 12 \mathrm{H})$. MS (MALDI-TOF): Cald for $\mathrm{C}_{90} \mathrm{H}_{96} \mathrm{Cl}_{4} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{5}$ $(\mathrm{M}+)$: 1623.91; Found: 1624.38.

General characterizations

${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Bruker Advance III $500(500 \mathrm{MHz})$ nuclear magnetic resonance (NMR) spectroscope. MALDI-TOF MS spectra were measured on a Walters Maldi Q-TOF Premier mass spectrometry. UV-vis-NIR absorption spectra were recorded on a Shimadzu UV-1800 spectrophotometer. Cyclic voltammetry (CV) was done on a CHI600A electrochemical workstation with Pt disk, Pt plate, and standard calomel electrode (SCE) as working electrode, counter electrode, and reference electrode, respectively, in a $0.1 \mathrm{~mol} / \mathrm{L}$ tetrabutylammoniumhexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ acetonitrile solution. The CV curves were recorded versus the potential of SCE, which was calibrated by the ferrocene-ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$redox couple (4.8 eV below the vacuum level). The equation of $\mathrm{E}_{\text {Luмо/номо }}=-$ $\mathrm{e}\left(E_{\text {red/ox }}+4.41\right)(\mathrm{eV})$ was used to calculate the LUMO and HOMO levels (the redox potential of $\mathrm{Fc} / \mathrm{Fc}^{+}$is found to be 0.39 V). AFM images were obtained on a VeecoMultiMode atomic force microscopy in the tapping mode. Differential scanning calorimetry (DSC) was recorded on a Pekin-Elmer Pyris 1 differential scanning calorimeter. Ultraviolet photoelectron spectroscopy (UPS) data was conducted by an ESCALAB Xi+ system (Thermo Scientific), He I radiation $(21.22 \mathrm{eV})$ with an applied bias of -10 V was used for UPS.

HR-TEM

The HR-TEM was conducted by employing a transfer holder and TEM (FEI Talos-S) at 200 kV . 300 mesh Cu was used as a carrier for the film deposition. All samples were prepared via the spin-coating and annealing process for TEM imaging. At first, the prepared solution (donor: 4 $\mathrm{mg} / \mathrm{ml}$, acceptor: $6 \mathrm{mg} / \mathrm{ml}$, blend: $8.25 \mathrm{mg} / \mathrm{ml}$) was slowly and evenly dripped onto the Cu mesh, which was placed on spin coater to make the film at the speed of 1000 rpm . Then, the corresponding samples were thermally annealed for 10 min .

EL

The EL signature was collected with a monochromator and detected with an InGaAs detector. Data collection range is $700-1300 \mathrm{~nm}$.

FTPS-EQE

The FTPS measurements were recorded using a Bruker Vertex 70 Fourier-transform infrared (FTIR) spectrometer, equipped with a quartz tungsten halogen lamp, a quartz beam-splitter, and an external detector option. A low noise current amplifier (Femto DLPCA-200) was used to amplify the photocurrent produced on the illumination of the photovoltaic devices with light modulated by the FTIR. The output voltage of the current amplifier was fed back into the external detector port of the FTIR. The photocurrent spectrum was collected by FTIR's software.

EQE ${ }_{\text {el }}$

Electroluminescence quantum efficiency ($\mathrm{EQE}_{\mathrm{EL}}$) measurements were performed by applying
external voltage sources through the devices from 1V to 4V. A Keithley 2400 SourceMeter was used for supplying voltages and recording injected current, and a Keithley 485 picoammeter was used for measuring the emitted light intensity.

GIWAXS

GIWAXS measurements were performed in a Xeuss 3.0 SAXS/WAXS system with a wavelength of $\lambda=1.542 \AA$ at Vacuum Interconnected Nanotech Workstation (Nano-X).

Device fabrication and measurement

Organic photovoltaics were fabricated on glass substrates commercially pre-coated with a layer of ITO with the conventional structure of ITO/PEDOT:PSS/Active layer/Bis-FIMG/Ag. Prior to fabrication, the substrates were cleaned using detergent, deionized water, acetone and isopropanol consecutively for 15 min in each step, and then treated in an ultraviolet ozone generator for 15 min before being spin coated at 4500 rpm with a layer of 20 nm thick PEDOT:PSS (Baytron P AI4083). After baking the PEDOT:PSS layer in air at $170^{\circ} \mathrm{C}$ for 20 min, the substrates were transferred to a glovebox. The active layer was formed according to the following procedure: the donor and acceptor were dissolved in chloroform solution with a total concentration of $16.5 \mathrm{mg} / \mathrm{ml}$ for all active layers, except PM6:BTP-S12, whose total concentration was $12 \mathrm{mg} / \mathrm{ml}$ due to the limited solubility of BTP-S12; the donor:acceptor weight ratio was fixed as $1: 1.2$ for all active layers; after heating the solution at $55^{\circ} \mathrm{C}$ for 1 h , the solution was cooled for 3 min and then $0.25 \%(\mathrm{v} / \mathrm{v}) \mathrm{DIO}$ was added as the additive; then the solution was further heated at $55^{\circ} \mathrm{C}$ for 10 min , after that, the active layer was spin-coated at

3000-3500 rpm for 25 s , except PM6:BTP-S12, whose spin-coating speed was $1800-2000 \mathrm{rpm}$ for 25 s . Then an extra preannealing at $80^{\circ} \mathrm{C}$ for 8 min was performed. A thin layer of BisFIMG was spin-coated from $1 \mathrm{mg} / \mathrm{ml}$ methanol solution at 4000 rpm for 40 s on the top of active layer. Finally, the $\mathrm{Ag}(100 \mathrm{~nm})$ electrode was deposited by thermal evaporation to complete the device with an active layer of $6 \mathrm{~mm}^{2}$, as defined by the overlapping area of ITO and Ag . A mask with an area of $4.73 \mathrm{~mm}^{2}$ was used to measure the efficiencies. The $J-V$ measurement was performed via the solar simulator (SS-F5-3A, Enlitech) along with AM 1.5 G spectra at $100 \mathrm{~mW} / \mathrm{cm}^{2}$, that was calibrated by the certified standard silicon solar cell (SRC2020, Enlitech) with KG-2 filter. Devices were tested in N_{2}-filled glovebox. The scan direction is -0.1 to 1 V , with a scan step of 0.01 V and dwell time is 1 ms . The EQE data were obtained by using the solar-cell spectral-response measurement system (RE-R, Enlitech).

SCLC measurement

The charge carrier mobilities of the blend films were measured using the space-charge-limited current method. Hole-only devices were fabricated in a structure of ITO/PEDOT:PSS/Active layer $/ \mathrm{MoO}_{3} / \mathrm{Ag}$, electron-only devices were fabricated in a structure of $\mathrm{ITO} / \mathrm{ZnO} /$ Active layer/Bis-FIMG/Ag. The device characteristics were extracted by modeling the dark current under forward bias using the SCLC expression described by the Mott-Gurney law: $J=9 \varepsilon_{\mathrm{r}} \varepsilon_{0} \mu V^{2} / 8 L^{3}$, where $\varepsilon_{\mathrm{r}} \approx 3$ is the average dielectric constant of the active layer, ε_{0} is the permittivity of the free space, μ is the carrier mobility, V is the applied voltage and L is the thickness of the film.

Supplementary Figures and Notes

Fig. S1 AM 1.5 G solar spectrum and integrated current density.

Note S1: Theoretical efficiency calculation

For theoretical efficiency calculation, it's performed according to the following procedure:

Firstly, wavelength (or bandgap E_{g}) and energy loss ($E_{\text {loss }}$) are set as two variates, which are strongly correlated with the photovoltaic materials. The efficiency matrix figure will be formed by calculating enough single dots. Here, we set the wavelength ranging from 700 to 1000 nm and energy loss ranging from 0.6 to 0.3 eV , and 30100 single efficiency dots are calculated.

Secondly, for the calculation of single efficiency dot, voltage $\left(V_{\text {oc }}\right)$ is obtained via the following equation (1):

$$
\begin{equation*}
V_{o c}=\frac{E_{g}-E_{\text {loss }}}{q} \tag{1}
\end{equation*}
$$

Photocurrent $\left(J_{\mathrm{sc}}\right)$ is calculated via the following equation (2):

$$
\begin{equation*}
J_{s c}=q \cdot \int_{0}^{\infty} N_{\lambda}(\lambda) \cdot E Q E(\lambda) d \lambda \tag{2}
\end{equation*}
$$

where N_{λ} is the photon flux spectrum of the AM 1.5 G solar spectrum. The results of integrated current densities with various EQE values are shown in above Fig. S1. For fill factor (FF), we can either set it as a fixed value or use the max value calculated through the following empirical equation (3):

$$
\begin{equation*}
F F=\frac{\gamma_{o c}-\ln \left(\gamma_{o c}+0.72\right)}{\gamma_{o c}+1} \tag{3}
\end{equation*}
$$

where $\gamma_{o c}$ is the normalized $V_{o c}$, and can be obtained with the following equation (4):

$$
\begin{equation*}
\gamma_{o c}=e V_{o c} / n k T \tag{4}
\end{equation*}
$$

where e is the elementary charge, n is the diode ideality factor (for high-efficiency OPVs, $\mathrm{n} \approx$ $1), k$ is Boltzmann constant and T is the temperature.

Finally, the power conversion efficiency (PCE) for a single dot with a specific combination of wavelength and energy loss can be calculated through the following equation (5):

$$
\begin{equation*}
P C E=\frac{V_{o c} \times J_{s c} \times F F}{P_{i n}} \tag{5}
\end{equation*}
$$

where $P_{\text {in }}$ is the input light power density of the AM 1.5 G solar light.

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of BTP-S11.

Fig. S3 MALDI-TOF mass spectrum of BTP-S11.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of BTP-S12.

Fig. S5 MALDI-TOF mass spectrum of BTP-S12.

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectrum of BTP-S15.

Fig. S7 MALDI-TOF mass spectrum of BTP-S15.

Fig. S8 (a-b) Normalized absorption spectra of BTP-S11, BTP-S12 and DAA-1 in chloroform solutions and films. (c-d) Normalized absorption spectra of BTP-S12, BTP-S9 and DAA-2 in chloroform solutions and films. (e-f) Normalized absorption spectra of BTP-S11, BTP-S9 and DAA-3 in chloroform solutions and films.

Fig. S9 (a) Cyclic voltammograms of BTP-S11, BTP-S12 and BTP-S9. (b) Cyclic voltammograms of DAA-1, DAA-2 and DAA-3.

Fig. S10 Chemical structure of Bis-FIMG and device structure of OPVs.

Fig. S11 (a) Voltage comparison among PM6:BTP-S11, PM6:DAA-1 and PM6:BTP-S12-based OPVs. (b) Voltage comparison among PM6:BTP-S9, PM6:DAA-2 and PM6:BTP-S12-based OPVs. (c) Voltage comparison among PM6:BTP-S9, PM6:DAA-3 and PM6:BTP-S11-based OPVs.

Fig. S12 (a) FF comparison among PM6:BTP-S11, PM6:DAA-1 and PM6:BTP-S12-based OPVs. (b) FF comparison among PM6:BTP-S9, PM6:DAA-2 and PM6:BTP-S12-based OPVs. (c) FF comparison among PM6:BTP-S9, PM6:DAA-3 and PM6:BTP-S11-based OPVs.

Fig. S13 The copy of certified report from National PV Industry Measurement and Testing Center (NPVIM) for ternary device (PM6:DAA-4 based ternary OPV).

福建省计量科学研究院
FUJIAN METROLOGY INSTITUTE
（国家光伏产业计量测试中心）

1．检测机构说明：
本院为国家法定计量检定机构，国家光伏产业计量测试中心依托本院检测技术开展检测。本院／本中心质量管理体系符合 GB／T 27025 （ISO／IEC 17025，IDT）标准要求。 The institue is a national legal metroloeical instituiton．National PV Industry Messurement and Testing Center carys out testing eleying on the institute＇s testino technolooy．The

2．本次检测所依据的检测方法（代号及名称）
Reterence documents tom the test（code，．，ame）
IEC 60904－1－2020 光伏器件－第一部分：光伏电流－电压特性的测量；IEC 60904－8：2014 光伏器件－第 8 部分光伏器件的光谱响应度测量

3．本次检测所使用的主要测量仪器：

仪器名称 Name	仪器编号	测量范围 Measuring Range	不确定度／或准确度等级／或最大允许误差 Uncertainty or Accuracy Class or Maximum Permissible Error		有效期限 Due date
系统源表 （电子负载）	4082810	$\begin{gathered} 100 \mathrm{nA} \sim 3 \mathrm{~A} ; \\ (0.1 \sim 40) \mathrm{V} \end{gathered}$	$U_{\text {rel }}=0.005 \%(k=2)$	$\begin{gathered} \text { 上海市计量院 } \\ \text { 2021F11-10-30830 } \\ 69001 \end{gathered}$	2022－03－10
太阳模拟器	2015－006	$\begin{aligned} & (300 \sim 1200) \\ & \mathrm{nm} ;(800 \sim \\ & 1200) \mathrm{W} / \mathrm{m}^{2} \end{aligned}$	光橧匹配度：$(300 \sim 310) \mathrm{nm}: ~ U_{\text {nel }}=7.4 \%$ $(k=2) ;(310 \sim 400) \mathrm{nm}: \quad U_{\text {rel }}=6.4 \%$ $(k=2) ;(400 \sim 1200) \mathrm{nm}: U_{n m}=5.5 \%(k=2)$ ；辐嫄度比：$U_{\mathrm{ne}}=1.2 \%(k-2)$	$\begin{aligned} & \text { 福建计量院 } \\ & \text { 21Q2-0682 } \end{aligned}$	2022－06－28
WPVS 单晶硅标准电池	015－2014	$\begin{gathered} (300 \sim 1200) \\ \mathrm{nm} \end{gathered}$	$U_{\text {rel }}=1.3 \%(k=2)$	中国计量院 GXgf2021－10725	2023－04－05
Si 光电探测器	Si－2	（200～1100）nm	$(300 \sim 450) \mathrm{nm} U_{\mathrm{ns}}=1.8 \% \sim 1.3 \%(k=2) ;$ $(450 \sim 1000) \mathrm{nm} U_{n k}=1.2 \% \sim 1.7 \%(k=2)$	中国计量院 GXgf2021－10903	2023－03－24
数字温度计	15－B	$(15 \sim 65){ }^{\circ} \mathrm{C}$	$U=0.1 \%$（ $k=2$ ）	福建计量院 21B2－08012	2022－06－22

4．检测地点及环境条件：
地点：Room 108，Building 4，MinHou Scientific Research Base
温度： $24.5{ }^{\circ} \mathrm{C}$
相对湿度： 48%
其它： 1

5．备注：／

```
本报告提供的结果仅对本次被检的物品有效.
The data are valid only for the instrument(s) under testing.
检测报告续页专用
Continued page of test report
```

Fig．S13－continued The copy of certified report from National PV Industry Measurement and Testing Center（NPVIM）for ternary device（PM6：DAA－4 based ternary OPV）．

报告编号：22Q3－00030
检测结果／说明：
Results of Test and additional explanation．

1 Standard Test Condition（STC）：Total Irradiance： $1000 \mathrm{~W} / \mathrm{m}^{2}$
Temperature： $25.0{ }^{\circ} \mathrm{C}$
Spectral Distribution：AM1．5G

2 Measurement Data and I－V／P－V Curves under STC

Forward Scan

$I_{\text {se }}$ (mA)	$V_{\text {oc }}$ (V)	$I_{\text {MPP }}$ (mA)	$V_{\text {MPP }}$ (V)	$P_{\text {MPP }}$ (mW)	$F F(\%)$	$\eta(\%)$
1.231	0.8848	1.142	0.7578	0.8654	79.45	18.51

Reverse Scan

$I_{\text {se }}$ (mA)	$V_{\text {oc }}$ (V)	$I_{\text {MPP }}$ (mA)	$V_{\text {MPP }}$ (V)	$P_{\text {MPP }}$ (mW)	$F F(\%)$	$\eta(\%)$
1.231	0.8841	1.142	0.7578	0.8654	79.52	18.51

Mismatch factor： 0.9918

Figure 1．I－V and P－V characteristic curves of the measured sample under STC

检测报告续页专用
 Continued page of test teport

Fig．S13－continued The copy of certified report from National PV Industry Measurement and Testing Center（NPVIM）for ternary device（PM6：DAA－4 based ternary OPV）．

Fig. S13-continued The copy of certified report from National PV Industry Measurement and Testing Center (NPVIM) for ternary device (PM6:DAA-4 based ternary OPV).

Fig. S13-continued The copy of certified report from National PV Industry Measurement and Testing Center (NPVIM) for ternary device (PM6:DAA-4 based ternary OPV).

Fig. S13-continued The copy of certified report from National PV Industry Measurement and Testing Center (NPVIM) for ternary device (PM6:DAA-4 based ternary OPV).

福建省计量科学研究院

检测结果／说明：
Results of Test and additional explanation．

Measurement standards used in this test						
Name	Number	Measuring Range	Uncertainty or Accuracy Class or Maximum Permissible Error	Name of traceability institution／Certificate No．	Due date	

以下空白
Blank below

检测报告续页专用
 Continued page of test teport

$$
\begin{gathered}
\text { 第 } 9 \text { 页 } 7 \text { 共 } 7 \text { 页 } 7 \text { Pagas }
\end{gathered}
$$

Fig．S13－continued The copy of certified report from National PV Industry Measurement and Testing Center（NPVIM）for ternary device（PM6：DAA－4 based ternary OPV）．

Fig. S14 (a) The dependence of $J_{\text {sc }}$ on light intensity ($P_{\text {light }}$) of relevant binary OPVs. (b) The dependence of J_{sc} on $P_{\text {light }}$ of relevant ternary OPVs.

Fig. S15 (a) $J^{0.5}-V$ curves of the hole-only devices based on PM6:BTP-S11, PM6:BTP-S12 and PM6:BTP-S9 blends (Device: ITO/PEDOT:PSS/Active layer $/ \mathrm{MoO}_{3} / \mathrm{Ag}$). (b) $J^{0.5}-V$ curves of the electron-only devices based on PM6:BTP-S11, PM6:BTP-S12 and PM6:BTP-S9 blends (Device: ITO $/ \mathrm{ZnO} /$ Active layer/Bis-FIMG/Ag). (c) $J^{0.5}-V$ curves of the hole-only devices based on PM6:DAA-1, PM6:DAA-2, PM6:DAA-3 and PM6:DAA-4 blends (Device: ITO/PEDOT:PSS/Active layer $/ \mathrm{MoO}_{3} / \mathrm{Ag}$). (d) $J^{0.5}-V$ curves of the electron-only devices based on PM6:DAA-1, PM6:DAA-2, PM6:DAA-3 and PM6:DAA-4 blends (Device: ITO/ZnO/Active layer/Bis-FIMG/Ag).

Fig. S16 Contact angle images of PM6, BTP-S11, BTP-S12, BTP-S9, DAA-1, DAA-2 and DAA-3 films with water and diiodomethane droplets on top. Relevant miscibility parameters are summarized in Table S3.

Fig. S17 AFM height images of PM6, BTP-S11, BTP-S12, BTP-S9, DAA-1, DAA-2 and DAA3 films. Relevant roughness data are listed in Table S3.

Fig. S18 AFM phase images of PM6, BTP-S11, BTP-S12, BTP-S9, DAA-1, DAA-2 and DAA3 films.

Fig. S19 DSC curves of BTP-S9, BTP-S11, BTP-S12, DAA-1, DAA-2 and DAA-3.

Fig. S20 2D GIWAXS images for PM6, BTP-S11, BTP-S12 and BTP-S9 neat films.

Fig. S21 1D intensity profiles of PM6, BTP-S11, BTP-S12 and BTP-S9 neat films in the out-of-plane (OOP, solid lines) and in-plane (IP, dash lines) directions.

Fig. S22 2D GIWAXS images for PM6:BTP-S11, PM6:BTP-S12, PM6:BTP-S9, PM6:DAA-1, PM6:DAA-2 and PM6:DAA-3 blend films.

Fig. S23 (a) 1D intensity profiles of PM6:BTP-S11, PM6:BTP-S12 and PM6:BTP-S9 blends in the OOP (solid lines) and IP (dash lines) directions. (b) 1D intensity profiles of PM6:DAA1, PM6:DAA-2 and PM6:DAA-3 blends in the OOP (solid lines) and IP (dash lines) directions.

Fig. S24 (a) 2D GIWAXS image of PM6:DAA-4 blend. (b) 1D intensity profiles of PM6:DAA4 blend in the OOP (solid line) and IP (dash line) directions.

Fig. $\mathbf{S 2 5}$ (a) HR-TEM image of BTP-S9 film. (b) HR-TEM image of DAA-2 film. (c) HR-TEM image of DAA-3 film.

Fig. S26 Chemical structure of BTP-S15.

Fig. S27 (a) HR-TEM image of BTP-S15 film. (b) HR-TEM image of DAA-5 film (DAA-5: BTP-S9:BTP-S15 = 1:1). (c) HR-TEM image of PM6:DAA-5 film.

Fig. S28 (a) $J-V$ curve of PM6:BTP-S15-based OPV ($V_{\text {oc: }} 0.846 \mathrm{~V} ; J_{\mathrm{sc}}: 25.6 \mathrm{~mA} \mathrm{~cm}^{-2}$; FF: 74.9%; PCE: 16.1%). (b) $J-V$ curve of PM6:DAA-5-based OPV (DAA-5: BTP-S9:BTP-S15 = 1:1; $V_{\text {oc: }} 0.849$ V; $J_{\text {sc: }} 26.7 \mathrm{~mA} \mathrm{~cm}^{-2}$; FF: 78.1\%; PCE: 17.7\%).

Fig. S29 (a) HR-TEM image of PM6 film. (b) HR-TEM image of PM6:DAA-2 film. (c) HRTEM image of PM6:DAA-3 film.

Fig. S30 (a) Bandgap distributions for OPVs based on PM6:BTP-S11, PM6:BTP-S12 and PM6:BTP-S9 blends. (b) Bandgap distributions for OPVs based on PM6:DAA-1, PM6:DAA2 and PM6:DAA-3 blends. (c) Determination of bandgap for PM6:DAA-1 based device. (d) Determination of bandgap for PM6:DAA-1 based device with the smoother EQE curve.

Fig. $\mathbf{S 3 1}$ (a-f) Determination of Urbach energy $\left(E_{\mathrm{U}}\right)$ via exponential fitting of FTPS-EQE curves for PM6:BTP-S11-based device (a), PM6:BTP-S12-based device (b), PM6:BTP-S9-based device (c), PM6:DAA-1-based device (d), PM6:DAA-2-based device (e), PM6:DAA-3-based device (f).

Fig. S32 Comparison of ΔE_{2} and E_{U} for relevant binary and ternary OPVs.

Note S2: Boltzmann equilibrium

Fig. 5a shows the kinetic process involved with LE, CT and CS states, the non-radiative recombination loss will mainly happen on LE or CT states, particularly for CT states. Thus, the effective way for mitigating non-radiative loss is reducing the CT ratio. Accordingly, the Boltzmann equilibrium between LE and CT states will largely affect the CT ratio.

According to the Boltzmann probability distribution, the relative occupation of LE and CT states can be expressed as:

$$
\begin{equation*}
p_{L E}=\frac{g_{1}}{Q} \exp \left(-\frac{E_{L E}}{k_{B} T}\right) ; p_{C T}=\frac{g_{2}}{Q} \exp \left(-\frac{E_{C T}}{k_{B} T}\right) \tag{6}
\end{equation*}
$$

where Q is the canonical partition function, E_{LE} and E_{CT} are the energies of LE and CT states, k_{B} is the Boltzmann constant, and T is the temperature in Kelvin.

Then, the equilibrium constant K can be calculated as:

$$
\begin{equation*}
K=\frac{p_{C T}}{p_{L E}}=\frac{g_{2}}{g_{1}} \exp \left(\frac{\Delta E_{L E-C T}}{k_{B} T}\right) \tag{7}
\end{equation*}
$$

where $\Delta E_{\mathrm{LE}-\mathrm{CT}}=E_{\mathrm{LE}}-E_{\mathrm{CT}}$.
Under the stationary state for the reaction $\mathrm{LE} \Leftrightarrow \mathrm{CT}$, we can identify that:

$$
\begin{equation*}
K=\frac{k_{12}}{k_{21}}=\frac{g_{2}}{g_{1}} \exp \left(\frac{\Delta E_{L E-C T}}{k_{B} T}\right) \tag{8}
\end{equation*}
$$

With equation (8), we can conclude that, reducing $\Delta E_{\text {LE-CT }}$ will reduce the equilibrium constant K between LE and CT states, thus reducing CT ratio for non-radiative loss mitigation.

However, above conclusion is based on the prerequisite that only Boltzmann equilibrium between LE and CT states is considered. In our work, we observe an obvious non-radiative loss reduction, due to luminescence efficiency enhancement of over 2 times, while the energetic offset ($\Delta E_{\mathrm{LE}-\mathrm{CT}}$) is less changed, which doesn't conform to above conclusion. This indicates more process should be considered for the Boltzmann equilibrium analysis. For non-fullerene
acceptors, especially Y-series molecules, it's detected that self-separation of exciton directly from LE to CT states exists, thus the process between LE and CS states should also be considered for Boltzmann equilibrium analysis.

Similarly, the relative occupation of CS state can be expressed as:

$$
\begin{equation*}
p_{C S}=\frac{g_{3}}{Q} \exp \left(-\frac{E_{C S}}{k_{B} T}\right) \tag{9}
\end{equation*}
$$

where E_{CS} is the energy of CS state.

Then the modified equilibrium constant K^{\prime} can be changed to:

$$
\begin{align*}
K^{\prime}=\frac{p_{C T}}{p_{L E}+p_{C S}} & =\frac{g_{2} \exp \left(-\frac{E_{C T}}{k_{B} T}\right)}{g_{1} \exp \left(-\frac{E_{L E}}{k_{B} T}\right)+g_{3} \exp \left(-\frac{E_{C S}}{k_{B} T}\right)} \\
& =\frac{1}{g_{12} \exp \left(-\frac{\Delta E_{L E-C T}}{k_{B} T}\right)+g_{32} \exp \left(-\frac{\Delta E_{C S-C T}}{k_{B} T}\right)} \tag{10}
\end{align*}
$$

Where $\mathrm{g}_{12}=\mathrm{g}_{1} / \mathrm{g}_{2}, \mathrm{~g}_{32}=\mathrm{g}_{3} / \mathrm{g}_{2}$.
So, under the stationary state for the reaction $\mathrm{CT} \Leftrightarrow \mathrm{LE} \Rightarrow \mathrm{CS}$, we can identify that:

$$
\begin{equation*}
K^{\prime}=\frac{k_{12}}{k_{21}+k_{13}}=\frac{1}{g_{12} \exp \left(-\frac{\Delta E_{L E-C T}}{k_{B} T}\right)+g_{32} \exp \left(-\frac{\Delta E_{C S-C T}}{k_{B} T}\right)} \tag{11}
\end{equation*}
$$

According to equation (11), we can learn that, the reduction of K ' will be determined by both $\Delta E_{\mathrm{LE}-\mathrm{CT}}$ and $\Delta E_{\mathrm{CS}-\mathrm{CT}}$. Thus, for small driving force systems, both $\Delta E_{\mathrm{LE}-\mathrm{CT}}$ and $\Delta E_{\mathrm{CS}-\mathrm{CT}}$ are critical for non-radiative loss mitigation. Besides, a reduction of $\Delta E_{\mathrm{CS}-\mathrm{CT}}$ may also promote the conversion rate (k_{23}) from CT state to CS state, thus further reducing the CT ratio. So, Boltzmann equilibrium among LE, CT and CS states should be responsible for the non-radiative loss mitigation in small driving force systems.

Note S3: $\Delta E \mathrm{cs}-\mathrm{ct}$

As shown above, the variation of $\Delta E_{\mathrm{CS}-\mathrm{CT}}$ may also put an effect on the non-radiative loss. Now we analyze the possible factor affecting the $\Delta E_{\text {Cs-cт }}$. For donor (D) / acceptor (A) systems, there exists energy level bending at the D/A interfaces, as shown in Fig. 5b. The happening of energy level bending at the D / A interfaces is due to the electrostatic interaction of charges with quadrupole moments of surrounding molecules.

The energy level bending phenomenon will result in a parameter named as interfacial bending energy (B), which can be expressed as:

$$
\begin{equation*}
B=B_{h}^{D}+B_{h}^{A}=B_{e}^{D}+B_{e}^{A} \tag{12}
\end{equation*}
$$

Thus, the dissociation energy of CT state can be expressed as:

$$
\begin{equation*}
\Delta E_{C S-C T}=E_{C S}-E_{C T}=E_{\text {Coulomb }}^{C T}-B \tag{13}
\end{equation*}
$$

So, we can learn that, enlarging the interfacial bending energy could be a way to reduce $\Delta E_{\mathrm{CS}-\mathrm{CT}}$, thus being the factor for reducing CT state ratio and non-radiative recombination loss.

Fig. S33 Ultraviolet photoelectron spectroscopy (UPS) data of PM6, BTP-S11, BTP-S12 and DAA-1 neat films (He I; h $\nu=21.22 \mathrm{eV}$).

Fig. S34 Ultraviolet photoelectron spectroscopy (UPS) data of BTP-S9, DAA-2, and DAA-3 neat films (He I; hv=21.22 eV).

Note S4: Interfacial bending energy (B)

As analyzed above, reducing $\Delta E_{\text {Cs-ct }}$ will require an increase of interfacial bending energy (B). To accurately calculate the interfacial bending energy, we measured the ionization potential (IP) energy levels for PM6, BTP-S11, BTP-S12, BTP-S9, DAA-1, DAA-2 and DAA-3 neat films via ultraviolet photoelectron spectroscopy (UPS), and the results are displayed in Figs. S33-34. The IP values are calculated as -5.11 eV for PM6, -5.60 eV for BTP-S11, -5.58 eV for BTPS12, -5.43 eV for BTP-S9, -5.64 eV for DAA-1, -5.47 eV for DAA-2 and -5.37 eV for DAA-3.

Since the energetic offset can be expressed as:

$$
\begin{equation*}
\Delta E_{L E-C T}=\Delta I P-B \tag{14}
\end{equation*}
$$

We can then calculate the bending energy B via the following equation:

$$
\begin{equation*}
B=\Delta I P-\Delta E_{L E-C T} \tag{15}
\end{equation*}
$$

Since the $\Delta I P$ values are found to be 0.49 eV for PM6:BTP-S11 system, 0.47 eV for PM6:BTPS12 system, 0.32 eV for PM6:BTP-S9 system, 0.53 eV for PM6:DAA-1 system, 0.36 eV for PM6:DAA-2 system and 0.26 eV for PM6:DAA-3 system, then the bending energy B can be obtained as 0.439 eV for PM6:BTP-S11 system, 0.418 eV for PM6:BTP-S12 system, 0.279 eV for PM6:BTP-S9 system, 0.477 eV for PM6:DAA-1 system, 0.314 eV for PM6:DAA-2 system and 0.217 eV for PM6:DAA-3 system. The above results are also summarized in Table S4.

BTP-S2

Fig. S35 (a) Chemical structure of BTP-S2. (b) Absorption spectra of BTP-S2 solution and film. (c) Cyclic voltammograms of BTP-S2.

Fig. S36 Semilogarithmic plots of normalized EL and normalized FTPS-EQE (solid lines), and the determination of E_{CT} via Gaussian fits to EL and FTPS-EQE spectra according to the Marcus equation (dash lines) for PM6:BTP-S2-based device.

Fig. S37 The copy of certified report from National PV Industry Measurement and Testing Center (NPVIM) for quaternary device (PM6:TAA-1 based quaternary OPV).

Fig. S37-continued The copy of certified report from National PV Industry Measurement and Testing Center (NPVIM) for quaternary device (PM6:TAA-1 based quaternary OPV).

检测结果／说明：
Results of Test and Additional Explanation．
1 Standard Test Condition（STC）：Total Irradiance： $1000 \mathrm{~W} / \mathrm{m}^{2}$
Temperature： $25.0{ }^{\circ} \mathrm{C}$
Spectral Distribution：AM1．5G

2 Measurement Data and I－V／P－V Curves under STC
Forward Scan

$I_{\mathrm{sc}}(\mathrm{mA})$	$V_{\mathrm{oc}}(\mathrm{V})$	$I_{\mathrm{MPP}}(\mathrm{mA})$	$V_{\mathrm{MPP}}(\mathrm{V})$	$P_{\mathrm{MPP}}(\mathrm{mW})$	$F F(\%)$	$\eta(\%)$
1.255	0.8842	1.159	0.7591	0.8798	79.28	19.24

Reverse Scan

$I_{\text {sc }}(\mathrm{mA})$	$V_{\text {oc }}(\mathrm{V})$	$I_{\text {MPP }}(\mathrm{mA})$	$V_{\text {MPP }}(\mathrm{V})$	$P_{\text {MPP }}(\mathrm{mW})$	$F F(\%)$	$\eta(\%)$
1.257	0.8849	1.156	0.7626	0.8816	79.26	19.28

Mismatch Factor： 0.9927

Figure 1．I－V and P－V characteristic curves of the measured sample under STC

```
检测报告续页专用
```

Fig．S37－continued The copy of certified report from National PV Industry Measurement and Testing Center（NPVIM）for quaternary device（PM6：TAA－1 based quaternary OPV）．

Fig. S37-continued The copy of certified report from National PV Industry Measurement and Testing Center (NPVIM) for quaternary device (PM6:TAA-1 based quaternary OPV).

福建省计量科学研究院
FUJIAN METROLOGY INSTITUTE
（国家光伏产业计量测试中心）
National PV Industry Measurement and Testing Center
报告编号：22Q3－00207
检测结果／说明：
有洁说明：

Wavelength (nm)	$\mathrm{SR}(\%)$								
925	11.28	945	3.91	965	1.46	985	0.44	$/$	$/$
930	9.09	950	3.10	970	1.13	990	0.37	$/$	$/$
935	6.95	955	2.41	975	0.83	995	0.29	$/$	$/$
940	5.11	960	1.85	980	0.58	1000	0.22	$/$	$/$

Figure 2．Relative spectral responsivity curve of the measured sample

4 Pictures of the Measured Sample

Figure 3．Mask used during test and obverse side of the sample

检测报告续页专用
 Continued page of test tepo

Fig．S37－continued The copy of certified report from National PV Industry Measurement and Testing Center（NPVIM）for quaternary device（PM6：TAA－1 based quaternary OPV）．

	福建省计量科学研究院 FUJIAN METROLOGY INSTITUTE （国家光伏产业计量测试中心） National PV Industry Measurement and Testing Center
	检测结果／说明： Results of Test and Additional Explanation． Figure 4．Reverse side of the measured sample
	Uncertainty of Measurement Results： Short－Circuit Current：$U_{\text {rel }}=1.8 \%(k=2)$ ；Open－Circuit Voltage：$U_{\text {rel }}=1.0 \%(k=2)$ ； Maximum Power：$U_{\text {rel }}=2.2 \%(k=2)$ ；Efficiency：$U_{\text {rel }}=2.2 \%(k=2)$ ；Fill Factor：$U_{\text {rel }}=3.2 \%(k=2)$ ． Relative Spectral Responsivity： $\begin{aligned} & (300 \sim 400) \mathrm{nm}: U_{\text {rel }}=2.2 \%(k=2) \\ & (400 \sim 1000) \mathrm{nm}: U_{\text {rel }}=1.8 \%(k=2) \text {; } \end{aligned}$ 说明：The designated illuminated area of the measured sample was $0.04572 \mathrm{~cm}^{2}$ ． Explanation
计量科打 猗	Testing Method（Code and Name）for This Test IEC 60904－1： 2020 Photovoltaic devices－Part 1：Measurement of photovoltaic current－voltage characteristics IEC 60904－8： 2014 Photovoltaic devices－Part 8：Measurement of spectral responsivity of a photovoltaic（PV） device
	检测报告续页专用 Continued page of test report $\begin{aligned} & \text { 第 } 6 \text { 页/共 } 7 \text { 页 } \\ & \text { Page of } \end{aligned}$

Fig．S37－continued The copy of certified report from National PV Industry Measurement and Testing Center（NPVIM）for quaternary device（PM6：TAA－1 based quaternary OPV）．

报告编号：22Q3－00207
检测结果／说明：

Measurement Standards Used in This Test					
Name	Number	Measuring Range	Uncertainty or Accuracy Class or Maximum Permissible Error	Name of Traceability Institution／Certificate No．	Due Date
SourceMeter	$\begin{gathered} 10807 C 0087 \\ 8-2 \end{gathered}$	$\begin{gathered} \text { DCI: } \\ (-10 \mu \mathrm{~A} \sim \mathrm{~A}) ; \\ \mathrm{DCV}: \\ (2 \mathrm{mV} \sim 20 \mathrm{~V}) \end{gathered}$	Measure： $\mathrm{DCV} ; U_{\mathrm{rel}}=0.05 \%, k=2 ; \mathrm{DCI}$ ： $U_{\mathrm{ct}}=0.05 \%, k=2$ Output：DCV：$U_{t s i}=0.05 \%, h=2 ; D C I:$ $U_{r e t}=0.05 \%, k=2$	Fujian Metrology Institute／ 22D2-01826	2023－04－13
Solar Simulator	2015－006	$\begin{aligned} & (300 \sim 1200) \\ & \mathrm{nm}:(800 \sim \\ & 1200) \mathrm{W} / \mathrm{m}^{2} \end{aligned}$	$\begin{gathered} \text { Spectral Match: }(300 \sim 310) \\ \mathrm{nm}: U_{\mathrm{rcl}}=7.4 \%(k=2) ;(310 \sim \\ 400) \mathrm{nm}: U_{\mathrm{rl}}=6.4 \% \\ (k=2) ;(400 \sim 1200) \mathrm{nm}: \\ U_{\mathrm{rcl}}=5.5 \%(k=2) ; \text {;rradiance } \\ \text { Ratio: } U_{\mathrm{rcl}}=1.2 \%(k=2) \end{gathered}$	Fujian Metrology Institute／ 22Q2-00720	2023－06－16
WPVS Monocrystalline Silicon Reference Cell	015－2014	$\underset{\mathrm{mm}}{(300 \sim 1200)}$	$U_{\text {rel }}=1.3 \%(k=2)$	National Institute of Metrology／ GXgf2021－10725	2023－04－05
Si Photoelectric Detector	Si－2	$\begin{gathered} (300 \sim 1100) \\ \mathrm{um} \end{gathered}$		National Institute of Metrology／ GXgf2021－10903	2023－03－24
Digital Thermometer	15－B	$(15 \sim 65){ }^{\circ} \mathrm{C}$	$U=0.060{ }^{\circ} \mathrm{C}(k=2)$	Fujian Metrology Institute／22B2－07588	2023－06－20

以下空自
Blank below

Fig．S37－continued The copy of certified report from National PV Industry Measurement and Testing Center（NPVIM）for quaternary device（PM6：TAA－1 based quaternary OPV）．

Fig. S38 EQE curve of device based on PM6:TAA-1 blend (TAA-1: BTP-S11:BTP-S12:BTPS2 = 0.7:0.3:0.2).

Fig. S39 Diagram of varied quadrupole moments with increased straight-crystal or curvedcrystal.

Fig. S40 Efficiency potentials of OPVs with the change of FF.

Supplementary Tables

Table S1 Summary of photovoltaic parameters of binary and ternary OPVs for this work and reported references

Device type	Active layer	$\boldsymbol{V}_{\mathbf{o c}}$ $\mathbf{(V)}$	$\boldsymbol{J}_{\mathbf{s c}}$ $\left(\mathbf{m A} \mathbf{c m}^{-2}\right)$	FF $\mathbf{(\%)}$	$\boldsymbol{V}_{\mathbf{o c}} * \boldsymbol{J}_{\mathbf{s c}}$	PCE $\mathbf{(\%)}$	Ref.
Binary	PM6:BTP-S11	0.878	27.1	79.3	23.79	18.9	This
							work

	PBQ10:Y6	0.850	25.8	74.6	21.93	16.3	35
	P5T:BTP-eC9	0.837	26.5	79.8	22.18	17.7	36
	PBQ6:Y6	0.851	26.6	77.9	22.64	17.6	37
	PM6-Tz20:Y6	0.860	27.3	75.0	23.48	17.6	38
	PBNT-BDD:Y6	0.880	25.4	72.0	22.35	16.1	39
	PTVT-T:BTP-eC9	0.790	26.2	78.0	20.70	16.2	40
	PBDB-T:PN-Se	0.907	24.8	71.8	22.49	16.2	41
	D18:BO-4Cl	0.860	26.3	77.7	22.62	17.6	42
	PTQ10:m-BTP-C6Ph	0.883	25.3	79.3	22.34	17.7	43
	PNTB6-Cl:N3	0.857	26.6	77.3	22.80	17.6	44
	PBCT-2F:Y6	0.850	27.2	74.3	23.12	17.1	45
Ternary	PM6:DAA-4	0.880	27.1	79.9	23.85	19.1	This
							work
	PM6:Y6:PC ${ }_{71} \mathrm{BM}$	0.850	25.8	74.7	21.93	16.4	46
	PM6:Y6:BTTPC	0.860	25.5	77.0	21.93	16.8	47
	PM6:Y6:BTP-M	0.875	26.6	73.5	23.28	17.0	48
	PM6:Y18:PC ${ }_{71} \mathrm{BM}$	0.840	26.3	77.4	22.09	17.1	49
	PM6:CH1007:PC71 ${ }^{\text {PM }}$	0.822	27.5	75.6	22.61	17.1	50
	PM6:BTP-4F-12:MeIC	0.863	25.4	79.2	21.92	17.4	51
	PM6:PB2F:BTP-eC9	0.863	26.8	80.4	23.13	18.6	52
	D18-Cl:Y6:PC71 ${ }_{71} \mathrm{BM}$	0.870	26.8	77.0	23.32	18.0	53
	D18-Cl:Y6:Y6-1O	0.900	25.9	76.9	23.31	17.9	54
	PM6:CH1007:BT-4BO	0.880	26.9	75.4	23.67	17.8	55
	PTQ10:BTP-Ph:BTP-Th	0.888	25.2	78.6	22.38	17.6	56
	PM6:Y6-1O:PC71BM	0.900	24.9	78.5	22.41	17.6	57
	PTQ10:m-BTP-	0.869	27.0	80.6	23.46	18.9	58
	PhC6:PC71 ${ }^{\text {BM }}$						
	PM6:BTP-eC9:L8-BO-F	0.853	27.4	80.0	23.37	18.7	59
	PBQx-TF: $\mathrm{CC} 9-2 \mathrm{Cl}$:F-	0.879	26.7	80.9	23.47	19.0	60
	BTA3						
	PBQx-TCl:BTP-	0.840	26.9	79.6	22.60	18.0	61
	eC9:BTA3						
	PM6:BO-4Cl:BTP-S2	0.861	27.1	78.0	23.33	18.2	62
	D18:Y6:BTPR	0.863	27.8	74.6	23.99	17.8	63
	PM6:BTP-eC9:BTP-F	0.858	27.0	79.7	23.17	18.5	64
	B1:BO-4Cl:BO-2Cl	0.840	26.1	78.0	21.92	17.0	65
	PM6:eC9:HDO-4Cl	0.866	27.1	80.5	23.47	18.9	66
	D18-Cl:Y6:G19	0.871	27.4	77.7	23.87	18.5	67
	PM6:PYT:PY2F-T	0.900	25.2	76.0	22.68	17.2	68
	PNTB-2T:Y6:PC ${ }_{71} \mathrm{BM}$	0.875	26.5	75.0	23.19	17.4	69

Table S2 Summary of hole and electron mobilities for binary and ternary devices

Active layer	$\boldsymbol{\mu}_{\mathbf{h}}\left(\times \mathbf{1 0}^{-\mathbf{3}} \mathbf{c m}^{\mathbf{2}} \mathbf{V}^{\mathbf{- 1}} \mathbf{s}^{\mathbf{- 1}}\right)$	$\boldsymbol{\mu}_{\mathrm{e}}\left(\times \mathbf{1 0}^{-\mathbf{3}} \mathbf{c m}^{\mathbf{2}} \mathbf{V}^{\mathbf{- 1}} \mathbf{s}^{\mathbf{- 1}}\right)$	$\boldsymbol{\mu}_{\mathrm{h}} / \boldsymbol{\mu}_{\mathrm{e}}$
PM6:BTP-S11	2.45 ± 0.42	2.62 ± 1.12	0.94
PM6:BTP-S12	1.09 ± 0.18	0.33 ± 0.15	3.30
PM6:BTP-S9	2.91 ± 0.41	3.53 ± 2.06	0.82
PM6:DAA-1	2.30 ± 0.33	2.96 ± 1.65	0.78
PM6:DAA-2	1.61 ± 0.43	2.46 ± 1.23	0.65
PM6:DAA-3	1.66 ± 0.28	2.46 ± 0.39	0.67
PM6:DAA-4	2.40 ± 0.38	3.19 ± 0.33	0.75

Table S3 Summary of miscibility and aggregation parameters

Material	$\theta_{\text {water }}\left({ }^{\circ}\right.$)	$\theta_{\text {diiodomethane }}\left({ }^{\circ}\right.$)	$\gamma^{l}\left(\mathrm{mN} \mathrm{m}^{-1}\right)^{a}$	$\gamma^{h}\left(\mathbf{m N ~ m} \mathbf{m}^{-1}\right)^{\text {b }}$	$\gamma\left(\mathrm{mN} \mathrm{m}^{-1}\right)^{c}$	$\chi^{\text {D-Ad } d}$	$\mathbf{R}_{\mathbf{q}}(\mathbf{n m})$
PM6	105.41	58.60	1.33	48.97	50.30	/	0.99
BTP-S11	94.31	46.82	3.08	55.33	58.41	0.30	0.55
BTP-S12	91.78	45.78	3.70	54.67	58.37	0.30	1.78
BTP-S9	94.28	42.91	2.87	59.65	62.52	0.66	0.57
DAA-1	94.86	44.62	2.81	58.20	61.01	0.52	0.67
DAA-2	95.55	46.85	2.76	56.20	58.96	0.34	0.69
DAA-3	95.47	46.48	2.76	56.56	59.32	0.37	0.52

${ }^{a}$ Surface tension from dipole-dipole component.
${ }^{b}$ Surface tension from hydrogen bond component.
${ }^{c}$ The total surface tension is calculated through the equation of $\gamma=\gamma^{d}+\gamma^{h}$.
${ }^{d}$ The Flory-Huggins interaction parameter between the donor (D) and acceptor (A) is calculated with the equation of $\chi^{D-A}=\left(\sqrt{\gamma_{D}}-\sqrt{\gamma_{A}}\right)^{2}$.

Table S4 Summary of $\Delta \mathrm{IP}, \Delta E_{\mathrm{LE}-\mathrm{CT}}, B, \Delta E_{3}$ and $\mathrm{EQE}_{\text {EL }}$ parameters for binary and ternary systems

Active Layer	$\Delta \mathrm{IP}(\mathrm{eV})$	$\Delta E_{\text {Le-ct }}(\mathrm{eV})$	$B(\mathrm{eV})$	$\Delta E_{3}(\mathrm{eV})$	EQE $_{\text {eL }}\left(10^{-2} \%\right)$
PM6:BTP-S11	0.49	0.051	0.439	0.194	4.12
PM6:BTP-S12	0.47	0.052	0.418	0.210	3.12
PM6:BTP-S9	0.32	0.041	0.279	0.201	3.17
PM6:DAA-1	0.53	0.053	0.477	0.179	8.67
PM6:DAA-2	0.36	0.046	0.314	0.190	6.38
PM6:DAA-3	0.26	0.043	0.217	0.199	3.62

Supplementary References

1 J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li and Y. Zou, Joule, 2019, 3, 1140-1151.
2 Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao and J. Hou, Nat. Commun., 2019, 10, 2515.

3 Y. Cui, H. Yao, L. Hong, T. Zhang, Y. Tang, B. Lin, K. Xian, B. Gao, C. An, P. Bi, W. Ma and J. Hou, Natl. Sci. Rev., 2019, 7, 1239-1246.
4 L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge and J. Hou, Adv. Mater., 2019, 31, 1903441.
5 K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou and H. Yan, Joule, 2019, 3, 3020-3033.
6 Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao and J. Hou, Adv. Mater., 2020, 32, 1908205.
7 S. Li, L. Zhan, Y. Jin, G. Zhou, T.-K. Lau, R. Qin, M. Shi, C.-Z. Li, H. Zhu, X. Lu, F. Zhang and H. Chen, Adv. Mater., 2020, 32, 2001160.
8 Z. Zhou, W. Liu, G. Zhou, M. Zhang, D. Qian, J. Zhang, S. Chen, S. Xu, C. Yang, F. Gao, H. Zhu, F. Liu and X. Zhu, Adv. Mater, 2020, 32, 1906324.

9 H. Wang, T. Liu, J. Zhou, D. Mo, L. Han, H. Lai, H. Chen, N. Zheng, Y. Zhu, Z. Xie and F. He, Adv. Sci., 2020, 7, 1903784.

10 S. Dong, T. Jia, K. Zhang, J. Jing and F. Huang, Joule, 2020, 4, 2004-2016.
11 H. Lai, Q. Zhao, Z. Chen, H. Chen, P. Chao, Y. Zhu, Y. Lang, N. Zhen, D. Mo, Y. Zhang and F. He, Joule, 2020, 4, 688-700.
12 Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao and H. Yan, Joule, 2020, 4, 12361247.

13 L.-K. Ma, Y. Chen, P. C. Y. Chow, G. Zhang, J. Huang, C. Ma, J. Zhang, H. Yin, A. M. Hong Cheung, K. S. Wong, S. K. So and H. Yan, Joule, 2020, 4, 1486-1500.
14 S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu and Y. Cao, Nat. Photonics, 2020, 14, 300-305.
15 F. Qi, K. Jiang, F. Lin, Z. Wu, H. Zhang, W. Gao, Y. Li, Z. Cai, H. Y. Woo, Z. Zhu and A. K. Y. Jen, ACS Energy Lett., 2021, 6, 9-15.

16 J. Zhang, F. Bai, I. Angunawela, X. Xu, S. Luo, C. Li, G. Chai, H. Yu, Y. Chen, H. Hu, Z. Ma, H. Ade and H. Yan, Adv. Energy Mater., 2021, 11, 2102596.
17 C. Yang, Q. An, H.-R. Bai, H.-F. Zhi, H. S. Ryu, A. Mahmood, X. Zhao, S. Zhang, H. Y. Woo and J.-L. Wang, Angew. Chem. Int. Ed., 2021, 60, 19241-19252.
18 G. Li, X. Zhang, L. O. Jones, J. M. Alzola, S. Mukherjee, L.-w. Feng, W. Zhu, C. L. Stern, W. Huang, J. Yu, V. K. Sangwan, D. M. DeLongchamp, K. L. Kohlstedt, M. R. Wasielewski, M. C. Hersam, G. C. Schatz, A. Facchetti and T. J. Marks, J. Am. Chem. Soc., 2021, 143, 6123-6139.
19 S. Li, L. Zhan, N. Yao, X. Xia, Z. Chen, W. Yang, C. He, L. Zuo, M. Shi, H. Zhu, X. Lu, F. Zhang and H. Chen, Nat. Commun., 2021, 12, 4627.

20 C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu and Y. Sun, Nat. Energy, 2021, 6, 605-613.

21 S. Chen, L. Feng, T. Jia, J. Jing, Z. Hu, K. Zhang and F. Huang, Sci. China Chem., 2021, 64, 1192-1199.
22 C. Sun, F. Pan, S. Chen, R. Wang, R. Sun, Z. Shang, B. Qiu, J. Min, M. Lv, L. Meng, C. Zhang, M. Xiao, C. Yang and Y. Li, Adv. Mater., 2019, 31, 1905480.
23 X. Xu, K. Feng, Z. Bi, W. Ma, G. Zhang and Q. Peng, Adv. Mater., 2019, 31, 1901872.
24 B. Fan, D. Zhang, M. Li, W. Zhong, Z. Zeng, L. Ying, F. Huang and Y. Cao, Sci. China Chem., 2019, 62, 746-752.
25 T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li and J. Min, Adv. Energy Mater., 2020, 10, 2000590.
26 P. Chao, H. Chen, Y. Zhu, H. Lai, D. Mo, N. Zheng, X. Chang, H. Meng and F. He, Adv. Mater., 2020, 32, 1907059.
27 C. Sun, S. Qin, R. Wang, S. Chen, F. Pan, B. Qiu, Z. Shang, L. Meng, C. Zhang, M. Xiao, C. Yang and Y. Li, J. Am. Chem. Soc., 2020, 142, 1465-1474.

28 Z. Zhang, Y. Li, G. Cai, Y. Zhang, X. Lu and Y. Lin, J. Am. Chem. Soc., 2020, 142, 1874118745.

29 K. Weng, L. Ye, L. Zhu, J. Xu, J. Zhou, X. Feng, G. Lu, S. Tan, F. Liu and Y. Sun, Nat. Commun., 2020, 11, 2855.
30 J. Wu, G. Li, J. Fang, X. Guo, L. Zhu, B. Guo, Y. Wang, G. Zhang, L. Arunagiri, F. Liu, H. Yan, M. Zhang and Y. Li, Nat. Commun., 2020, 11, 4612.
31 Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang and L. Ding, Sci. Bull., 2020, 65, 272-275.
32 M. Ruijie, L. Tao, L. Zhenghui, G. Qing, X. Yiqun, C. Yuzhong, L. Xiaojun, L. Siwei, L. Xinhui, Z. Maojie, L. Yongfang and Y. He, Sci. China Chem., 2020, 63, 325-330.
33 L.-W. Feng, J. Chen, S. Mukherjee, V. K. Sangwan, W. Huang, Y. Chen, D. Zheng, J. W. Strzalka, G. Wang, M. C. Hersam, D. DeLongchamp, A. Facchetti and T. J. Marks, ACS Energy Lett., 2020, 5, 1780-1787.
34 J. Liang, M. Pan, G. Chai, Z. Peng, J. Zhang, S. Luo, Q. Han, Y. Chen, A. Shang, F. Bai, Y. Xu, H. Yu, J. Y. L. Lai, Q. Chen, M. Zhang, H. Ade and H. Yan, Adv. Mater., 2020, 32, 2003500.

35 C. Sun, F. Pan, B. Qiu, S. Qin, S. Chen, Z. Shang, L. Meng, C. Yang and Y. Li, Chem. Mater, 2020, 32, 3254-3261.
36 L. Ma, S. Zhang, J. Wang, J. Ren, M. Gao, J. Zhang, T. Zhang, H. Yao, L. Ye and J. Hou, ACS Mater. Lett., 2021, 3, 1276-1283.
37 C. Zhu, L. Meng, J. Zhang, S. Qin, W. Lai, B. Qiu, J. Yuan, Y. Wan, W. Huang and Y. Li, Adv. Mater., 2021, 33, 2100474.
38 X. Guo, Q. Fan, J. Wu, G. Li, Z. Peng, W. Su, J. Lin, L. Hou, Y. Qin, H. Ade, L. Ye, M. Zhang and Y. Li, Angew. Chem. Int. Ed., 2021, 60, 2322-2329.
39 S. Pang, Z. Wang, X. Yuan, L. Pan, W. Deng, H. Tang, H. Wu, S. Chen, C. Duan, F. Huang and Y. Cao, Angew. Chem. Int. Ed., 2021, 60, 8813-8817.
40 J. Ren, P. Bi, J. Zhang, J. Liu, J. Wang, Y. Xu, Z. Wei, S. Zhang and J. Hou, Natl. Sci. Rev., 2021, 8, nwab031.
41 J. Du, K. Hu, J. Zhang, L. Meng, J. Yue, I. Angunawela, H. Yan, S. Qin, X. Kong, Z. Zhang, B. Guan, H. Ade and Y. Li, Nat. Commun., 2021, 12, 5264.

42 H. Chen, T. Zhao, L. Li, P. Tan, H. Lai, Y. Zhu, X. Lai, L. Han, N. Zheng, L. Guo and F.

He, Adv. Mater., 2021, 33, 2102778.
43 G. Chai, Y. Chang, J. Zhang, X. Xu, L. Yu, X. Zou, X. Li, Y. Chen, S. Luo, B. Liu, F. Bai, Z. Luo, H. Yu, J. Liang, T. Liu, K. S. Wong, H. Zhou, Q. Peng and H. Yan, Energy Environ. Sci., 2021, 14, 3469-3479.
44 H. Ning, Q. Jiang, P. Han, M. Lin, G. Zhang, J. Chen, H. Chen, S. Zeng, J. Gao, J. Liu, F. He and Q. Wu, Energy Environ. Sci., 2021, 14, 5919-5928.
45 X. Yuan, Y. Zhao, T. Zhan, J. Oh, J. Zhou, J. Li, X. Wang, Z. Wang, S. Pang, P. Cai, C. Yang, Z. He, Z. Xie, C. Duan, F. Huang and Y. Cao, Energy Environ. Sci., 2021, 14, 55305540.

46 T. Yan, W. Song, J. Huang, R. Peng, L. Huang and Z. Ge, Adv. Mater., 2019, 31, 1902210. D. Wang, R. Qin, G. Zhou, X. Li, R. Xia, Y. Li, L. Zhan, H. Zhu, X. Lu, H.-L. Yip, H. Chen and C.-Z. Li, Adv. Mater., 2020, 32, 2001621.
48 L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou and H. Chen, Energy Environ. Sci., 2020, 13, 635-645.
49 C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou and Y. Li, Energy Environ. Sci., 2020, 13, 2459-2466.
50 F. Lin, K. Jiang, W. Kaminsky, Z. Zhu and A. K. Y. Jen, J. Am. Chem. Soc., 2020, 142, 15246-15251.
51 X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang and F. Zhang, Adv. Energy Mater., 2020, 10, 2001404.
52 T. Zhang, C. An, P. Bi, Q. Lv, J. Qin, L. Hong, Y. Cui, S. Zhang and J. Hou, Adv. Energy Mater., 2021, 11, 2101705.
53 A. Zeng, X. Ma, M. Pan, Y. Chen, R. Ma, H. Zhao, J. Zhang, H. K. Kim, A. Shang, S. Luo, I. C. Angunawela, Y. Chang, Z. Qi, H. Sun, J. Y. L. Lai, H. Ade, W. Ma, F. Zhang and H. Yan, Adv. Funct. Mater., 2021, 31, 2102413.
54 X. Ma, A. Zeng, J. Gao, Z. Hu, C. Xu, J. H. Son, S. Y. Jeong, C. Zhang, M. Li, K. Wang, H. Yan, Z. Ma, Y. Wang, H. Y. Woo and F. Zhang, Natl. Sci. Rev., 2021, 8, nwaa305.

55 B. Fan, W. Gao, Y. Wang, W. Zhong, F. Lin, W. J. Li, F. Huang, K.-M. Yu and A. K. Y. Jen, ACS Energy Lett., 2021, 6, 3522-3529.
56 Y. Chang, J. Zhang, Y. Chen, G. Chai, X. Xu, L. Yu, R. Ma, H. Yu, T. Liu, P. Liu, Q. Peng and H. Yan, Adv. Energy Mater., 2021, 11, 2100079.
57 Y. Chen, F. Bai, Z. Peng, L. Zhu, J. Zhang, X. Zou, Y. Qin, H. K. Kim, J. Yuan, L.-K. Ma, J. Zhang, H. Yu, P. C. Y. Chow, F. Huang, Y. Zou, H. Ade, F. Liu and H. Yan, Adv. Energy Mater, 2021, 11, 2003141.
58 S. Bao, H. Yang, H. Fan, J. Zhang, Z. Wei, C. Cui and Y. Li, Adv. Mater, 2021, 33, 2105301.
59 Y. Cai, Y. Li, R. Wang, H. Wu, Z. Chen, J. Zhang, Z. Ma, X. Hao, Y. Zhao, C. Zhang, F. Huang and Y. Sun, Adv. Mater., 2021, 33, 2101733.
60 Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei and J. Hou, Adv. Mater, 2021, 33, 2102420.

61 Y. Xu, Y. Cui, H. Yao, T. Zhang, J. Zhang, L. Ma, J. Wang, Z. Wei and J. Hou, Adv. Mater., 2021, 33, 2101090.
62 L. Zhan, S. Li, X. Xia, Y. Li, X. Lu, L. Zuo, M. Shi and H. Chen, Adv. Mater., 2021, 33, 2007231.

63 Y. Zhang, G. Cai, Y. Li, Z. Zhang, T. Li, X. Zuo, X. Lu and Y. Lin, Adv. Mater., 2021, 33,
2008134.

64 Y. Li, Y. Cai, Y. Xie, J. Song, H. Wu, Z. Tang, J. Zhang, F. Huang and Y. Sun, Energy Environ. Sci., 2021, 14, 5009-5016.
65 J. Qin, Z. Chen, P. Bi, Y. Yang, J. Zhang, Z. Huang, Z. Wei, C. An, H. Yao, X. Hao, T. Zhang, Y. Cui, L. Hong, C. Liu, Y. Zu, C. He and J. Hou, Energy Environ. Sci., 2021, 14, 5903-5910.
66 P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui, T. Zhang, J. Ren, J. Qin, L. Hong, X. Hao and J. Hou, Joule, 2021, 5, 2408-2419.
67 Z. Chen, W. Song, K. Yu, J. Ge, J. Zhang, L. Xie, R. Peng and Z. Ge, Joule, 2021, 5, 23952407.

68 R. Sun, W. Wang, H. Yu, Z. Chen, X. Xia, H. Shen, J. Guo, M. Shi, Y. Zheng, Y. Wu, W. Yang, T. Wang, Q. Wu, Y. Yang, X. Lu, J. Xia, C. J. Brabec, H. Yan, Y. Li and J. Min, Joule, 2021, 5, 1548-1565.
69 G. Zhang, H. Ning, H. Chen, Q. Jiang, J. Jiang, P. Han, L. Dang, M. Xu, M. Shao, F. He and Q. Wu, Joule, 2021, 5, 931-944.

