Supplementary Information

Efficient Solar Energy Conversion via Bionic Sunlight-driven Ion

Transport Boosted by Synergistic Photo-electric/thermal Effects

Jin Wang, * Di Wang, Zeyuan Song, Na Jiang, Shangzhen Li, Yufei Zhang,* Bo Huang, Huijiao Zhou, Zheng Cui, and Lei Wang*

*E-mail: wangjin@xauat.edu.cn, zhangyufei@xauat.edu.cn, wl0178@126.com

Table of Contents

1.	Experimental Section	2
2.	Supplement figures	7
3.	References	.48

1. Experimental Section

Materials and Methods

The phase structure of Ti₃C₂T_x and g-C₃N₄/CTS membrane were obtained through X-ray diffraction (XRD, UltimqlV, Japan) using Cu Ka radiation from 10° to 60° with a step of 0.02°. Microstructures and elemental distribution analysis of Ti₃C₂T_x, g-C₃N₄/CTS membrane and nanosheets were achieved through a scanning electron microscope (SEM, Zeiss Gemini SEM 300, Germany). The Ti₃C₂T_x, g-C₃N₄/CTS nanosheets and membranes surface images were captured via the atomic force microscopy (AFM, Bruker Multimode 8) under tapping mode. The morphology of the nanosheets was characterized by transmission electron microscopy (TEM Talos F200X, USA). The UV-vis and DRS measurements of the $Ti_3C_2T_x$ and g-C₃N₄/CTS colloidal solutions were performed with an ultraviolet spectrophotometer (UV-3600, Japan). The chemistry property of Ti₃C₂T_x and g-C₃N₄/CTS were characterized through X-ray photoelectron spectroscopy (XPS) using a Thermo Scientific ESCALAB Xi⁺ instrument with monochromated Al-Ka radiation. All the binding energies were referenced to the C 1s peak at 284.8 eV. The FTIR spectra were recorded using a Bruker VERTEX 33 unit. The zeta potential measurements were measured by dynamic lightscattering analysis using Zetasizer Nano ZS 90. The photothermal performance of Ti₃C₂T_x and g-C₃N₄/CTS membranes was monitored by using an IR camera (HIKMICRO, China). The steady-state PL emission spectra (FLS1000, UK) was measured at room temperature to evaluate its electron and hole separation performance. The photoelectrochemical properties of the samples were examined by an electrochemical workstation (DH70000, Donghua, China) using a standard threeelectrode cell. The ion concentration was determined by an inductively coupled plasma optical emission spectrometer (Focused Photonics, ICP-5000, China).

Synthesis of the Ti₃C₂T_x nanosheets

The Ti₃C₂T_x monolayer nanosheets were synthesized via selectively etching Al in the Ti₃AlC₂ powder according to the MILD method. Firstly, 1 g Ti₃AlC₂ powder with 1.6 g LiF and 20 mL 9 M HCl aqueous solution at 45°C for 24 h. Subsequently, the mixture product was washed with deionized water via centrifugation at 3500 rpm until the pH reached 5. The separate sediments were redispersed by deionized water and delaminated by strong manual shaking. Finally, a colloidal solution of Ti₃C₂T_x nanosheets was collected after the suspension was centrifuged at 4000 rpm for 1h.

Synthesis of the g-C₃N₄/CTS nanosheets

The melamine powder was first heated at 550°C for 4 hours to complete the thermal polymerization reaction, yellow bulk g-C₃N₄ was collected after naturally cooling down to room temperature^{1, 2}. To obtain the monolayer g-C₃N₄ nanosheets, 0.8 g ground g-C₃N₄ powder was added to 400mL of isopropanol and bath-sonicated for 24 h. After that, the dispersion was vacuum filtered on the Nylon substrate membrane, and the powder was re-dispersed in deionized water. The supernatant contained g-C₃N₄ nanosheets was collected after high-speed centrifugation. In the surface modification process, 68 µL chitosan solution (10 mg·L⁻¹) was added to the g-C₃N₄ nanosheet dispersion (0.03 mg·mL⁻¹) and the mixture was continuously stirred at 500 rpm for 4 hours, ensuring the chitosan molecules were grafted onto the surface of the g-C₃N₄

nanosheets.

Fabrication of TCC Membranes

The Ti₃C₂T_x membranes were fabricated by vacuum filtration of the diluted nanosheets aqueous suspension (0.01 mg·mL⁻¹) on the PVDF substrates with 0.22 μ m pore size. After drying in the vacuum oven, the freestanding Ti₃C₂T_x membranes with a uniform ordered layered architecture were peeled off the PVDF membrane. The Ti₃C₂T_x membrane thickness was controlled by varying the volume of the Ti₃C₂T_x suspension for filtration. The *g*-C₃N₄/CTS membranes were fabricated using the same method. The heterogeneous TCC multilayer membranes were fabricated via a two-step vacuum filtration of Ti₃C₂T_x and *g*-C₃N₄/CTS nanosheets. Firstly, after depositing the Ti₃C₂T_x aqueous dispersion onto a PVDF substrate, the filtration process continued until the Ti₃C₂T_x membrane was completely dry. The *g*-C₃N₄/CTS nanosheets dispersion was then poured onto the Ti₃C₂T_x membrane to construct the heterogeneous structure.

Ionic photocurrent measurement

The TCC membrane was mounted in a two-compartment set-up and the light could illuminate onto one side of the membrane through a glass-sealed window. The KCl solutions with the same volume were filled into two reservoirs. In our study, a Xenon lamp (Perfect light Technology, CHF300W) was used as the light source. The light intensity of 200 mW·cm⁻². Ionic current recordings were recorded with a Keithley 2450 source meter through Ag/AgCl electrodes. To avoid unnecessary light contamination,

the electrodes were protected and kept away from the membrane.

Simulation of temperature-responsive ion transport

The theory investigation of ion transport behavior in the nanochannels under the temperature field, the numerical simulation was conducted based on the continuum PNP and Einstein-Stokes theory as follows:

$$\nabla^2 \Phi = -\frac{\rho}{\varepsilon} - \frac{F}{\varepsilon} \sum z_i c_i \tag{3}$$

$$j_i = -D_i \left(\nabla c_i + \frac{z_i F c_i}{RT} \nabla \Phi \right)$$
(4)

$$\nabla \cdot j_i = 0 \tag{5}$$

$$D_i = \frac{k_B T}{6\pi\eta r} \tag{6}$$

Here, the physical quality Φ is the electrical potential, ρ is the space charge density, i is the ion species, z_i , c_i are the valence and the concentration of species i, \mathbf{j}_i is the local ionic flux, and D_i is the diffusion coefficient. The diffusivity coefficients for cations and anions are 1.957×10^{-9} m²/s and 2.032×10^{-9} m²/s (KCl electrolyte is used for simplicity). *T*, *F*, *R*, $k_{\rm B}$ and ε represent absolute temperature, Faraday constant, gas constant, Boltzmann constant and dielectric constant of water. The dielectric constant is set to 80.

DFT theoretical calculation for electron migration

The theoretical calculations in our study were performed with the DFT provided by the program CASTEP package^{3,4}, which employed the plane-wave basis sets to treat valence electrons and norm-conserving pseudo-potentials to approximate the potential field. The models of the Ti₃C₂T_x-g-C₃N₄ and Ti₃C₂T_x-g-C₃N₄/CTS were built (Figure S35). The exchange-correlation functional was implemented by using the Perdew–Burke–Ernzerhof (PBE)⁵ to describe the exchange-correlation energy and electron interactions. The Brillouin zones were separately sampled at $2\times2\times4$, $2\times2\times4$ and $2\times2\times3$ Monkhorst–Pack k-points for the two models^{6, 7}. A plane-wave cutoff of 400 eV was used for all calculations. The energy and residual force convergence criterion were set to 2.0 e⁻⁶ eV·atom⁻¹ and 0.05 eV·Å⁻¹ for geometry optimization, respectively. A $2\times2\times4$ and $2\times2\times3$ mesh was used to calculate their total density of states (TDOS) and partial density of states (PDOS) for the Ti₃C₂T_x-g-C₃N₄ and Ti₃C₂T_x-g-C₃N₄/CTS. Charge transfer was calculated by electron density difference (EDD) on the basis of the Milliken Population Analysis (MPA)⁸.

2. Supplement figures

Figure S1. (008) diffractive peak at 39° and the left shift of the (002) peak in the XRD spectrum of the $Ti_3C_2T_x$ indicated that the Al layers were successfully etched.

Figure S2. SEM image of Ti₃AlC₂. Scale bar, 3 µm.

Figure S3. SEM image of $Ti_3C_2T_x$ nanosheets. Scale bar, 1 μ m.

Figure S4. XRD patterns of Bulk g-C₃N₄ and g-C₃N₄ nanosheets. Compared withBulk g-C₃N₄, the intensity of this (002) peak was significantly decreased and the (100)weakpeakdisappeared.

Figure S5. SEM image of bulk g-C₃N₄. Scale bar, 5 μ m.

Figure S6. SEM images of g-C₃N₄ nanosheets. Scale bar, 10 μ m.

Figure S7. UV-vis spectra of the $Ti_3C_2T_x$ and $g-C_3N_4$ dispersions.

Figure S8. XPS spectra of the g-C₃N₄ and Ti₃C₂T_x membrane. (A) XPS results and N 1s region of the g-C₃N₄ membrane. (B) XPS results and O 1s region of the Ti₃C₂T_x membrane.

Figure S9. SEM analysis of the $Ti_3C_2T_x$ membrane. (A) SEM image of the $Ti_3C_2T_x$ membrane surface. Scale bar: 10 µm. (B) SEM image of the $Ti_3C_2T_x$ membrane cross-section.Scalebar,2µm.

Figure S10. SEM image of the $Ti_3C_2T_x$ membrane cross-section and elementalmapping.Scalebar,10 $\mu m.$

Figure S11. EDS spectrum of the $Ti_3C_2T_x$ membrane.

Figure S12. SEM analysis of the g-C_3N_4/CTS membrane. (A) SEM image of the g- C_3N_4/CTS membrane surface. Scale bar: 100 µm. (B) SEM image of the g-C_3N_4/CTSmembranecross-section.Scalebar,3µm.

Figure S13. SEM image of the g-C3N4/CTS membrane cross-section and elementalmapping.Scalebar,5 μ m.

Figure S14. EDS spectrum of the *g*-C₃N₄/CTS membrane.

Figure S15. AFM images of the $Ti_3C_2T_x$ membrane surface with a scan area of 2 $\mu m \times 2 \mu m$. (A) 2D and (B) 3D AFM images. The table below shows the surface roughness parameters of the $Ti_3C_2T_x$ membrane. Scale bar, 500 nm.

Figure S16. AFM images of the g-C₃N₄/CTS membrane surface with a scan area of 3.6 μ m × 3.6 μ m. (A) 2D and (B) 3D AFM images. The table below shows the surface roughness parameters of the g-C₃N₄/CTS membrane. Scale bar, 600 nm.

Figure S17. Contact angle of water on the $Ti_3C_2T_x$ and $g-C_3N_4/CTS$ membranesurfaces.The error bars represent the standard deviations.

Figure S18. Optical images of (A) g-C₃N₄/CTS and (B) Ti₃C₂T_x membrane.

Figure S19. Scheme of the fabrication of TCC membrane.

Figure S20. Stability of TCC membrane. Photos of the TCC membrane samples soaked in aqueous solution of pH 2, 5, and 12. The soaking time was 3 and 10 days.

Figure S21. SEM analysis of the TCC membrane. (A) SEM image of the TCCmembrane surface. Scale bar, 20 μ m. (B) SEM image of the TCC membrane cross-section.Scalebar,2 μ m.

Figure	S22.	SEM	image	of th	e TCC	membrane	cross-section	and	elemental
mappin	g.		Sca	ale		bar,	1		μm.

Figure S23. EDS spectrum of the TCC membrane.

Figure S24. Current-voltage curves of the $Ti_3C_2T_x$ and $g-C_3N_4/CTS$ membrane.

Figure S25. Ionic conductance of bulk solutions and g-C₃N₄/CTS membrane versus salt concentration (thickness: 1.5 µm). It was difficult to detach the g-C₃N₄/CTS membrane from the PVDF substrate, therefore the test was conducted using the composite membrane.

Figure S26. Long-term ionic current in $Ti_3C_2T_x$ membrane.

Figure S27. Light-to-heat conversion phenomenon. IR thermal images of $Ti_3C_2T_x$ and *g*-C₃N₄/CTS membrane under light irradiation taken at different time intervals.

Figure S28. Scheme of the simulation model channel. Two reservoirs ($L_R = 0.2 \mu m$, $W_R = 0.05 \mu m$) were connected by a charged channel (d = 2 nm and L = 100 nm). The surface charge density in nanochannel was -15 mC m⁻². The KCl solutions were set at the value of 0.01 M.

Figure S29. Scheme of K⁺ and Cl⁻ ion concentration profiles before (blue curve) and after (red curve) the temperature change. The (B) and (D) images were the magnifications at the orifice of nanochannel/reservoir B corresponding to the (A) and (C) images, respectively. The temperatures of reservoir A and nanochannel were kept constant at 320.9K, while reservoir B was increased from the initial 320.9K to 363K. It should be noted that the sharp temperature boundary at the nanochannel/reservoir B orifice was set and the heat conduction was not considered here for simplicity.

Figure S30. Changes of cation and anion after temperature continuously increased.

Figure S31. Photothermal effect simulation. The electrolyte solution (KCl, 0.01M) added to both reservoirs are with equal concentration. Specifically, a heated KCl solution with a temperature value of approximately 70°C and a room-temperature solution was filled in the two reservoirs, respectively to simulate the photothermal experiment conditions.

Figure S32. Long-term ionic current in the g-C₃N₄/CTS membrane.

Figure S33. Corresponding Tauc plots for the g-C₃N₄/CTS, the inset graph showed Mott-Schottky plots of the g-C₃N₄/CTS.

Figure S34. Daily photo-response tests for long-term stability

Figure S35. The models of the $Ti_3C_2T_x$ -g- C_3N_4 (A) and $Ti_3C_2T_x$ -g- C_3N_4 /CTS (B) were built.

Figure S36. $Ti_3C_2T_x$ -g-C3N4 (A) and $Ti_3C_2T_x$ -g-C3N4/CTS (B) crystal modeldiagramsconstructedaftergeometryoptimization.

Figure S37. The Milliken Population Analysis (MPA) plot based on EDD results of $Ti_3C_2T_x$ -g-C₃N₄.

Figure S38. The electron density of states (DOS) diagram of $Ti_3C_2T_x$ -g-C₃N₄ and $Ti_3C_2T_x$ -g-C₃N₄/CTS

Figure S39. Steady photoluminescence (PL) spectra of $Ti_3C_2T_x$ -g-C₃N₄ and $Ti_3C_2T_x$ -g-C₃N₄/CTS

Figure S40. Schematic illustration of the band structure in the TCC membrane.

Figure S41. Concentration of K+ ions measured by inductively coupled plasma(ICP)beforeandafterillumination.

Figure S42. Long-term ionic current in the TCC membrane.

Figure S43. Light intensity dependence of the photocurrent measured on TCCmembrane. The distance between the light source and device was adjusted toinvestigate the effect of light intensity. The electrolyte concentrations were 0.01 MKCl.Errorbarsdenotestandarddeviation.

Figure S44. Measured cyclic constant current with alternating illumination (KCl, $C_L=10C_R=10^{-4}$ M).

Figure S45. Light-to-ionic energy conversion performance for different saltsolutions containing monovalent or divalent ions. The electrolyte concentration wassetat10⁻²M.

Ion	Hydration free energy (KJ/mol)		
K ⁺	-321		
Na^+	-405		
Li^+	-515		
Ca ²⁺	-1549		
Mg^{2+}	-1922		

Table S1. Hydration free energy of different ions. 9

Materials	Concentration gradient	Ref.
Graphene Oxide membrane	10/1	10
Graphene Oxide membrane	10/1	11
Ti ₃ C ₂ T _x membrane	10/1	12
Ti ₃ C ₂ T _x membrane	5/1	13
Graphene Oxide membrane	4/1	14
Ti ₃ C ₂ T _x -g-C ₃ N ₄ /chitosan composite		
membrane	20/1	Our work

 Table S2. Anti-gradient ion transport data comparison.

3. References

- X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan and Y. Xie, *J Am Chem Soc*, 2013, 135, 18-21.
- D. Zhao, J. Chen, C.-L. Dong, W. Zhou, Y.-C. Huang, S. S. Mao, L. Guo and S. Shen, *Journal of Catalysis*, 2017, 352, 491-497.
- 3. S. Peng, R. Li, Y. Huang, Y. Zhang, J.-j. Cao and S. Lee, *Applied Surface Science*, 2022, **600**, 154056.
- 4. Y. Zhang, Y. Huang, S. C. Lee and J.-j. Cao, *Chemical Engineering Journal*, 2020, **380**, 122498.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical review letters*, 1996, 77, 3865.
- 6. P. E. Blöchl, *Physical review B*, 1994, **50**, 17953.
- 7. H. J. Monkhorst and J. D. Pack, *Physical review B*, 1976, **13**, 5188.
- 8. R. S. Mulliken, *The Journal of Chemical Physics*, 1955, 23, 1833-1840.
- 9. B. Tansel, *Separation and purification technology*, 2012, 86, 119-126.
- J. Yang, X. Hu, X. Kong, P. Jia, D. Ji, D. Quan, L. Wang, Q. Wen, D. Lu and J. Wu, *Nature communications*, 2019, 10, 1-7.
- 11. Y. Zhang, F. Li, X. Kong, T. Xue, D. Liu, P. Jia, L. Wang, L. Ding, H. Dong and D. Lu, *Advanced Functional Materials*, 2020, **30**, 1907549.
- 12. R. Li, L. Zhang, L. Shi and P. Wang, ACS nano, 2017, 11, 3752-3759.
- 13. K. Xiao, L. Chen, R. Chen, T. Heil, S. D. C. Lemus, F. Fan, L. Wen, L. Jiang and M. Antonietti, *Nature communications*, 2019, **10**, 1-7.
- 14. D. Quan, D. Ji, Q. Wen, L. Du, L. Wang, P. Jia, D. Liu, L. Ding, H. Dong and D. Lu, *Advanced Functional Materials*, 2020, **30**, 2001549.