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Experimental Section

Preparation of lithium-rich cathode materials

The pristine cathodes of Li1.2-σMn0.6Ni0.2O2 (P-LROs) were prepared by a co-

precipitation method as reported in our previous work.1 The lithium-rich cathode with 

layered-spinel alternate heterostructure combined with coating layer (S-LROs) is 

prepared by further etching and coating. Typically, 0.05 g/mL P-LROs aqueous 

dispersion was treated successively by sulfuric acid and aluminum nitrate (1:25, wt%), 

stirred, centrifuged, washed, and freezing-dried for 48 h. Finally, S-LROs was obtained 

by calcination at 300 ℃ with a rate of 5 ℃/min for 12 h.

Materials characterization 

The transmission electron microscope (TEM) and high resolution-transmission 

electron microscope (HRTEM) images were observed on a JEM-2100. The time-of-

flight secondary ion mass spectrometry (TOF-SIMS) was captured on TOF.SIMS5-

100. The electron energy-loss spectroscopy (EELS) spectra, annular bright-field 

scanning transmission electron microscopy (ABF-STEM) images and high-angle 

annular dark-field scanning transmission electron microscopy (HAADF-STEM) 

images were probed by an ARM300 microscope with spherical aberration corrector. 

The sample for STEM and EELS observation were prepared via focused ion beam 

milling (FIB, FEI Scios). The X-ray photoelectron spectroscopy (XPS) was conducted 

by a Thermofisher Escalab 250 Xi+, and the binding energy scale was calibrated by the 

C 1s peak at 284.8 eV. Raman spectra were collected on a bench Raman dispersive 

microspectrometer (LabRAM HR 800) with a laser source of 532 nm. The electron 

paramagnetic resonance (EPR) spectra were performed using a Bruker A200 

spectrometer. The X-ray diffraction (XRD) was collected in a SmartLab. Rietveld 

refinements of the XRD patterns were fitted based on the GSAS+EXPGUI software by 



using a layered monoclinic phase (C2/m), hexagonal phase, (R m) and spinel phase (Fd3̅

m) as a model. In-situ XRD studies were conducted by coupling an in situ XRD cell 3̅

and an X-ray diffractometer to simultaneously observe the charge-discharge behavior. 

Electrode pellets for the in situ XRD measurements contained 5 wt% ketjen black, 5 

wt% PVDF binder, and 90 wt% cathode materials. 

Electrochemical testing

Electrochemical performances of P-LROs and S-LROs were evaluated with CR2016-

type coin cells between 2.0 and 4.8 V using a LAND battery tester (Wuhan, LAND 

Electronics Co., Ltd.) in a programmable constant temperature test chamber (Nanjing, 

MJS energy technology Co., Ltd.). Cathode slurry was prepared by mixing cathode 

materials (80 wt%), ketjen black (10 wt%), and PVDF binder (10 wt%) in N-methyl-2-

pyrrolidone solvent. Coin cells were assembled by using prepared cathodes, lithium 

foil, and the ceramic membrane in an argon-filled glovebox (< 0.1 ppm of H2O and O2), 

and the electrolyte was 1 M LiPF6 in a 2:2:6 (mass ratio) mixture of fluoroethylene 

carbonate-hydrofloroether–fluoroethylene carbonate. The amount of electrolyte used in 

each cell is about 50 μL for all tested cells.



Fig. S1 ABF-STEM images of S-LROs. And the inset structure is the layered and spinel 

phases. Green, Li; red, O; blue, Mn; yellow, Ni.



Fig. S2 (a) The TEM image and (b) HRTEM image of P-LROs.



Fig. S3 (a) HAADF-STEM image and (b) ABF-STEM image of P-LROs.



Fig. S4 (a) TOF-SIMS investigation and (b) 3D overlay distribution of secondary ion 

AlO- for surface coating layer of S-LROs and P-LROs.



 

Fig. S5 (a) STEM image of S-LROs for EELS line scan. (b) 2D line scan map images 
and (c) the corresponding EELS spectra of O K, Mn L, and Ni L edge for S-LROs from 
the surface to the bulk.



Fig. S6 (a) STEM image of P-LROs for EELS line scan. (b) 2D line scan map images 
and (c) the corresponding EELS spectra of O K, Mn L, and Ni L edge for P-LROs from 
the surface to the bulk. (d) The enlarged O K edge contour images of P-LROs.   
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Fig. S7 The fitted Raman spectrum of P-LROs.



Fig. S8 Discharge curves of (a) P-LROs and (b) S-LROs from 0.1, 0.2, 0.5, 1, 2 to 5 C.



 

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

0

1

2

3

4

D
is

ch
ar

ge
 m

ed
iu

m
 v

ol
ta

ge
 (V

)

1 C

Sp
ec

ifi
c 

en
er

gy
 (W

h/
kg

)

Cycle number

 P-LROs
 S-LROs

0.2 C

Fig. S9 The comparison of specific energy and discharge medium voltage for P-LROs 

and S-LROs at a current density of 1 C. 



Fig. S10 (a, b) The corresponding voltage profiles of Fig. 5b and Fig. 5c. The dQ/dV 

curves of (c) P-LROs and (e) S-LROs tested from 4.8 V to gradually declined discharge 

window until 2.0 V and the corresponding voltage profiles of (d) and (f).



Fig. S11 TOF-SIMS investigation on the surface of (a) MnF3
- and (b) NiF3

- after cycling 

for P-LROs and S-LROs.



Fig. S12 (a) TOF-SIMS investigation to LiF2
- near the surface, and the corresponding 

2D overlay mapping of (b) cycled P-LROs and (c) cycled S-LROs.



Fig. S13 HAADF-STEM images of (a) P-LROs and (b) S-LROs after cycling.



Fig. S14 (a) STEM image of cycled P-LROs for EELS line scan. (b) 2D line scan map 

image and (c) the corresponding EELS spectra of O K, Mn L, and Ni L edge for cycled 

P-LROs from the surface to the bulk. (d) The enlarged O K edge contour images of 

cycled P-LROs.



Fig. S15 (a) STEM image of cycled S-LROs for EELS line scan. (b) 2D line scan map 

image and (c) the corresponding EELS spectra of O K, Mn L, and Ni L edge for cycled 

S-LROs from the surface to the bulk.



Table S1 Structural constants of P-LROs and S-LROs in terms of space group C2/m, R m and Fd m.3̅ 3̅

Phase Sample a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å3)

C2/m P-LROs 4.966755 8.551456 5.030934 90.000 109.185 90.000 201.811

S-LROs 4.959684 8.575058 5.046184 90.000 109.191 90.000 202.686

R m3̅
P-LROs 2.854836 2.854836 14.207832 90.000 90.000 120.000 100.282

S-LROs 2.858108 2.858108 14.277330 90.000 90.000 120.000 101.003

Fd m3̅
P-LROs 8.221109 8.221109 8.221109 90.000 90.000 90.000 555.637

S-LROs 8.325827 8.325827 8.325827 90.000 90.000 90.000 577.141



Table S2 Comparison of S-LROs with the previously reported Li-rich metal oxides.

Materials Voltage (V) Capacity 
(mAh/g)

Initial 
Efficiency 

(%)
Cycle capability Rate capability Refs.

S-LROs 2.0-4.8 307 
(25 mA/g) 103.6

84%, 198.5 mAh/g
(200 cycles, 250 mA/g)

92.6%, 218.7 mAh/g
(100 cycles, 250 mA/g)

180
(1250 mA/g)

This 
work

LiTaO3 coated 
Li1.13Mn0.517Ni0.256Co0.097O2

2.0-4.8 272.8 
(20 mA/g) 83.72 85%, 187 mAh/g

(200 cycles, 200 mA/g)
153.2

(1000 mA/g)
2

Li1.2Mn0.2Ti0.4Cr0.2O2 1.5-4.8 257
(20 mA/g) ~77 -- 155

(1000 mA/g)
3

Li1.2Ni0.1Ti0.5Cr0.2O2 1.5-4.6 271
(20 mA/g) ~76 -- 160

(1000 mA/g)
3

Li1.2Mn0.6Ni0.2O2-δ 2.0-4.8 260
(25 mA/g) ~79 90%, ~184 mAh/g

(200 cycles, 250 mA/g)
~130

(1250 mA/g)
4

Li2MnO3 modified 
0.5Li2MnO3–

0.5LiNi0.44Mn0.32Co0.24O2

2.0-4.8 292.7
(25 mA/g) 88.86 90.1%, ~205 mAh/g

(100 cycles, 250 mA/g)
~151

(1250 mA/g)
5

Li1.2Mn0.56Ni0.24O2) with gas–
solid interface reaction 2.0-4.8 254

(25 mA/g) ~80 86.4%, 171.9 mAh/g
(300 cycles, 250 mA/g)

155.1
(1250 mA/g)

6



Table S3 L3/L2 ratio value for the spectra of P-LROs, S-LROs, cycled P-LROs and 
cycled S-LROs on the surface.

Sample Energy loss (eV) L3/L2 ratio

P-LROs 641.75 1.48616

S-LROs 640.5 2.221

Cycled P-LROs 640.5 1.54329

Cycled S-LROs 639.75 1.67089
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