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Fig. S1 Z* plots at various temperatures for (a) BNST, (b) BMT15 and (c) BMT20 

ceramics. 

 

Fig. S2 Conductivity as a function of frequency measured at 500 oC for (1-x)BNST-

xBMT ceramics. 

 

Fig. S3 Spectroscopic plots of Z″ and M″ spectra at 500 oC for (a) BNST and (b) 

BMT20 ceramics. 
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Fig. S4 Frequency-dependent P-E loops at 420 kV·cm-1 for the BMT15-RRP ceramic. 

 

Fig. S5 Unipolar P-E loops for BMT15-RRP ceramic at 400 kV·cm-1 under various 

cycle numbers. 

 

Fig. S6 (a) Overdamped discharge waveforms and (b) time-dependent discharge energy 

density (Wdis) under different electric fields. (c) Current curves as a function of the cycle 

number at room temperature of BMT15-RRP ceramics, measured by an RC load circuit. 
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Fig. S7 Dielectric constant and dielectric loss as a function of temperature at various 

frequencies for (a) BNT, (b) BMT5, (c) BMT10 and (d) BMT20. 
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Fig. S8 The Rietveld refinement of XRD data for the (a) BNST, (b) BMT5, (c) BMT10, 

(d) BMT15 and (e) BMT20 ceramics. 
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Fig. S9 SEM micrographs of BNST-BMT ceramics. (a) BNST, (b) BMT5, (c) BMT10, 

(d) BMT15, (e) BMT20, (f) BMT15-RRP and (g) BMT20-RRP. 

 

Fig. S10 Evolution of average grain size of the BNST-BMT ceramics. 
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Fig. S11 SEM micrograph of BMT15-RRP ceramic and its corresponding EDX element 

mapping. Red-O, Green-Mg Purple-Sr, Yellow-Na, Blue-Bi, Gray-Ti and Orange-Ta. 

 

Fig. S12 Dielectric constant and dielectric loss as a function of temperature at various 

frequencies for (a) BMT15-RRP and (b) BMT20-RRP ceramics. 
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Fig. S13 Temperature-dependent XRD of BMT15-RRP ceramic. 

 

Fig. S14 Out-of-plane PFM phase images after poling treatment with different electrical 

voltages and relaxation durations. (a, d) BNT, (b, e) BNST and (c, f) BMT15. 
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Fig. S15 Out-of-plane PFM amplitude images of the BNST-BMT ceramics after poling 

treatment with different voltages and relaxation durations. 

 

Fig. S16 Coexistence of polymorphic polar nanoregions. HR-TEM micrographs of (a) 

BNT, (b) BNST and (c) BMT15 ceramics. 
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Fig. S17 Axial ratio (c/a) distribution mapping along [100]c. 

 

Fig. S18 Calculated microstructural evolution of (1-x)BNST-xBMT system upon 

cooling. The gray color represents the paraelectric phase, the other colors distinguish 

the ferroelectric domains with different orientations (arrows). 
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Table S1 Average grain size (AGS) and breakdown strength (Eb) of all ceramics. 

x (mol%) 0 0.05 0.10 0.15 0.20 BMT15-RRP BMT20-RRP 

AGS (μm) 3.43 2.04 1.47 1.04 1.36 0.31 0.54 

Eb (kV·cm-1) 300 380 420 470 440 560 498 

On the one hand, the relationship between the breakdown strength (Eb) and AGS 

can be summarized as 𝐸𝑏 ∝ 1 √𝐴𝐺𝑆⁄  , that is, reducing the average grain size of 

ceramics is beneficial to the increase of Eb value. On the other hand, in dielectric 

ceramics, depletion regions generated by the grain boundaries can prevent charge 

carriers from passing through them. The density of grain boundaries increases with the 

decrease of grain size, resulting in more depletion regions, higher resistivity and larger 

Eb, that is, grain refinement can improve Eb. In fact, in this study, the breakdown 

strength of the dielectric material does decrease with the reduction of the ceramic grain 

size, which will be confirmed later. 

Experimental 

Phase-Field Simulations: A single crystal considering Cubic (C) to Tetragonal (T) 

to rhombohedral (R) ferroelectric transition with defect doping concentration x=0-0.20 

has been carried out in phase-field simulations. The total free energy of the ferroelectric 

system can be described as:1-4 

𝐹 = ∫ (𝑓𝑏𝑢𝑙𝑘 + 𝑓𝑔𝑟𝑎𝑑 + 𝑓𝑐𝑜𝑢𝑝𝑙𝑒)𝑉
𝑑𝑉 + ∫ (𝑓𝑒𝑙𝑎𝑠 + 𝑓𝑒𝑙𝑒𝑐)𝑑𝑉𝑉

                    (1) 

where fbulk represents the bulk free energy density, 
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where αij is the coefficient and depends on concentration c and temperature T.  

fgrad represents the gradient energy density, 

𝑓𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
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where G11 is the gradient energy coefficient. fcouple represents the dipole effect caused 

by doping. 

𝑓couple = −∫𝑑3 𝑥 ∑ 𝑃𝑖𝑖=1,2,3 (𝑥) ∙ 𝜑𝑙𝑜𝑐(𝑥) , where 𝜑𝑙𝑜𝑐(𝑥)  is dipolar field 

created by doping, and is assumed to distribute randomly and doesn’t change under 

cooling. felas is the long-range elastic interaction energy densities and felec is the 

electrostatic interaction energy densities. 𝑓𝑒𝑙𝑎𝑠 =
1

2
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0 ), where cijkl is the elastic constant tensor, εij the total strain, ε0
kl the 

electrostrictive stress-free strain, i.e., ε0
kl =QijklPkPl. felec=fdipole+fdepola+fappl, where fdipole 

is the dipole-dipole interaction caused by polarization, fdepola the depolarization energy 

density and fappl the energy density caused by applied electric field. The temporal 

evolution of the spontaneous polarization field (P) can be obtained by solving the time-

dependent Ginzburg-Landau (TDGL) equation:
𝑑𝑃𝑖(𝑥,𝑡)

𝑑𝑡
= −𝑀

𝛿𝐹

𝛿𝑃𝑖(𝑋,𝑡)
, i=1, 2, 3, where 

M is the kinetic coefficient, F is the total free energy, and t is time. 
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