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Methods 

Materials synthesis 

The micron-sized silicon (MSi) powders with an average diameter of ~ 1.5 m 

was purchased from Xuzhou Lingyun Silicon Industry Co., Ltd. The MSi powders were 

directly put into an etching solution containing 0.02 M AgNO3 and 5 M hydrofluoric 

acid (HF) at 50 ℃ and stirred for 30 min. To remove the residual solvent, the etching 

products were thoroughly washed by distilled water and EtOH for 5 times, respectively. 

After then, the as-obtained PS-Ag powders were dried in a vacuum oven at 80 ℃ for 6 

h prior to use.  

NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a traditional 

solid-state reactive method. LiOH·H2O (99.95%, Sigma Aldrich) (10% excessive), 

Al2O3 (99.99%, Sigma Aldrich), TiO2 (99.98%, Sigma Aldrich), and NH4H2PO4 (99.5%, 

Sigma Aldrich) were ground for 0.5 h in a mortar. The LiOH·H2O powders were heated 

at 250 °C for 3 h to remove crystalline H2O. Subsequently, the mixed powders were 

cold pressed into pellets with a diameter of 13 mm at 400 MPa. The pellets were then 

preheated at 400 °C in the air for 5 h, hand-ground into fine powders, cold-pressed into 

pellets, and sintered at 900 °C for 5 h. The as-synthesized LATP pellet was ball milled 

(600 r min−1 for 5 h) into nanoparticles. 

For the preparation of poly (vinylidene fluoride)-co-hexafluoropropylene (PVDF-

HFP) /LATP composite SSE, the 0.6 g PVDF-HFP powders, 0.6 g lithium bis 

(trifluoromethane sulfonimide) (LiTFSI) and 0.2 g LATP nanoparticles were dissolved 

in DMF and stirred at 60 °C for 24 h. After then, the slurry was cast on a clean glass 

plate, PVDF-HFP/LATP solid-state composite SSE film was fabricated after dried in a 

vacuum oven at 60 °C for 24 h. The thickness of the prepared film PVDF-HFP/LATP 

SSE is ~ 50 μm. 

 

Physicochemical characterizations 

The crystal structures of the as-synthesized LATP, MSi, PS-Ag and SSE were 

detected by X-ray diffraction (XRD) (Cu Kα, λ ~ 0.15406 nm). A field-emission 

scanning electron microscope (FESEM, JSM-7600F) was applied to observe the 



surface and cross-sectional morphology of the PS-Ag particles and PS-Ag-C electrode. 

The microstructures and chemical compositions of PS-Ag-C before and after cycling 

were analyzed by a transmission electron microscope (TEM) equipped with energy-

dispersive X-ray spectroscopy (EDS) (FEI Titan F20). The nitrogen adsorption and 

desorption isotherm were tested at 77 K in a range of relative pressure of 0.0001–0.99 

P/P0 using a TriStar II surface area and porosity system (Micromeritics).   

The cryo-TEM image and corresponding electron energy loss spectroscopy (EELS) 

spectra of SEI information was conducted by HRTEM (Aztec, Oxford Instruments). 

The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS) 

(Thermo Scientific Kα spectrometer). ToF-SIMS measurements were carried out on a 

PHI nanoTOF II with a Bi+ source. Sputtering with an Ar+ ion beam (3 keV, 100 nA) 

was performed for the depth profile analysis in a 400×400 m2 area. Atomic force 

microscopy (AFM) was performed on Bruker Dimension Icon (Germany) in an area of 

5×5m2. Inductive coupled plasma atomic emission spectrometer (ICP-AES) was 

carried out on a PerkinElmer 8300. Thermal gravimetric analysis (TGA) was performed 

on Netzsch STA 449 F3. The volume expansion of PS-Ag-C full cell was tested on 

Model Coin Cell System (MCS1000, IEST) with a height accuracy of 0.1 m.  

 

In situ TEM observation 

The live lithiation/delithiation process of PS-Ag-C was conducted in a TEM with 

Nanofactory TEM-STM holder. The PS-Ag-C was loaded on the Mo tip and then 

contact with Li source that is mounted on a W tip. In this configuration, the naturally 

formed Li2O on the surface of Li metal served as solid electrolyte facilitating the 

diffusion of Li+. Lithiation process of PS-Ag-C was initiated by applying a positive 

voltage (+3V) on Li/Li2O end. Once the lithiation process finished, a reverse voltage (-

3V) was applied to the Li/Li2O to start the delithiation process. In addition, in order to 

minimize the side effect of electron beam on experiment, the electron dosage of all the 

tests was controlled below 1 A cm−2. 

 



In situ XRD measurement 

In situ XRD test of PS-Ag-C anode was conducted on a Bruker D8 Advance 

machine with Cu Kα as the X-Ray source) with lithium foil as the counter electrode 

and PS-Ag-C with a loading of 8 mg cm−2 serving as work electrode in a specially 

designed cell during the first charging and discharging process. After the cell was rested 

for 6 hours, it was then discharged and charged between the voltage window 0.005 and 

1.5 V at 0.05 A g−1 on a LAND multichannel battery tester (CT2001A) with the 

simultaneous collection of the phase changes of PS-Ag-C anode. 

 

Electrochemical performance evaluation 

For the preparation of PS-Ag-C electrode, the PS-Ag powders and 

polyacrylonitrile (PAN) solution (10 wt.% dissolved in N, N-Dimethylformamide 

(DMF)) were mixed in a weight ratio of 7:3 and ball-milled 2 h to form a slurry. The 

mixed slurry was spread onto copper foil and dried for 12 h in a vacuum drying oven 

at 80 °C to evaporate the residual DMF. The as obtained PS-Ag-PAN on copper foil 

was cut into small discs with a diameter of 12 mm and then calcined at 700 °C for 2 h 

under Ar/H2 (5%) atmosphere to obtain the PS-Ag-C electrode. The mass loading 

determined in our manuscript is the total mass of PS-Ag-C electrode (including Cu disc 

current collector) minus the mass of Cu foil, which was precisely weighed by a 

microbalance (METTLER TOLEDO XS3DU) with an accuracy of 1 g. The active 

material mass loading including PS, Ag and C is 0.5 − 2.3 mg cm−2. 

All the electrochemical performances were tested in CR 2025-type coin cells, 

which were assembled in a glovebox filled with high purity Ar (H2O< 1 ppm, O2< 1 

ppm). The electrolyte used in liquid cell was 1 M LiPF6 in ethylene carbonate 

(EC)/dimethyl carbonate (DMC)/diethyl carbonate (DEC) (1:1:1 by volume) with the 

addition of 10 vol. % fluoroethylene carbonate (FEC). The coil cells were measured 

between 0.005 and 1.5 V on a LAND CT2001A battery test instrument. Cyclic 

voltammetry (CV) with a scan rate of 0.2 mV s−1 was performed on a Bio-Logic VSP-

300 electrochemical workstation. Electrochemical impedance spectroscopy (EIS) tests 

were carried out between 7 MHz and 0.1 Hz with an alternating current (AC) amplitude 



of 10 mV to record the impedance variation of PS-Ag-C anode during cycling.  

Ionic conductivity (σ) of LATP/PVDF-HFP SSE was calculated based on the 

following formula: 

          𝜎 =                                  (1), 

where L is the thickness of solid polymer electrolyte; R is the high-frequency intercept 

obtained from the electrochemical impedance spectroscopy (EIS); S is the surface area 

of the electrode. The calculation formula of the lithium-ion migration number (t+) can 

be expressed as follows [1]: 

    𝑡 =  
( )

( )
                             (2), 

where ΔV is the applied polarization voltage; I0 and Is are the initial current and steady-

state current, respectively; R0 and Rss are the initial resistance and steady-state 

resistance, respectively. Usually, a metal lithium symmetrical electrode is sandwiched 

with composite solid electrolytes to form a 2025 coin-type half-cell, which is tested by 

the AC impedance and potentiostatic chronoamperometry. For the AC impedance test, 

the frequency range is set as 0.01 Hz − 7 MHz, and the amplitude of the voltage is set 

as 10 mV. The I−t curve was obtained by the Bio-Logic VSP-300 electrochemical 

workstation and potentiostatic chronoamperometry, where ΔV was 10 mV; time t was 

7200 s; the test temperature was 50 °C. 

To assemble the solid-state half-cell, the PVDF-HFP/LATP SSE serves as 

separator and electrolyte between PS-Ag-C electrode and lithium metal. Full cells were 

fabricated by pairing PS-Ag-C anode material and Li (Ni0.8Co0.1Mn0.1) O2 (NCM, 

purchased from Canrd) cathode. The cathode was composed of 80 wt.% NMC811, 10 

wt.% carbon black, and 10 wt.% poly (vinylidene fluoride) (PVDF). The capacity ratio 

of PS-Ag-C to NCM was ~ 1.1:1. The mass loading of PS-Ag-C in full cell is 0.5 mg 

cm−2. The specific capacity of the full cells was measured at 1 A g−1 (based on PS-Ag-

C) between 2.5 and 4.4 V. The electrochemical cycling performances of all solid-state 

cells were performed at 50 °C.  

 

 



Computational methods  

All the density functional theory calculations were performed using Vienna ab 

initio simulation package (VASP) [2,3] with Pwedew-Burke-Ernzerhof (PBE) [4] 

functional of the generalized-gradient approximation (GGA) to the exchange-

correlation potential. Projector augmented-wave method (PAW) was used, and the 

plane wave basis set was cut off at the energy of 500 eV. The k-points of 9×9×1 

automatically generated by the Monkhorst-Pack scheme were adopted in the Brillouin 

zone and a vacuum layer of 20 Å was set in present calculations. The Li diffusion barrier 

energies were calculated by climbing-image nudged elastic band method (CI-NEB) [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure. S1 BET pore size distribution for PS-Ag. 

 

 

 
Figure.S2 (A) Surface SEM image of PS-Ag-C electrode. (B) A high magnification view in (A).  

 

 

 
Figure.S3 High resolution XPS spectra of PS-Ag-C electrode: (A) C 1s, (B) N 1s. 

 

 



 
Figure. S4 Raman spectrum of PS-Ag-C electrode.  

 

 

 

Figure. S5 (A) Surface SEM image of PVDF-HFP/LATP SSE. (B) XRD patterns of PVDF-

HFP/LATP SSE. 

 

 

 

Figure. S6 (A) EIS spectra of PVDF-HFP/LATP SSE in a temperature window of 30-60 ℃. (B) 

Arrhenius plot of conductivity for PVDF-HFP/LATP SSE. 

 



 

Figure. S7 Linear sweep voltammetry of PVDF-HFP/LATP SSE.  

 

 

 

Figure. S8 (A) Current-time curve obtained from chronoamperometry at a DC polarization of 0.01 

V. (B) EIS response of the cell before and after polarization. 

 

 

 

Figure. S9 (A) Voltage profiles of Li-Li symmetric cell used PVDF-HFP/LATP SSE. (B) Enlarged 

voltage profile in (A)  

 



 
Figure S10. SEM images of Ag flakes used for electrochemical performance test. (B) The charge-

discharge profiles of Ag electrode at 0.2 A/g between 0.005 and 1.5 V. 

 
 

 
Figure S11. (A) The result of Ag content in PS-Ag measured by inductively coupled plasma atomic 

emission spectroscopy (ICP-AES). (B) The charge-discharge profile of carbonized PAN. (C) TG 

curve of PS-Ag-C powders measured by thermal gravimetric analysis (TGA).  

 

 



 

Figure. S12 Charge-discharge voltage profiles of PS-Ag-C electrode at various current density.  

 

 

 

Figure S13. The cycling performance of PS-C electrode in a solid-state cell at 1 A g−1. 

 

 

Figure S14. The cycling performance of PS-Ag electrode a solid-state cell at 1 A g−1. 

 
 



 

Figure S15. Cycling performance of PS-Ag-C electrode in a liquid electrolyte cell at 1 A g−1. 

 

 

Figure S16. Rate performance of solid-state NMC811/PS-Ag-C full cell. 

 

 

 
Figure S17. The schematic illustration of domain, flow domain and mosaic structure.  

 

 



 
Figure S18. 3D map showing the distribution of LiCO3

- for PS-Ag-C anode in a solid-state cell. 

 

 

 
Figure. S19 The detailed content ratio of different components in the SEI layer for liquid and solid 

cells. 

 

 

 

Figure S20. (A) XPS depth profiles of C 1s spectrum. (B) XPS depth profiles of F 1s spectrum. 

 

 

 



 
Figure S21. EDS elemental mapping of PS-Ag-C electrode after long-term cycle in a solid-state cell. 

 

 

Figure S22. The charge and discharge curve of PS-Ag-C electrode during in situ EIS test.  

 

 

Figure S23. The fitting results of SEI resistance for a PS-Ag-C electrode during the initial cycle.  



 

Figure 24. The fitting results of SEI resistance for a PS-Ag-C electrode during the second cycle.  

 

 

 

Figure S25. (A) The EIS spectra variation of PS-Ag-C anode in a liquid cell during the initial 

lithiation process. (B) The EIS spectra variation of PS-Ag-C anode in a liquid cell during the 

initial delithiation process. 

 



 

Figure S26. The EIS impedance spectra of PS-Ag-C collected during various cycles. 

 

 

Figure S27. (A) The schematic illustration of the model coin cell system. (B) Volume expansion of 

the PS-AG-C full cell during the first three cycles. 

 

 

Figure S28. (A) Cross sectional SEM image of pristine PS-Ag-C electrode. (B) Cross sectional SEM 

image of PS-Ag-C electrode after first lithiation. (C) Cross sectional SEM image of MSi-C electrode 

after first lithiation.  



 

Figure S29. Side views of diffusion pathways of Li atom for (a) Si and (b) Si/Ag structures. 

 

 

Figure S30. The calculated band structures of (A) Si, (B) Si/Ag and (C) Li9Ag4/Si.  

 

 

Figure S31. Side views of diffusion pathways of Li atom for (A) Si, (B) Si/Ag and (C) Li9Ag4/Si. 

 



Table S1. The performance comparisons of PS-Ag-C anode with previously reported results of Si 

anodes in solid-state batteries 

 Mass loading 

(mg/cm2)  

Areal 

capacity 

(mAh/cm2) 

Cycle number ICE 

(%) 

Specific 

capacity 

(mAh/g) 

Our work 2 4.4 500 89 3030 

Ref. 6 0.23 0.6377 200 85.6 2773 

Ref. 7 0.7 1.75 300 82.7 2500 

Ref. 8 0.23 0.598 140 95 2600 

Ref. 9 1 3.5 100 84 2912 

Ref. 10 0.05 1.35 100 54 2702 

Ref. 11 0.74 2 375 90 3059 

Ref. 12 0.1 2.52 200 68 2520 

 
Captions of Supplementary Movies 
 

Movie S1: In situ TEM observation of lithiation/delithiation of a PS-Ag electrode for 3 cycles at 

high magnification (the display was sped up by 20 times the real time of lithiation). 

 

Movie S2: In situ TEM observation of lithiation/delithiation of a PS-Ag electrode for 2 cycles at 

low magnification (the display was sped up by 200 times the real time of lithiation). 
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