Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2023

Comparative Techno-economic Analysis of Different

Direct Solar Hydrogen Generation Systems

Astha Sharma^{1*}, Thomas Longden², Kylie Catchpole¹, and Fiona J. Beck¹
1.School of Engineering, The Australian National University
2.Crawford School of Public Policy, The Australian National University
*Corresponding author: <u>fiona.beck@anu.edu.au</u>

SUPPLEMENTARY INFORMATION

Baseline costs

Table S1: baseline costs for different DSHG configurations

Component	Coupled PEC	Coupled PV-EC	Decoupled PV-EC	Ref
DSHG module				
PV module	238.5 \$/kW	238.5 \$/kW	238.5 \$/kW	[1]
Membrane	50 \$/m ²	50 \$/m ²	50 \$/m ²	[2]
Catalyst	5.5 \$/m ²	5.5 \$/m ²	5.5 \$/m ²	[3]
Chassis and module	140 \$/kW	140 \$/kW	140 \$/kW	[4]
assembling cost				
DC-DC convertor			100 \$/unit	
Hard BoS				
Racking/mounting structure	64 \$/kW	64 \$/kW	64 \$/kW	[1]
Piping	P5 – 4 \$/m	P5 – 4 \$/m	P5 – 4 \$/m	[5, 6]
	P4 – 4 \$/m	P4 – 4 \$/m	P4 – 4 \$/m	
	P3 – 6.18 \$/m	P3 – 6.18 \$/m	P3 – 6.18 \$/m	
	P2 – 6.18 \$/m	P2 – 6.18 \$/m	P2 – 6.18 \$/m	
	P1 – 8.51 \$/m	P1 – 8.51 \$/m	P1 – 8.51 \$/m	
Gas compressor and	220 \$/kW	220 \$/kW	220 \$/kW	[7]
condenser with				
intercoolers				
Water circulation	169 \$/kW	169 \$/kW	169 \$/kW	[7]
Controllers and sensors	525 \$/unit	525 \$/unit	525 \$/unit (collective	[6]
water level controller,	(collective for all 4	(collective for all	for all 4 controllers	
pressure sensor,	controllers and	4 controllers and	and sensors)	
hydrogen sensor, gas	sensors)	sensors)		
flow meter				
Wiring- signal, power and conduit	0.8 \$/ft	0.8 \$/ft	0.8 \$/ft	[6]
Installation				
Mechanical installation	59 \$/kW	59 \$/kW	59 \$/kW	[1]
and inspection				[-]
Piping installation	29.6 \$/kW	29.6 \$/kW	29.6 \$/kW	
Electrical installation	11.84 \$/kW	11.84 \$/kW	11.84 \$/kW	
Soft BoS				

Margin	60.7 \$/kW	60.7 \$/kW	60.7 \$/kW	[1]
Financing costs	32.6 \$/kW	32.6 \$/kW	32.6 \$/kW	[1]
System design	9.1 \$/kW	9.1 \$/kW	9.1 \$/kW	[1]
Permitting	14.08 \$/kW	14.08 \$/kW	14.08 \$/kW	[1]
Incentive applications	8.94 \$/kW	8.94 \$/kW	8.94 \$/kW	[1]
Customer acquisition	9.13 \$/kW	9.13 \$/kW	9.13 \$/kW	[1]
Replacement costs				
Replacement catalyst	Catalyst cost for futur	re year with 2.5% co	st reduction per year	
cost	and 1.9% inflation rat	te		
Replacement membrane	Membrane cost for fu	uture year with 2.5%	cost reduction per year	
cost	and 1.9% inflation rat	te		
Replacement of DSHG	cost for future year			
module cost	with 2.5% cost			
	reduction per year			
	and 1.9% inflation			
	rate			
Replacement	50% of mechanical	50% of	50% of mechanical	[1]
components installation	installation cost	mechanical	installation cost	
costs		installation cost		
DSHG O&M costs*	10 \$/kW/yr	10 \$/kW/yr	10 \$/kW/yr	[1]
piping O&M costs*	10 \$/kW/yr	10 \$/kW/yr	10 \$/kW/yr	
Water costs*	3.9 \$/kGal/yr			[8]

*An inflation rate of 1.9% per year is considered while calculating these costs

**Cost reduction of 2.5% per year for future assuming production will scaleup exponentially

Component	cost	ref
PV system		
Module and invertor hardware		
PV module	238.5 \$/kW	[1]
Invertor	33.43 \$/kW	[1]
BoS hardware		
Racking and mounting	43.30 \$/kW	[1]
Cabling/wiring	30.57 \$/kW	[1]
Safety and security	17.47 \$/kW	[1]
Monitoring and control	3.20 \$/kW	[1]
Installation		
Mechanical installation	50.28 \$/kW	[1]
Electrical installation	36.1 \$/kW	[1]
Inspection	8.93 \$/kW	[1]
Soft BoS		
Margin	60.7 \$/kW	[1]
Financing costs	32.6 \$/kW	[1]
System design	9.1 \$/kW	[1]
Permitting	14.08 \$/kW	[1]
Incentive applications	8.94 \$/kW	[1]
Customer acquisition	9.13 \$/kW	[1]

Table S2: baseline costs for PV-E configuration

Electrolyzer system					
PEM stack					
Porous transport layer (PTL)	61.2 \$/kW	[9] [7]			
Small parts (sealing, frames)	10.8 \$/kW	[9] [7]			
Bipolar plates	190.8 \$/kW	[9] [7]			
Stack assembly and end plates	10.8 \$/kW	[9] [7]			
Catalyst coated membranes		[9] [7]			
Manufacturing	36 \$/kW				
PFSA membrane	17.6 \$/kW				
Iridium	21.6 \$/kW				
Platinum	11.2 \$/kW				
Hard BoS					
Power supply	220 \$/kW	[9] [7]			
Deionized water circulation	96.8 \$/kW	[9] [7]			
Hydrogen processing	88 \$/kW	[9] [7]			
Cooling	35.2 \$/kW	[9] [7]			
0&M					
For PV*	10 \$/kW/yr	[1]			
For electrolyzer*	3% of electrolyzer capital cost	[10]			
Water*	3.9 \$/KGal/yr	[8]			
<u> </u>					
Replacement cost					
Catalyst	Catalyst cost for future year				
	with 2.5% cost reduction per				
	year** and 1.9% inflation rate				
Replacement material installation					
cost					
cost					

*An inflation rate of 1.9% per year is considered while calculating these costs

**Cost reduction of 2.5% per year for future assuming production will scaleup exponentially

Table S3: cost range for DSHG configurations. All the costs are color coded in red, yellow and green based on the level of uncertainty in the costs, where green are least uncertain, and red are the most.

Variable	Baseline	Min	Max	Range
Capacity factor	20	22	20	
Discount rate	8	5	8	
DSHG Module				
PV module	238.5 \$/kW	238.5 \$/kW	263.65 \$/kW	[1]
Catalyst cost	5.5 \$/m2	0 \$/m2	8 \$/m2	[3]
DC-DC convertor	100 \$/unit	0 \$/m2		
Membrane cost	50 \$/m2	30 \$/m2	180 \$/m2	[2]
Membrane and catalyst lifetime	5 years	5	5	
Hard BoS				

Racking and mounting	64 \$/kW	64 \$/kW	111.25 \$/kW	Min- current value, Max- mid PV range values [1]
Electrolyte and Gas handling (compressors and pumps)	220 \$/kW	165 \$/Kw	495 \$/kW	IEA [11] and NREL [7]
Piping material	30 \$/kW	30	45	Min plastic, max steel
Controllers and sensors	20 \$/kW	0	1200 \$/kW	500% increase in cost
Installation and other soft BoS				
Mechanical and electrical installation	71 \$/kW	71 \$/kW	120 \$/kW	Min- current value, Max- mid PV range values [1]
Other soft BoS	135 \$/kW	135 \$/kW	183 \$/kW	Min- current value, Max- mid PV range values [1]
Piping installation	30\$/kW	30	60	Piping installation cost ~ total material cost
O&M				
DSHG	10 \$/kW	10	18	[1]
piping	10 \$/kW	5	18	[1]
Replacement				
Replacement materials installation costs	30 \$/kW	15	45	± 50%

Table S4: cost range for PV-E configurations

Component	baseline	min	max	
PV system (\$/kW)	596	596	952	Min- current value, Max- mid PV range values [1]
Electrolyzer (\$/kW)	800	560	1800	IEA [11] and NREL [7]
PV O&M cost (\$/kW/yr)	10	10	18	[1]
Piping O&M cost (\$/kW/yr)	10	5	18	[1]
Replacement materials installation costs (% of original cost)	30	15	45	± 50%

Module specifications

The performance and size parameters of commercially available LG R series Si PV module – LG435QAC, are used in the current work. The specifications of the module are given in detail in the below tables.

Table S5: Dimensions and layout of Si PV module

No of cells	66	
module width	40.94	inch

	104	cm
module length	75.2	inch
	191	cm
Area	19864	cm ²
Cell area	300.97	cm ²
Coverage	86.8	%

Table S6: Dimensions and layout of DSTH module

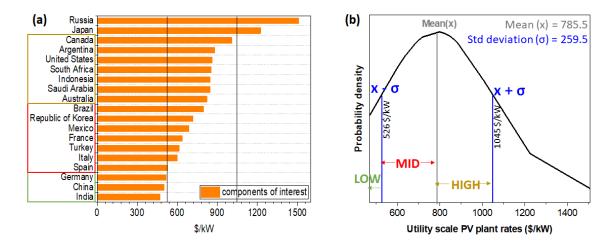
No of cells	66	
Length	191	cm
Width	104	cm
Area	19864	cm ²
Depth	0.1	cm
Volume	1986.4	cm ³
Volume	1.9864	L

Table S7: Operating parameters of the PV and DSTH module

Parameter		value	unit
Output power	P _{max}	435	Watt
Voltage at maximum power point	V _{mpp}	41.1	Volts
Current at maximum power point	Impp	10.6	Ampere
Open circuit voltage	V _{oc}	48	Volts
Short circuit current	l _{sc}	11.2	Ampere
Fill factor	FF	80.9	%
PV module efficiency	η	21.9	%
STH efficiency for coupled	STH	15.26	%
configuration (calculated)			
STH efficiency for decoupled	STH	20.60	%
configuration (calculated)			

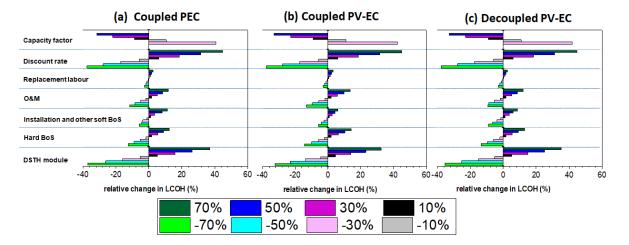
Hydrogen production rates

The hydrogen production rates for the given module design and STH efficiency are calculated using the operating current density. The hydrogen production rate is then extended to the module and plant level.


Rate of hydrogen production per area $(gm/s/cm^2) = \frac{J_{op} (A/cm^2) \times 1.23(V)}{calorific value of hydrogen(J/gm)}$

Rate of hydrogen production per cell = size of cell (cm^2) x rate of hydrogen production per area

Rate of hydrogen production per module = cells per module x rate of hydrogen production per cell


Component costs from utility scale PV plants

Different costs: are taken from utility scale PV plants. We took the detailed cost values for different countries from IRENA power generation report 2021 [1] and used standard deviation to define the low, mid, and high-cost ranges. Figure S1(a) shows the total cost of different components of interest for different countries in \$/kW directly taken from the IRENA power generation report.

Figure S1: (a) Utility scale PV costs for different countries from IRENA report (b) standard deviation curve and low, mid, and high ranges

Figure S1(b) shows the standard deviation curve for utility scale PV costs of interest for different countries. The low and mid-range for the utility-scale PV plant is set by taking one and two standard deviations of values lower than mean respectively, while the high range is defined by taking one standard deviation of values higher than mean, assuming that no renewable hydrogen plants would be built in the most expensive places.

Sensitivity analysis

Figure S2: Sensitivity analysis for the DSHG systems based on the costs of PV panel, membrane, PEC panel, Hard BoS, soft BoS, Discount rate and capacity factor. Each analysis represents the relative change in LCOH values (x-axis) from the base value (as shown in figure 3(a), for low PV cost) on varying a single parameter.

Regression analysis

Table S8 shows list of the list of components, associated regression coefficients β_x , standard error (SE_x) and tvalues (t_x) for all the three DSHG systems. Regression estimates are used to estimate the impacts of individual (or combinations) of variables, while holding all other factors constant. For a linear regression like this, the coefficients are the marginal change in the LCOH for changes in that factor. All the costs are color coded in red, yellow and green based on the level of uncertainity in the costs, where green are least uncertain, and red are the most. The significance of individual parameters in each configuration is quantified using t-statistics 't_x', calculated using equation 3. A higher t-statistics value signifies higher dependence of the LCOH on the cost estimate associated with that parameter.

Table S8: Regression coefficient and t-values for different components for three different DSHG configurations.

		**	* *	* * *	* *	***			* * *	* * *	* * *	*	*	* * *	***	* * *	* * *	* * *	* * *
U	Pr(> t)	2.5E-16	< 2e-16	1.2E-12	< 2e-16	1.4E-09	0.28361		9.7E-13	6.7E-13	< 2e-16	0.0269	0.00694	5.7E-06	< 2e-16	2.4E-07	< 2e-16	< 2e-16	< 2e-16
ed PV-E	t value	9.417	75.04	7.882	13.42	6.525	1.077		7.925	7.994	10.08	2.239	2.744	4.737	9.84	5.458	35.35	33.93	10.61
Decoupled PV-EC	Std. Error	0.000272	9.25E-05	0.000838	0.000234	0.000354	0.000547		0.000313	0.000278	0.000227	0.000885	0.000752	0.000483	0.000235	0.000415	0.000133	0.000125	0.000428
	estimate	0.002563	0.006941	0.006607	0.003142	0.002313	0.000588		0.002479	0.002226	0.002291	0.001982	0.002065	0.00229	0.002312	0.002266	0.004689	0.004247	0.004536
		***	***	* *	***	***			***	* * *	* * *	***	***	* * *	***	* * *	* *	***	* * *
	Pr(> t)	< 2e-16	< 2e-16	< 2e-16	< 2e-16	< 2e-16			3.07E- 12	< 2e-16	< 2e-16	8.5E-05	2.3E-08	< 2e-16	< 2e-16	< 2e-16	< 2e-16	< 2e-16	< 2e-16
PV-EC	t value	18.15	127.7	11.77	22.04	13.96			7.736	10.74	20.8	4.062	5.966	9.814	18.43	9.994	31.67	31.67	33.27
Coupled PV-EC	Std. Error	0.0002052	0.0000745	0.0008822	0.0001922	0.0002693			0.0005460	0.0003019	0.0001712	0.0007186	0.0006024	0.0003819	0.0001863	0.0003383	0.0001051	0.0001051	0.0003383
	estimate	0.0037250	0.0095080	0.0103900	0.0042360	0.0037600			0.0042240	0.0032430	0.0035600	0.0029190	0.0035940	0.0037480	0.0034350	0.0033810	0.0033280	0.0033280	0.0112600
		***	* * *	* * *	* * *	***			***	* * *	* * *	*	**	* * *	***	* * *	* * *	* *	* * *
	Pr(> t)	< 2e-16	< 2e-16	< 2e-16	< 2e-16	8.6E-16			1.38E- 06	5.6E-11	< 2e-16	0.01004	0.00021	2.8E-09	< 2e-16	< 2e-16	< 2e-16	< 2e-16	< 2e-16
Coupled PEC	t value	28.98	85.66	9.57	24.28	9.231			5.072	7.176	13.73	2.614	3.826	6.399	12.29	9.994	21.15	21.15	22.37
Coupl	Std. Error	0.000347	0.000111	0.000993	0.000285	0.000402			0.000814	0.000453	0.000256	0.001067	0.000894	0.000568	0.000277	0.0003	0.000156	0.000156	0.000502
	estimate	0.01004	0.00948	0.0095	0.00691	0.00371			0.00413	0.00325	0.00352	0.00279	0.00342	0.00363	0.00341	0.00338	0.00331	0.00331	0.01122
	term	Panel	Membrane	Catalyst	lifetime	chassis	DC-DC	convertor	racking	piping material	handling	water	sensors	installation	soft BoS	piping installation	piping OnM	rest OnM	replacement

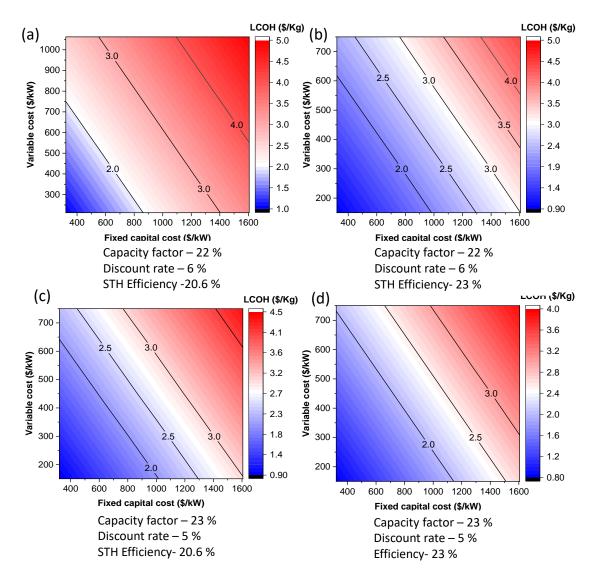


Figure S3: LCOH surface plot for different STH efficiency, capacity factor and discount rates

References:

- 1. IRENA, *Renewable power generation costs.* 2020.
- 2. Brian D. James, J.M.H.-K., Cassidy Houchins, Daniel A. DeSantis, *Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2018 Update*. NREL, 2018.
- 3. Shaner, M.R., et al., *A comparative technoeconomic analysis of renewable hydrogen production using solar energy*. Energy and Environmental Science 2016. **9**(7): p. 2354-2371.
- 4. Chang, N.L., et al., *A bottom-up cost analysis of silicon–perovskite tandem photovoltaics*. Progress in Photovoltaics: Research and Applications, 2021. **29**(3): p. 401-413.
- 5. Sathre, R., et al., *Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting.* 2014. **7**(10): p. 3264-3278.
- 6. James, B.D., et al., *Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production*. DOE report, 2009.
- Mayyas, A.T., et al., *Manufacturing cost analysis for proton exchange membrane water electrolyzers*.
 2019, National Renewable Energy Lab.(NREL), Golden, CO (United States).
- 8. *Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States.* Federal energy management program, NREL, 2017.
- 9. IRENA, G.H.C.R., *Scaling up Electrolysers to Meet the 1.5 ^oC Climate Goal.* International Renewable Energy Agency, Abu Dhabi, 2020.
- 10. NREL, H2A: Hydrogen Analysis Production Model. 2018.
- 11. (IEA), I.E.A., *Global Hydrogen Review* 2021.