Data-Driven Pursuit of Electrochemically Stable 2D Materials with Basal Plane

Activity toward Oxygen Electrocatalysis

Xiangyu Guo^{a,d,g,h}, Shengli Zhang^{b,*}, Liangzhi Kou^f, Chi Yung Yam^{d,e,j}, Thomas Frauenheim^{d,e,i}, Zhongfang Chen^{c,*}, Shiping Huang^{a,*}

^a State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

^b MIIT Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China

^c Department of Chemistry, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00931, United States

^d Beijing Computational Science Research Center (CSRC), Beijing 100193, China

^e Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518110, China

^f School of Mechanical, Medical and Process Engineering, Queensland University of Technology, QLD, 4000, Australia

^g Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany

^h Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore

ⁱ School of Science, Constructor University, Bremen 28759, Germany

^j Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China

Corresponding E-mails:

E-mail: zhongfangchen@gmail.com

E-mail: zhangslvip@njust.edu.cn

E-mail: huangsp@mail.buct.edu.cn

Supplementary Summary

Computatio	nal methods					Page S4-S5						
Definitions of	of decompositio	n energy and ex	foliation energy	/		Page S5						
Calculation of	of the dissolutio	n potential				Page S6-S8						
Coverage an	d kinetic effects					Page S9–S11						
Table S1	Details about th	e 45 experiment	tal synthesized 2	2D monolayer	S	Page S12-S13						
Table S2	Structural and e	electronic inform	ation of 339 pot	tential electro	ocatalysts.	Page S14-S23						
Table S3	Catalytic activity	y analysis of 242	four-electron p	athway select	ive sites.	Page S24-S29						
Table S4	Adsorption free	energy of O* an	$10 H_2O_2^* \text{ on } 25 r$	material surfa	ces.	Page S30						
Table S5	Crystal informat	ystal information of 47 candidate materials.										
Table S6	Activity analysis	ivity analysis on 77 edge structures.										
Table S7	Electrochemical	stability analysi	s of 47 candidat	e materials.		Page S46-S37						
Table S8	Analysis of mini	mum pH require	ement for 14 OR	R and 16 OER	catalysts.	Page S48						
Table S9	Summary of rec	ummary of recent progresses on the design of 2D ORR/OER catalysts										
Fig. S1	Structure, and b	and structure of	f TaS ₂ and Ta ₂ CS	₂ , and the OR	R profiles.	Page S53						
Fig. S2	Adsorption cont	figurations of H ₂	O ₂ * on 25 mate	rials.		Page S54						
Fig. S3	Reaction pathw	ay selectivity of	25 materials.			Page S54						
Fig. S4	Activity benchm	ark of Pt and Ir	D ₂ .			Page S55						
Fig. S5	Kinetic simulation	on of ORR on the	e PtTe and NbSe	2 surfaces		Page S56						
Fig. S6	Crystal structure	e of experimenta	ally synthesized	Ni _{0.75} Fe _{0.25} OO	H catalysts.	Page S57						
Fig. S7	Site activity ana	lysis of OER on N	Ni _{0.75} Fe _{0.25} OOH c	atalysts.		Page S57						
Fig. S8	Structure snaps	hots of 47 active	e materials			Page S58						
Fig. S9-S42	Activity analysis	of 34 materials	for ORR.			Page S59-S92						
VAg(PeSe₃)	2 MnSbSe ₂ I	CuSeO₃	Bi ₄ I	CuTeO₃	Bi9l2	NiTe ₂						
S59	S60	S60 S61 S62 S63 S64										
LiNi(PS ₃) ₂	$Ta_3Pd_3Te_{14}$	Ta ₃ Pd ₃ Te ₁₄ PtTe Ge ₅ (Te ₄ As) ₂ MoTe ₂ Ge ₄ Te										
S66	S67	S68	S69	S70	S71	S72						
BiTe	NbTe ₂	Mn(InSe ₂) ₂	Nb_4IrSe_{10}	TaS ₂	BiSe	Fe_4S_5						
S73	S74	S75	S76	S77	S78	S79						

NbSe ₂	TaSe ₂	ZrSiSe	GdBr	CrGeTe₃	PtPb ₄	CuH ₂ (SeO ₃) ₂						
S80	S81	S82	S83	S84	S85	S86						
Ag(AuS) ₂	Nb ₉ IrSe ₂₀	AgHO ₂	La_2PI_2	TbGal	Cel₃							
S87	S88	S89	S90	S91	S92							
Fig. S43-S64	Activity analysis o	of 22 materials	for OER.			Page S93-S114						
$Sc_6C_2I_{11}$	$Li_2Cu_2F_5$	$Pd_3Pb_2Te_2$	Zn(InS) ₂	Ta(NiTe) ₂	VTe ₂	Bi ₃ Se ₄						
S93	S94	S95	S96	S97	S98	S99						
TaTe ₂	Nb_2Se_3	Pr_2Br_5	CeZnPO	EuBrO	TbBr	CrGeTe₃						
S100	S101	S102	S103	S104	S105	S106						
PtPb ₄	$CuH_2(SeO_3)_2$	Ag(AuS) ₂	Nb_9IrSe_{20}	AgHO ₂	La_2PI_2	TbGal						
S107	S108	S109	S110	S111	S112	S113						
Cel₃												
S114												
Fig. S65	Evaluation of the	edge sites acti	vity			Page S115						
Fig. S66	Work flow for ele	ctrochemical s	tability analysis	5.		Page S115						
Fig. S67	DOS and COHP a	nalyses for the	OOH* adsorpt	ion		Page S116						
Fig. S68	AIMD simulation					Page S117						
Fig. S69	Structure snapsh	ots of NiPS₃ be	fore and after t	the AIMD simul	ation	Page S117						
Fig. S 70	Accuracy of solva	Accuracy of solvation correction on the free energy calculations Page S118										
Fig. S 71	Coverage effect a	overage effect and optimize strategies on PtTe and NbSe ₂ monolayers. Page S118										
References						Page S119-S120						

Data availability

Atomic structures used in this study will be provided at the following GitHub repository:

https://github.com/ChaunceyGuo?tab=repositories

Computational methods

Spin-polarized first-principles calculations were carried out using the Perdew–Burke–Ernzerhof (PBE) functional within the generalized gradient approximation (GGA), ¹ as implemented in Vienna Ab Initio Simulation Package (VASP). ² The valence electrons were expanded as plane wave with a kinetic energy cutoff of 400 eV. The convergence thresholds were set as 1.0×10^{-5} for energy and 2.0×10^{-2} eV Å⁻¹ for atomic force. The Brillouin zone was sampled by Monkhorst–Pack mesh using *k*–points of $0.04*2\pi$ Å⁻¹ which was achieved by the pre-and post-processing program of VASKIT. ³ To eliminate the periodic interactions between the adjacent images, a vacuum space of 15 Å was used in the perpendicular direction of the 2D plane, and a supercell scheme was adopted when a unit cell has a lattice less than 6 Å to minimize the periodic interactions between reaction species. To describe the van der Waals interactions, DFT-D3 method with the standard parameters by Grimme *et al.* was employed.⁴

Electronic transport property of electrical conductivity ($\sigma_{\alpha\beta}$) was calculated by combining ab initio band structures and Boltzmann transport theory within the constant relaxation time approximation. This procedure solves Boltzmann equation by interpolating a band structure and implementing the required integrations, whose accuracy was demonstrated earlier. ⁵ Here, the relaxation time was set as 3.0 10⁻¹³ s following the previous work. ⁶ The K-Spacing Value during this calculation is set to be 0.005*2 π Å⁻¹. The $\sigma_{\alpha\beta}$ a function of temperature (T) and chemical potential (μ) described as:

$$\sigma_{\alpha\beta} \quad (\mathbf{T}, \boldsymbol{\mu}) \quad = \frac{1}{\Omega} \int \sigma_{\alpha\beta}(\varepsilon) \left[-\frac{\partial f_{\boldsymbol{\mu}}(T, \varepsilon)}{\partial \varepsilon} \right] d\varepsilon$$

where Ω represents the volume of the unit cell. f_{μ} is the Fermi distribution, ε is the band energy which obtained from computed band structure.

The free energy landscapes and reaction pathways along the oxygen electrocatalysis on the basal plane of 2D materials were investigated in conjunction with the computational hydrogen electrode (CHE) model.⁷ The vibrational contributions, including zero-point energy, enthalpy, and entropy, were obtained by the harmonic approximation at a temperature of 298.15 K. Since the current computational framework is difficult

to describe low-frequency modes properly, we set up a threshold value of 50 cm⁻¹ to reduce these unphysically large entropy contributions. ^{8, 9} Solvation-induced energy change for the adsorption of reaction species, i.e., OOH*, O* and OH*, were considered according to the previous investigations, which were estimated to be 0.3, 0.0, and 0.3 eV, respectively. ¹⁰⁻¹² This correction is based on the fact that each H₂O in the liquid phase can create two donors and one acceptor hydrogen bonds with adjacent molecules, which stabilize the molecules by ~0.45 (3*0.15) eV. As OOH* and OH* are able to create two hydrogen bonds with H₂O, it will be stabilized by ~0.3 eV when solvated. And no clear hydrogen bonds were formed around the O* sites, hence no correction was applied for O* adsorption. To verify the effectiveness of this correction, we have also adopted an implicit solvation model¹³ to calculate the adsorption free energy of oxygen containing species using the NbSe₂ as prototype (see Fig. S69). The computational results obtained from these two methods are close to each other, which indicate the current calculations could well capture the reaction profiles and thus estimate the catalytic performance.

To well evaluate the electrochemical stability of 2D materials, we performed grand-canonical density functional theory (GC-DFT) computations to model the electrode–electrolyte interface under the specific electrode potential, as implemented in JDFTx. ¹⁴ We employed the PBE exchange correlation functional with GBRV ultrasoft pseudopotentials¹⁵ at a kinetic energy cutoff of 20 Hartrees (*ca*. 544 eV) for wavefunctions and 100 Hartrees for the charge density. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model was utilized to describe the effect of liquid water. ¹⁶ The ionic screening of net charges caused by the constant electrode potential was realized with 1M (mol L⁻¹) Na⁺ and F⁻ components in the fluid model, which displayed high accuracy in capturing the solvation of highly charged negative and positive solutes. ¹⁷ Other numerical parameters, including *k*-point sampling, cell sizes, convergence criteria, *etc.* are similar to the VASP calculations.

Decomposition energy and exfoliation energy

The decomposition energy and the exfoliation energy were extracted from 2DMatPedia database. The exfoliation energy (E_{exf}), defined as the average energy per atom required to remove a layer from a layered bulk material, was calculated by $E_{exf} = E_{2D} - E_{bulk}$, where E_{2D} and E_{bulk} are the energies (per atom) of the 2D material and its layered bulk counterpart, respectively. The decomposition energy is defined as the energy required (per atom) to decompose a 2D material into the most stable compound(s) at its chemical composition without consideration of the corresponding layered bulk of the given 2D material.

Evaluation of the dissolution potential of materials

Under the reaction conditions with the involvement of electrolyte and external electrode potential, a material could undergo a decomposition or a dissolution depending on its redox characteristic. The dissolution potential (U_{diss}) of different sites in a material can be correlated by their thermodynamically favorable dissolution events that readily occur under acidic conditions (more details are given in Table S7). For instance, we assumed that the tellurium can be dissolved through $Te \rightarrow Te^{4+} + 4e^-$, the sulfur/selenium atoms can be changed into the sulfurous acid/selenousacid via $S/Se + 3 H_2O \rightarrow$ $H_2SO_3/H_2SeO_3 + 4 H^+ + 4 e^-$, and most metals can be converted into metal ions through $M(s) \rightarrow M(s)$ $M^{x+}(aq) + xe^{-}$. This is slightly different from the principle of the Pourbaix diagram. For instance, the thermodynamically favorable dissolution products of the Se and S are identified as the H₂SeO₄ and H₂SO₄, respectively. Here, the use of H₂SO₃ and H₂SeO₃ instead of H₂SeO₄ and H₂SO₄ was actually considered the possible oxidation process in the early stage. We note that elements might involve continuous oxidation steps to realize the final products. For example, Se and S will be first oxidized into XO₃²⁻ (X= S, and Se), and then coupled with the other oxygen group to form the XO_4^{2-} . Since the transformation of XO_3^{2-} into XO_4^{2-} is easy to occur due to the metastable nature of XO₃²⁻. The evaluation of the oxidation process of these elements at their early stage could be more valuable to assess electrochemical stability. Thus, we selected H_2SO_3 and H_2SeO_3 as the important dissolution products of the S and Se, instead of using H_2SeO_4 and H_2SO_4 . A similar oxidation process was also found in the Pt dissolution, where Pt is first oxidized into PtO₄ and then reduced into Pt(OH) 18

Based on the dissolution process, we evaluated the U_{diss} of different 2D materials. The computational workflow to identify the potential dissolution sites was shown in Fig. S66. In detail, we divided the studied materials into three types according to surface structure: 1) material is terminated by a single element with the same coordination configuration, such as 2H and 1T phases of TMDs. 2) the basal plane is formed by a single element but has different coordination configurations, for example, 1T' phase of TMDs. 3) the basal plane has different elements and shows different coordination characteristics, such as MPX₃ systems (M is metal, X is S, Se or Te). For the type 1 structures, the dissolution potential can be directly computed through the GC-DFT simulation. For example, the chalcogenide sites (such as S, Se and Te) were selected for the evaluation of the electrochemical dissolution of TMDs since they are terminated by the chalcogenide elements. But for the type 2 configurations, we first carried out the simple binding energy analysis to identify

the weak binding sites, then we employed GC-DFT for the following evaluation. For materials with different elements located in the basal plane (i.e., type 3 materials), we initially compared their redox potentials and selected the element that more easily to undergo the dissolution/oxidation. Then, detailed analyses including binding energy calculation were performed. In general, the selection is highly associated with the surface configuration, and the redox nature of the elements, and only the most unstable sites were selected for the evaluation to realize the key dissolution process at the early stage of the reaction.

Note that it is difficult for the current DFT framework to well predict the free energy of ions properly. In this work, the free energy of the ions was computed from the electronic energy of elemental atoms in their bulk phase *via* the experimental determined standard reduction potential (U_0 vs SHE). For example, for a metal element, this yields

$$F_{M^{x+}(aq)} = E_{M(s)} - N_e^M \mu + x |e|U_0 + k_B T \ln[M^{x+}]$$

where $F_{M^{x+}(aq)}$ is the grand free energy of $M^{x+}(aq)$ at the concentration of $[M^{x+}] \mod L^{-1}$, N_e^M is the number of valence electrons of metal atom, and μ is electron absolute energy referred to the vacuum level (for the CANDLE solvation model, μ_{SHE} is -4.66 V, which is different from the experimentally measured value of -4.44 V). Here, considering the actual operating condition, the dissoluble $M^{x+}(aq)$ in the electrolyte is typically small, which is in the order of $10^{-3} \sim 10^{-6} \mod L^{-1}$. ^{19, 20} A concentration correction was applied, which was set to be $10^{-6} \mod L^{-1}$.

Assuming that metal dissolution in the 2D material follows the equation

$$M_n(s) \to M_{n-1}(s) + M^{x+}(aq) + xe^{-},$$

and the corresponding grand free energy change of metal dissolution as a function of electrode potential can be written as

$$\Delta F = F_{M^{x+}(aq)} + x \left(\mu - \mu_{SHE}\right) + F_{M_{n-1}(s)} - F_{M_n(s)}$$

where the potential-dependent grand free energies of catalyst before and after metal dissolution (i.e., $F_{M_n(s)}$ and $F_{M_{n-1}(s)}$) were obtained by fitting the relative free energies at electrode potential of 0 and 2.0 V vs SHE following the previous works, ^{9, 21, 22} and described as

$$F_{M(s)}(U) = k_x U + F_{M(s)}(0 V vs. SHE)$$

It requires $\Delta F < 0$ to suppress the metal dissolution on the 2D materials, and thus the threshold potential of dissolution (U_{diss}) can be readily computed when $\Delta F = 0$. Similar procedures can be used to estimate the U_{diss} of the other active sites (see Table S7).

We note that shifting the concentration of $[M^{x+}]$ from 1.0 mol L⁻¹ to 10⁻⁶ mol L⁻¹ can slightly change the values of U_{diss} . The computational results before and after correction is around 0.1 V in most of the cases, and larger changes occur on the PtPb₄ (0.19 V), VAg(PSe₃)₂ (0.25 V), CrGeTe₃ (0.17 V), AgHO₂ (0.22 V), and Te₂Pd₃Pb₂ (0.16 V). The detailed values of U_{diss} with/without concentration correction are listed in Table S7.

Coverage effect on the catalytic activity of ORR and OER

To study the effect of adsorbate-adsorbate interactions on the catalytic activity of ORR and OER, two adsorption types, including single-side adsorption (only one side of basal plane as the reaction area), and double-side adsorption, were considered on the 2D PtTe and NbSe₂ monolayers. Here, the PtTe and NbSe₂ were selected to study the adsorbate-adsorbate interactions because: 1) both of them have excellent activity for oxygen electrocatalysis as demonstrated by our computations; 2) they display different characteristics for adsorption of oxygen-containing species, in which the PtTe monolayer shows strong binding towards reaction species (*i.e.*, OOH^{*}, O^{*}, and OH^{*}) with OH^{*} \rightarrow H₂O as the potential limiting step (PDS) for ORR; while the NbSe₂ monolayer exhibits weak binding with OOH^{*}, O^{*}, and OH^{*}, and the O₂ \rightarrow OOH^{*} step is identified as the PDS of ORR.

According to our computations (Fig. S70a and S70b), when the reaction species coverage increases from low to high, the adsorption free energy of OOH*, O*, and OH* generally becomes more positive in both single- and double-side adsorption types, indicating that the interactions between the 2D materials and reaction intermediates are weakened. In particular, the coverage effect is more pronounced for the adsorption of O* than those of OOH* and OH* due to the strong band hybridization between O* and materials.

However, for the single-side adsorption, the coverage-induced potential difference is relatively small (with *ca*. 0.1 V derivation on the U_L value). The adsorbate-adsorbate interactions may not significantly affect the catalytic activity of the 2D materials in this adsorption mode. In comparison, the effect of the adsorbate-adsorbate interactions highly depends on the binding strength between the adsorbate and the material in the double-side adsorption.

Specifically, for the weak binding system of NbSe₂ monolayer, the U_L value of ORR/OER can be changed into 0.36/1.86 V in the double-side mode, and by comparison with the single-side adsorption, it is found that the coverage effect on the OER tends to be small, and the computed U_L values are in the range of 1.86–2.00 V, similar to those in the single-side mode (1.81–2.00 V). Whereas the adsorbate-adsorbate interactions can induce a largest derivation of 0.44 V on the U_L values of ORR, from 0.80 eV in the single-side mode to 0.36 V in the double-side adsorption, leading to a reduced catalytic activity. Such derivation between the two adsorption types is caused by the coverage-induced free energy change for OOH* adsorption, in which the adsorption free energy of OOH* on the NbSe₂ monolayer goes from 4.12 eV at the coverage of 12.5% in the single-side adsorption to 4.55 eV at the coverage of 37.5% in the double-side adsorption.

For the strong binding system of PtTe monolayer, the coverage-induced potential difference on ORR is insignificant due to the neglected free energy change for OOH* adsorption (Fig. S70a). However, for OER, with the change of the O* binding strength along different coverage, the U_L value decreases from *ca*. 2.20 V in the single-side adsorption to 1.76 V in double-side mode, suggesting that double-side adsorption can improve the catalytic performance of OER on the strong binding system.

In general, the above investigations suggest different approaches can be used to improve the catalytic performance, depending on the binding strength between the oxygen-containing species and the catalytic surface. For systems featuring weak binding for O*, OH*, and OOH*, for example, those with $O_2 \leftrightarrow OOH^*$ step as the PDS of ORR, tuning the adsorption type into single-side adsorption could help maintain their catalytic activity. For instance, by increasing catalytic layer from monolayer to bilayer and forming van der Waals interactions, the reactions in the interlayer can be inhibited, accordingly the coverage effects can be reduced, and the catalytic performance be well kept (see Fig. S70c). In addition, modulating the anchoring configurations of 2D materials on the catalytic substrates could be helpful to maintain/improve the catalytic performance of 2D materials. For example, by contacting the 2D monolayers with catalytic substrates using their basal planes (Fig. S70d), the double-side adsorption type could also be prohibited. Differently, for the strong binding systems (*e.g.*, PtTe), it would be better to use the well separated monolayer as the catalystic and take advantage of the double-side adsorption to further tune/improve catalytic performance.

Reaction kinetics of 2D materials for the oxygen electrocatalysis

The kinetic simulation of oxygen electrocatalysis were performed on the 2D materials using the PtTe and NbSe₂ as the prototypes (see Fig. S5). The climbing image nudged elastic band (CI-NEB) method was used

for finding saddle points and minimum energy pathways during the oxygen electrocatalysis by inserting six NEB images between the initial and final states. ²³ Explicit $H_5O_2^+$ was used as the proton source, positioned above each surface of the materials. A linearized Poisson–Boltzmann implicit solvation model was used to neutralize the nonzero charge in the simulation, as implemented in VASPsol. ¹³ Here, we applied a plate-capacitor based approach²⁴ to extrapolate reaction energetics to constant potentials by correcting for the work function change via the following equation:

$$\Delta G = \Delta G_0 + \beta \,\overline{\Phi} = \Delta G_0 + (q_2 - q_1) \left(\frac{\Phi_1 + \Phi_2}{2}\right)$$

where ΔG_0 is the free energy change of the two states at the potential of zero charge (PZC)), β is the charge transfer coefficient representing the potential dependence of the shift in energy between two given states. It is described by the difference in stored charge (q) between the two states within the capacitor model. Following the previous scheme, we employed Bader charge analysis to estimate β as the difference in the net charge of the catalyst surface from the transition state (TS) to the reaction's final state (FS). Moreover, to compare Φ to a potential experimental scale, the absolute potential reference of the standard hydrogen electrode was applied as U_{SHE} = Φ – 4.60 V. The detailed reaction profiles of ORR on the PtTe and NbSe₂ were displayed in Fig. S5.

At the 0.0 V vs. SHE (i.e., overpotential η =1.23 V), the free energy changes along the ORR on these two surfaces are downhill without any kinetic barriers, indicating the reaction can proceed spontaneously. With the upshift of the external electrode potential (U) to the theoretical limiting potential (U_L, 0.83 V for PtTe, and 0.76 V for NbSe₂) and the equilibrium potential (U_{eq}, 1.23 V) of ORR, the kinetic barriers are arisen on both systems but yield different elementary steps.

On the PtTe surface (see Fig. S5a), the reaction is restricted in the step of OOH* protonation into O* (OOH* + H+/e- \rightarrow O* +H₂O), and no distinguishable barriers are available in the other steps within the potential range, including O₂ to OOH*, O* to OH*, and OH* to H₂O. On the basis of the capacitor model, we estimate that the charge transfer coefficient β is about 0.75. The activation free energy (ΔG^{\ddagger}) as the function of U follows the equation of $\Delta G^{\ddagger} = -0.36 + 0.75$ U. Simply, we can evaluate that the kinetic barrier of OOH* protonation step is 0.26 eV at the condition of U_L and 0.56 eV at the U_{eq}, respectively.

Similarly, we accessed the kinetic limitations on the NbSe₂ surface (see Fig. S5b), The protonation of O^{*} into OH^{*} (O^{*} + H⁺/e⁻ \rightarrow OH^{*}) is identified as the rate-limiting step. The β is estimated by 0.34, and the corresponding kinetic barriers at the potential of U_L and U_{eq} are 0.18 eV and 0.34 eV, respectively. Such kinetic

barriers are in the same order as that on the Pt(111) (cat. 0.18 eV at the potential of U_L), and can be overcome at room temperature.

Generally, both previous studies and our own computations indicate that the kinetic contribution to oxygen electrocatalysis is insignificant, which might not dramatically change the activity trends obtained from the thermodynamic evaluation. Thus, the computational results presented in this manuscript could be credible and help to discover the potential catalysts and identify the active sites. Yet, based on catalytic activity analysis and electrochemical stability evaluation, we can conclude that simply predicting the catalytic activity and selectivity of catalysts could be insufficient to describe their overall performance; the stability issue of materials represents another central issue that should be carefully considered to preserve the active sites under the operating conditions. Therefore, to achieve a rational framework to identify candidate materials for experimental validation, *establishing effective methods to assess both catalytic activity and electrochemical stability* is very important, which is the focus of this study.

Table S1 Details about the 45 experimental synthesized 2D monolayers, including their formula, space group,

decomposition energy, exfoliation energy, ID in Materials Project database, and reference of reported work.

Formula	Space group	Decomposition energy Exfoliation energy		Obtained from	Reference
		(meV/atom)	(meV/atom)		
с	P6/mmm	2.1	67.0	mp-48	Science 2014, 306, 666–9
BN	P6₃/mmc	0.1	0.1	mp-7991	Nat. Mater. 2010, 9, 430–435
Р	Pmna	42.5	109.4	mp-157	ACS Nano 2014, 8, 4033–4041
NbS2	P-6m2	3.9	92.5	mp-10033	Nanoscale, 2017,9, 16607-16611
NbSe ₂	P-6m2	5.1	5.1	mp-7597	Nat. Commun. 2017, 8, 394
NbTe ₂	P-3m1	47.7	106.3	mp-1018150	Adv. Funct. Mater. 2019, 29,
VTe ₂	P-3m1	22.6	98.2	mp-1008626	1806611
TaTe₂	C2/m	17.6	114.0	mp-1967	
WTe ₂	P2_1/m	0	84.6	mp-22693	2D Mater. 2017, 4 021008
					Nano Lett. 2017, 17, 2, 878–885
					Nanoscale, 2016, 8, 2309-2316
MoSe ₂	P-6m2	1.9	78.3	mp-1634	ChemPhysChem, 2014, 15, 1592-
WSe ₂	P-6m2	1.7	77.7	mp-1821	1598
MoTe ₂	P-6m2	3.8	89.1	mp-602	Nano Lett. 2014, 14, 6231–6236
WS ₂	P-6m2	1.6	56.4	mp-224	Nano Lett. 2013, 13, 3447–3454
C ₃ N ₄	P-6m2	86.5	82.2	mp-971684	Carbon 2014, 80, 213-221
MoS ₂	P-6m2	2.1	76.3	mp-2815	Sci. Rep. 2013, 3, 1866
ZrS ₂	P-3m1	0	89.4	mp-1186	J. Am. Chem. Soc. 2015, 137,
					7051–7054
ZrSe ₂	P-3m1	0	95.4	mp-2076	Appl. Sci. 2016, 6 264
HfS₂	P-3m1	0	86.4	mp-985829	Adv. Mater. 2015, 27 7881–7
TaS ₂	P-1	16.6	90.4	none	Chem.
					Mater. 2016, 28 7613–8
TaSe ₂	P-6m2	3.8	69.3	mp-500	Nano Lett. 2018, 8 689–94
VSe ₂	P-3m1	0	86.0	mp-694	Chem.
					Commun. 2016, 52 9228–31
VS ₂	P-6m2	0	78.7	mp-1013525	Adv. Funct. Mater. 2020, 30,
					2000240
PtSe ₂	P-3m1	0	88.7	mp-1115	Nano Lett. 2015, 15 4013-8
PtS ₂	P-3m1	0	97.7	mp-762	Adv. Mater. 2016, 28 2399–407

TiS₂	P-3m1	2.0	88.4	mp-2156	Nat. Mater. 2015, 14, 622–627
TiSe₂	P-3m1	0	92.3	mp-2194	Adv. Mater. 2018, 30, 1704382
ReS ₂	P-1	0	71.5	mp-572758	Nat. Commun. 2014, 5, 3252
PdSe ₂	P2_1/c	8.0	166.7	mp-2418	J. Am. Chem. Soc. 2017, 139,
					14090–14097
InSe	P-6m2	1.9	63.7	mp-22691	2D Mater. 2018, 5, 025019
GaTe	P-6m2	8.3	58.5	mp-10009	2D Mater. 2018, 2, 035010
GaSe	P-6m2	2.1	43.6	mp-1943	2D Mater. 2018, 2, 035010
TiS₃	Pmmn	0	54.2	mp-9920	Adv. Mater. 2015, 27, 2595-2601
HfTe₃	Pmmn	25.5	88.9	mp-1025459	Adv. Electron. Mater. 2016, 2,
					1600324
Crl₃	P-31m	0	89.2	none	Nature 2017, 546, 270–273
Bil ₃	P-31m	9.2	95.7	mp-22849	ACS Appl. Mater. Interfaces 2021,
					13, 25918–25925
FeSe	P4/nmm	0	85.5	mp-20311	Phys. Rev. B 2011, 84, 020503
MoO ₃	P2_1/m	32.9	38.9	mp-510584	Nano Lett. 2017, 17, 3854–3861
Bi ₂ Se ₃	P-3m1	0	67.7	mp-541837	Nano Lett. 2015, 15, 2645–2651
Bi ₂ Te ₃	P-3m1	0	77.9	mp-34202	ACS Nano 2016, 10, 11442–11448
SnS₂	P-3m1	3.7	81.7	mp-1170	ACS Nano 2019, 13, 8265–8274
GaS	P-6m2	1.3	39.3	mp-2507	Nano Lett. 2013, 13, 1649-1654
ReS ₂	P-1	0	71.5	mp-572758	Adv. Mater. 2020, 32, 2001890
ReSe ₂	P-1	0	74.5	mp-541582	Nano Res. 2018, 11, 1787–1797
PtTe ₂	P-3m1	0	145.7	mp-399	Nat. Commun. 2017, 8, 257
CrTe ₂	P2_1/m	28.3	28.3	none	Nat. Commun. 2021, 12, 2492

Table S2. Structural and electronic information of 339 candidate materials which screened from the band structure analysis, including space group, band gap, decomposition energy, exfoliation energy, Electrical conductivity, and Identity number in materials project database. Note that the ground state of the layered materials might be changed due to the update of database, which would slightly change the values of the decomposition and exfoliation energies.

Formula	Space	Band	ls gap	Decompositio	Decompositi	Exfoliation	Electrical	Identity number
	group	gap	direct?	n compound(s)	on energy	energy	conductivity	in MP
		(meV)			(meV/atom)	(meV/atom)	(Ω ⁻¹ m ⁻¹ s ⁻¹)	
Eu(ReO ₄) ₂	P-3	314	No	١	0	68	4.19E-10	mp-754760
HfFeCl ₆	P312	94	No	FeCl ₃ + Fe +	18	70	3.07E-03	mp-28220
				HfCl ₄				
Gd ₂ CCl ₂	P-3m1	493	No	Gd ₅ C ₂ Cl ₉ +	0	41	2.19E+00	mp-29394
				$Gd_4C_2Cl_3 + C$				
PdSeO₃	C2/m	452	Yes	PdSeO ₃	22	67	8.31E+00	mp-546684
Gd ₂ Br ₃	C2/m	149	No	GdBr₃ + Gd	9	100	2.35E+01	mp-618813
VCuO₄	Pmma	290	No	Cu ₂ O ₃ + V ₂ O ₅	71	111	3.57E+01	mp-510733
CuBrO ₂	P2/m	0	No	$Br_2O_3 + Cu_2O_3$	27	143	2.04E+02	mp-996993
				+ Br				
CuBrO₂	P222_1	458	Yes	$Br_2O_3 + Cu_2O_3$	36	56	2.04E+02	mp-997011
				+ Br				
CuSbS₂	Pmc2_1	373	Yes	١	0	144	3.39E+02	mp-4468
CeP ₃ H ₈ O ₇	P-1	311	No	H ₂ O + CePO ₄ +	49	42	3.44E+02	mp-505610
				H ₂ + P				
Zrl ₂	P2_1/m	432	No	١	0	77	6.06E+02	mp-570506
K ₂ As ₂ Pd	Pmma	423	Yes	١	0	156	7.35E+02	mp-8147
ZrSe ₂	P-3m1	458	No	١	0	95	9.32E+02	mp-2076
FeCl₂	P-3m1	0	No	١	0	64	9.76E+02	mp-23229
TiGeTe ₆	P2_1/m	412	No	١	0	101	9.93E+02	mp-574169
Nb ₂ GeTe ₄	Pbam	430	No	١	0	80	1.20E+03	mp-29073
In ₂ Se ₃	P-3m1	492	No	In ₂ Se ₃	48	51	1.34E+03	mp-1017565
K ₂ P ₂ Pd	Pmma	401	No	١	0	172	2.53E+03	mp-7505
₂ -Feb	P-3m1	0	No	١	0	73	3.45E+03	mp-22880
TiS₃	Pmmn	275	Yes	١	0	54	3.66E+03	mp-9920
Ge4Te7As2	P-3m1	422	No	Te ₃ As ₂ + GeTe	19	33	7.93E+03	mp-568730
ZrSe ₃	Pmmn	448	No	١	0	54	8.45E+03	mp-1683
La ₂ Gel ₂	P-3m1	402	No	١	0	48	1.05E+04	mp-570597
Fel ₂	P-3m1	0	No	Ν	0	81	1.08E+04	mp-571122
NbS ₃	P2_1/m	406	No	NbS ₃	0	46	1.36E+04	mp-562100
Cel ₃	Pmmn	30	No	\	0	98	1.56E+04	mp-1025426
TaSe ₂	P-3	159	No	TaSe ₂	7	92	3.10E+04	mp-542495
Ge ₅ (Te ₄ As) ₂	P-3m1	322	No	Te ₃ As ₂ + GeTe	19	25	4.04E+04	mp-28487

CuSeO ₃	P2_1/c	134	No	Cu ₄ Se ₃ O ₁₀ + CuSe ₂ O ₅	36	36	5.70E+04	mp-22688
CuSbSe ₂	Pmc2_1	152	Yes	۸.	0	152	5.86E+04	mp-20331
MoCl₃	C2/m	126	Yes	MoCl ₅ + MoCl ₂	60	70	7.41E+04	mp-22853
С	P6/mmm	0	Yes	С	2	67	7.55E+04	mp-48
Li ₂ NbP ₄ O ₁₃	P-1	262	No	Nb ₂ (PO ₄) ₃ + LiPO ₃ + P ₂ O ₅ + P	70	36	7.79E+04	mp-673156
Rb₂O	P31m	316	No	Rb ₂ O	10	51	1.29E+05	mp-776922
HfSe₃	Pmmn	360	No	λ	0	47	1.43E+05	mp-15622
Y ₂ Gel ₂	P-3m1	157	No	λ	0	45	1.88E+05	mp-676315
Sc ₆ C ₂ I ₁₁	P-1	386	No	λ	0	78	3.31E+05	mp-541102
TiIN	Pmmn	31	Yes	λ	0	44	5.04E+05	mp-27848
CeBrO	P4/nmm	0	No	λ	0	63	5.82E+05	mp-754112
CeBrO	P-3m1	0	No	CeBrO	19	38	5.82E+05	mp-755464
Ge ₃ (BiTe ₃) ₂	P3m1	0	No	Bi ₂ Te ₃ + GeTe	38	37	5.94E+05	mp-540687
AgSb ₂ F ₁₂	P-1	454	No	λ	0	29	7.49E+05	mp-14653
CrP ₂ S ₇	C2	36	No	$P_2S_5 + P_2S_7 + Cr_5S_8$	32	56	7.87E+05	mp-768680
CuTeO₃	P2_1/c	1	Yes	CuO + TeO ₂	69	148	7.91E+05	mp-558696
Li ₂ CrP ₄ O ₁₃	P-1	343	Yes	LiCrP ₂ O ₇ + LiPO ₃ + Cr(PO ₃) ₃ + O ₂	60	36	8.17E+05	mp-705053
CuH₂SeO₅	P-1	0	No	CuSeO ₄ + H ₂ O	44	120	8.37E+05	mp-23955
MnPSe₃	P-31m	450	Yes	λ	0	73	8.94E+05	mp-8695
CuHClO	P2_1/c	19	No	$H_2O + CuO + CuCl_2$	75	82	9.63E+05	mp-643743
V ₂ P ₄ S ₁₃	P-1	129	No	$P_4S_9 + VS_2$	12	69	9.94E+05	mp-620190
Li ₂ Cu ₂ F ₇	P-1	150	No	LiCu ₂ F ₆ + LiF	68	53	1.16E+06	mp-753090
SrSbSe₂F	P4/nmm	58	Yes	SrSe + Sb ₂ Se ₃ + SrF ₂	29	58	1.16E+06	mp-556194
BiTe	P-3m1	0	No	Bi ₄ Te ₃ + Bi ₂ Te ₃	6	33	1.17E+06	mp-23224
Li ₂ Cr ₃ (CO ₃) ₆	P-1	0	No	$CrO_2 +$ LiCr(CO_3) ₂ + CO_2	71	70	1.18E+06	mp-763398
Mn ₂ F ₇	P2/c	215	Yes	MnF ₃ + MnF ₄	52	41	1.24E+06	mp-765923
CrTe₃	Pmna	279	No	CrTe ₂ + Te	21	97	1.30E+06	mp-540922
NbTe₄Ir	P2_1/m	28	No	λ	0	103	1.34E+06	mp-505164
AgIrF7	Pmc2_1	0	No	١	0	85	1.36E+06	mp-662534
Nb ₃ Cl ₈	P3m1	236	No	١	0	72	1.37E+06	mp-29950
CuMoO ₄	P1	430	No	MoO ₃ + CuO	52	134	1.45E+06	mp-619545
La ₂ Br ₅	P2_1/m	412	No	LaBr ₂ + LaBr ₃	6	101	1.46E+06	mp-28571
Bi ₂ Te ₅ Pb ₂	P-3m1	0	No	TePb + Bi ₂ Te ₄ Pb	64	48	1.51E+06	mp-569044

Cu(IO ₃) ₂	P2_1/m	426	No	Cu(IO ₃) ₂	20	68	1.53E+06	mp-556582
CuSeO₃	P-1	0	No	Cu ₄ Se ₃ O ₁₀ +	20	54	1.60E+06	mp-560049
				CuSe ₂ O ₅				
LiWCl ₆	Р3	74	No	$WCl_4 + WCl_6 +$	17	75	1.64E+06	mp-570512
				LiCl				
ZrTe₅	Pmmn	22	Yes	١.	0	90	1.65E+06	mp-605
Zn(InS ₂) ₂	P3m1	0	No	Zn(InS ₂) ₂	76	59	1.66E+06	mp-22253
MnSbSe₂l	P2/m	73	No	Mn(SbSe ₂) ₂ + Mnl ₂	72	189	1.67E+06	mp-570268
Nb ₃ I ₈	P3m1	293	No	λ	0	99	1.69E+06	mp-27772
VAg(PS ₃) ₂	P2/c	0	No	$P_4S_7 + VS_2 + P_4S_3 + Ag_3PS_4$	29	67	1.70E+06	mp-6462
CeZnPO	P-3m1	0	No	λ	0	142	1.74E+06	mp-13207
Nb₃SiTe ₆	Pmc2_1	0	No	NbTe ₂ + Nb ₂ SiTe ₄	10	94	1.79E+06	mp-505137
AgBi ₂ F ₁₂	P-1	363	No	λ	0	31	1.89E+06	mp-28965
Ta₂PtSe ₇	P2_1/m	14	No	$Ta_2Pt_3Se_8 +$ $TaSe_3 + PtSe_2$	3	80	1.91E+06	mp-14474
TaTe₄lr	P2_1/m	24	No	۸	0	98	1.92E+06	mp-17287
Nb₃GeTe ₆	Pmc2_1	0	No	NbTe ₂ + Nb ₂ GeTe ₄	12	94	1.93E+06	mp-28754
CrS ₂	P-3m1	0	No	λ	0	53	1.99E+06	mp-755263
CuAgO ₂	P2/m	0	No	CuAgO ₂	73	193	2.03E+06	mp-7237
Ta₃SiTe ₆	Pmc2_1	0	No	λ	0	92	2.06E+06	mp-505206
Cu₂H₂CO₅	P2_1/c	0	No	CuO + H ₂ O + CO ₂	60	100	2.10E+06	mp-504588
CuH ₂ SO ₅	P-1	233	No	λ	0	113	2.17E+06	mp-24522
CrPO ₅	P-1	377	No	CrPO ₄ + O ₂	44	26	2.18E+06	mp-773520
₃-Feb	P-31m	40	No	λ	0	81	2.22E+06	mp-23232
FeCl₃	P-31m	395	No	λ	0	69	2.23E+06	mp-583463
VCl₃	P-31m	1	Yes	VCl ₂ + VCl ₄	0	73	2.23E+06	mp-28117
TiAgF ₆	P-1	208	No	AgF ₂ + TiF ₄	54	119	2.23E+06	mp-10810
Sc ₇ Cl ₁₀	C2/m	0	No	λ	0	69	2.37E+06	mp-27513
Ta₂Te₅Pd ₃	Pmn2_1	0	No	λ	0	85	2.42E+06	mp-28934
Li ₂ FeP ₄ O ₁₃	P-1	47	No	LiFeP ₂ O ₇ + LiFe(PO ₃) ₄ +	74	40	2.43E+06	mp-763647
7rBr	P_3m1	0	No		0	EF	2 545+06	mn-504594
TeaOsClas	P-1	0	No		24		2.54L+00	mp-28866
	P2 1/m	254	No			44 02	2.59L+00	mp-30282
HfTes	Pmmn	0	No		0	52 80	2.61E+06	mp-1168
	P2 1	0	No	ν CuE2 + Cu2O2 +	52	76	2.03L+00	mp-755255
	. 2_1	0		0 ₂	58	70	2.711100	110 733233

Ce ₄ C ₂ Br ₅	Pmmm	0	No	Ce ₂ C ₃ +	7	105	2.72E+06	mp-574262
				$Ce_5C_2Br_9 + Ce$				
Li ₂ Cu ₂ F ₅	P2_1/m	101	No	CuF ₂ + LiF + Cu	60	54	2.83E+06	mp-762270
MnSbSe₂Br	Pmc2_1	115	No	Mn(SbSe ₂) ₂ +	80	195	2.84E+06	mp-567478
				MnBr ₂				
Er(ReO ₄) ₂	P-3	0	No	Er(ReO ₄) ₃ +	26	86	2.85E+06	mp-755194
				$ReO_3 + Er_2O_3$				
BiSe	P-3m1	0	No	Bi ₂ Se ₃ + Bi	8	26	2.87E+06	mp-27902
CuMoF ₆	P-1	0	No	$MoF_6 + CuF_2 +$	73	108	2.91E+06	mp-611706
				MoF ₃				
H ₄ W	P4/nmm	23	No	W + H ₂	16	25	2.95E+06	mp-1078595
RuCl₃	P-31m	3	Yes	RuCl ₃	33	74	2.98E+06	mp-570997
TaCoTe₂	P2_1/c	9	Yes	Ta(CoTe) ₂ +	12	75	3.24E+06	mp-28846
				TaTe ₂				
Er ₆ I ₇	C2/m	0	No	Er + Erl ₃	59	69	3.24E+06	mp-571258
CuH ₂ (SeO ₃) ₂	P2_1/c	72	Yes	Λ	0	93	3.35E+06	mp-24164
Pr ₂ Br ₅	P2_1/m	349	No	۸.	0	93	3.44E+06	mp-23169
Ta ₄ Co ₂ PdSe ₁₂	C2/m	6	No	\	0	82	3.48E+06	mp-505133
TbCl	P-3m1	0	No	Tb ₂ Cl ₃ + Tb	53	53	3.52E+06	mp-27923
CuTeO ₄	P2/m	0	No	CuTeO ₄	25	125	3.56E+06	mp-755455
K ₂ RuBr ₆	Pmn2_1	0	No	۸	0	none	3.62E+06	mp-1097045
VAg(PSe ₃) ₂	C2	95	No	Ag ₂ PSe ₃ +	12	72	3.63E+06	mp-6543
				$V_2Se_9 + VSe_2 +$				
				PSe				
KFe ₂ S ₃	Pmma	0	No	۸.	0	138	3.66E+06	mp-22035
MnF ₄	P2_1/c	32	Yes	\	0	48	3.74E+06	mp-765921
Nb ₂ Se ₃	P2_1/m	11	No	Nb ₃ Se ₄ + NbSe ₂	48	137	3.76E+06	mp-2330
Pr(ReO ₄) ₂	P-3	0	No	\	0	92	3.84E+06	mp-754632
Ta₂NiS₅	Pmmn	0	No	۸.	0	72	3.96E+06	mp-28308
CrGeTe₃	P-31m	484	No	GeTe + Cr₅Te ₈	0	89	4.01E+06	mp-541449
				+ Te				
Nb ₉ IrSe ₂₀	P-1	0	No	IrSe ₂ + NbSe ₂	45	68	4.03E+06	mp-675290
Ta₂NiSe₅	Pmmn	0	No	1	0	73	4.03E+06	mp-541070
TiS2	P-3m1	26	No	\	0	88	4.05E+06	mp-2156
NiPS₃	P-31m	47	No	$P_4S_7 + NiPS +$	64	61	4.05E+06	mp-676040
				Ni ₃ S ₄				
TbBr	P-3m1	0	No	TbBr ₃ + Tb	16	47	4.06E+06	mp-27924
TiCl₃	C2/m	0	No	TiCl₃	5	61	4.15E+06	mp-569756
AgRuF ₇	P2_1/c	0	No	1	0	31	4.28E+06	mp-17588
LiNi(PS ₃) ₂	P312	31	No	$P_4S_9 + Li_3PS_4 +$	36	63	4.30E+06	mp-557500
				$P_4S_7 + Ni_3S_4$				
TiBr ₃	C2/m	0	No	1	2	79	4.31E+06	mp-28214
Fe ₄ S ₅	P4/n	0	No	FeS + FeS ₂	59	2	4.35E+06	mp-850083
TaSe₃	P2_1/m	0	No	1	0	65	4.39E+06	mp-29652

Sc5Cl8	P2/m	0	No	۸	1	79	4.45E+06	mp-542449
Pr ₂ I ₅	P2_1/m	155	No	۸.	0	88	4.53E+06	mp-22854
Nb ₄ IrSe ₁₀	P-1	0	No	IrSe ₂ + NbSe ₂	38	86	4.54E+06	mp-675326
CrCuO₄	Pmma	116	No	$Cr_5O_{12} + Cu_2O_3 + O_2$	69	127	4.58E+06	mp-504927
KFe ₂ Se ₃	Pmma	0	No	FeSe + KFeSe ₂	68	129	4.69E+06	mp-1095516
ZrCl	P-3m1	0	No	λ	0	52	4.71E+06	mp-27440
La ₂ (BiO ₂) ₇	P1	0	No	La ₂ Bi ₂ O ₇ + La ₁₀ Bi ₈ O ₂₇ + Bi ₂ O ₃	77	37	4.83E+06	mp-753524
NbCoTe ₂	P2_1/c	0	No	NbCoTe ₂	7	78	5.25E+06	mp-571471
Tb₅Br ₈	P2/m	0	No	TbBr ₃ + Tb	33	103	5.28E+06	mp-31007
YCI	C2/m	0	No	λ	0	37	5.33E+06	mp-23062
YCI	P-3m1	0	No	$Y_2CI_3 + Y$	51	54	5.33E+06	mp-540884
Tl ₂ Cu ₃ (SeO ₃) ₆	P-1	162	No	λ	0	56	5.44E+06	mp-558944
Nb ₃ IrSe ₈	C2	0	No	IrSe ₂ + NbSe ₂	11	88	5.45E+06	mp-675066
Cu ₃ Te ₂ (BrO ₃) ₂	C2/m	0	No	CuBr ₂ + CuO + TeO ₂	17	41	5.48E+06	mp-572313
Ag(TeMo) ₆	C2/m	0	No	λ	0	76	5.53E+06	mp-29607
NbCrSe₅	P2_1/m	0	No	$Nb_2Se_9 + Cr_2Se_3$ + $NbSe_2$	2	77	5.55E+06	mp-28019
Crl ₂	C2/m	253	No	Crl ₃ + Cr	0	84	5.58E+06	mp-27215
Fe(CO ₃) ₂	P-3	0	No	$CO_2 + Fe_2O_3 + O_2$	59	36	5.84E+06	mp-769642
CuF ₂	P2_1/c	461	No	λ	0	127	5.88E+06	mp-1229
LiCu(PO ₃) ₃	P-1	401	No	LiCu(PO ₃) ₃	71	79	6.04E+06	mp-758797
Ta ₂ Se ₃	P2_1/m	0	No	Ta ₂ Se + TaSe ₂	30	123	6.05E+06	mp-9983
TbGal	P-3m1	0	No	λ	0	45	6.23E+06	mp-1025099
Te₂W	P2_1/m	73	No	λ	0	84	6.25E+06	mp-22693
AgClO ₂	P2_1/m	186	No	AgClO ₄ + AgCl	0	54	6.27E+06	mp-997017
Cu₃OF₅	P-1	0	No	$CuF_2 + Cu_2O_3 + O_2$	60	72	6.27E+06	mp-755349
Mn ₂ Ga ₂ S ₅	P-3m1	0	No	Mn(GaS ₂) ₂ + MnS	50	26	6.28E+06	mp-1078896
ScHCl	P-3m1	0	No	١	0	35	6.96E+06	mp-24081
CrBr ₂	C2/m	447	No	CrBr ₃ + Cr	73	74	7.01E+06	mp-567624
Cu ₃ Se ₂ (ClO ₃) ₂	C2/m	0	No	$CuSe_2O_5 + Cu_4Se_3O_{10} + CuCl_2$	3	42	7.18E+06	mp-557136
Cu ₃ Se ₂ (ClO ₃) ₂	P-1	58	No	$CuSe_2O_5 +$ $Cu_4Se_3O_{10} +$ $CuCl_2$	14	49	7.18E+06	mp-557946
VTe ₂	C2/m	0	No	١	0	115	7.18E+06	mp-11687
Sc₅CCl ₈	P2/m	0	No	Λ	0	102	7.20E+06	mp-31024

CrSe ₂	P-3m1	0	No	Cr ₂ Se ₃ + Se	11	113	7.22E+06	mp-1009581
Ag ₂ IO ₆	P-31m	0	No	Ag ₃ O ₄ + AgI ₃ O ₈	45	9	7.25E+06	mp-1079032
				+ O ₂				
Sr ₂ CoClO ₃	P4/nmm	0	No	Sr ₃ (CoO ₃) ₂ +	36	35	7.25E+06	mp-505678
				Sr ₂ Co ₂ O ₅ +				
				Sr ₄ Cl ₆ O				
YGal	P-3m1	0	No	۸	0	39	7.39E+06	mp-571210
TaTe ₂	C2/m	0	No	١	17	114	7.43E+06	mp-1967
NiPSe ₃	P-31m	0	No	$NiSe_2 + NiP_2 +$	64	74	7.45E+06	mp-1079754
				Se				
AgF ₂	P2_1/c	0	No	١	0	150	7.52E+06	mp-7715
Y ₇ C ₃ I ₆ O	Pmma	0	No	۸	0	31	7.72E+06	mp-554027
AgHO ₂	Cm	0	No	١	0	126	7.75E+06	mp-996958
TaFeTe₃	P2_1/m	0	No	Ta ₄ FeTe ₄ +	24	82	7.80E+06	mp-8848
				FeTe ₂ + TaTe ₂				
Ta ₂ PdSe ₆	C2/m	79	No	١	0	89	7.91E+06	mp-8436
Mn₃CuO ₈	P-3m1	6	No	$Cu_2O_3 + MnO_2$	61	60	7.99E+06	mp-771841
				+ O ₂				
Cr(GaS ₂) ₂	P-3m1	0	No	GaS + Cr₃GaS ₆	62	36	8.54E+06	mp-985304
				+ Ga ₂ S ₃				
ZrCl ₃	C2/m	173	No	ZrCl ₃	51	73	8.67E+06	mp-1100795
Sr ₃ Co ₂ Cl ₂ O ₅	P4/mmm	0	No	Sr ₂ Co ₂ O ₅ +	53	8	8.69E+06	mp-24846
				Sr ₅ (CoO ₃) ₄ +				
				$Co_3O_4 + Sr_4Cl_6O$				
NbFeTe ₂	Pmna	0	No	NbTe ₂ + Fe	25	82	8.69E+06	mp-616481
Cr ₃ Te ₄	P-3m1	0	No	Cr ₅ Te ₈ + Cr	67	51	8.79E+06	mp-570122
NbTe ₂	C2/m	0	No	١	0	121	8.81E+06	mp-11675
V ₆ O ₁₃	Pmma	0	No	VO ₂ + V ₂ O ₅	63	67	9.07E+06	mp-715617
Tl ₂ CuF ₄	P4/mmm	0	No	١	0	66	9.14E+06	mp-1025338
Ta ₂ PdS ₆	C2/m	162	No	١	0	83	9.39E+06	mp-8435
Sc₅NCl ₈	P2/m	0	No	$Sc_5Cl_8 + Sc_4NCl_6$	28	98	9.49E+06	mp-31025
				+ ScCl ₃				
LuHCl	P-3m1	0	No	\ \	0	36	9.49E+06	mp-23896
ErHCl	P-3m1	0	No		0	36	9.64E+06	mp-24051
KV4O10	Amm2	0	No	VO ₂ + KV ₃ O ₈	50	61	9.69E+06	mp-767780
Bi ₄ I	P2/m	0	No	Bil₃ + Bi	76	102	9.72E+06	mp-583234
CoCl ₂	P-3m1	109	No	CoCl ₂	0	67	9.82E+06	mp-23240
MoTe ₂	P2_1/m	0	No	MoTe ₂	21	87	9.88E+06	mp-7459
ScCl	P-3m1	0	No	Sc ₇ Cl ₁₀ + Sc	23	50	9.99E+06	mp-27507
Ta ₃ Te ₁₄ Pd ₃	Pm	0	No	1	0	104	1.02E+07	mp-505132
LiCu ₂ (CO ₃) ₂	P1	0	No	$Cu_2O + Li_2CO_3 +$	70	53	1.03E+07	mp-760546
				CuO + CO ₂				
Bi9l2	P2_1/m	0	No	Bil ₃ + Bi	70	97	1.03E+07	mp-28149
Y ₄ Cl ₅	Pmmm	0	No	\	0	80	1.04E+07	mp-23382

TaNi ₂ Te ₃	P2_1/m	0	No	۸.	0	79	1.05E+07	mp-9391
La ₄ C ₂ Br ₅	Pmmm	0	No	۸.	0	107	1.09E+07	mp-569873
CrSBr	Pmmn	292	Yes	۸.	0	51	1.09E+07	mp-22998
RbV ₄ O ₁₀	Cmmm	0	No	RbV ₃ O ₈ + VO ₂	45	61	1.09E+07	mp-764947
Sc7(CCl5)2	C2/m	0	No	۸.	0	81	1.11E+07	mp-29315
Nb ₂ Te ₃	P2_1/m	0	No	NbTe ₂ + Nb ₃ Te ₄	38	102	1.13E+07	mp-570451
CuSi ₂ P ₃	Pm	0	No	Cu ₄ SiP ₈ +	64	24	1.14E+07	mp-674984
				Cu ₁₅ Si ₄ + SiP				
Y ₆ C ₂ I ₇	C2/m	0	No	λ	0	55	1.14E+07	mp-23440
NbSe₃	P2_1/m	0	No	λ	0	57	1.19E+07	mp-525
Na ₂ ZrN ₂	P-3m1	0	No	$Zr_3N_4 + NaN_3 +$	78	43	1.22E+07	mp-1029316
				Na				
TaTe ₂	C2/m	0	No	TaTe ₂	20	113	1.23E+07	mp-601823
Bi ₂ Rh ₃ S ₂	C2/m	0	No	λ	0	150	1.25E+07	mp-977592
CoBr ₂	P-3m1	43	No	Δ	0	75	1.26E+07	mp-30033
Mn(InSe ₂) ₂	P3m1	0	No	MnSe + In ₂ Se ₃	39	51	1.27E+07	mp-1078140
Nb ₂ PdS ₆	C2/m	0	No	Δ.	0	86	1.29E+07	mp-1080466
AgClO ₂	P2_1/m	13	No	AgClO ₄ + AgCl	0	59	1.32E+07	mp-997013
Ta ₂ Te ₃	C2/m	0	No	Δ.	0	78	1.32E+07	mp-542634
LiCu ₃ F ₁₀	Рс	0	No	λ	0	41	1.32E+07	mp-760825
NbNiTe ₂	Pmna	0	No	Δ.	0	81	1.32E+07	mp-20506
Nb ₃ IrS ₈	C2	0	No	NbS ₂ + IrS ₂	28	89	1.33E+07	mp-675367
TaS₃	P2_1/m	0	No	Δ.	0	55	1.36E+07	mp-30527
RbMnAs	P4/nmm	0	No	RbAs + Mn	73	-11	1.37E+07	mp-20242
Pr ₄ C ₂ Cl ₅	Pmmm	0	No	λ	0	123	1.39E+07	mp-570498
Na_2HfN_2	P-3m1	0	No	$Hf_3N_4 + NaN_3 +$	76	43	1.45E+07	mp-1029309
				Na				
Ga ₂ NiS ₄	P-3m1	0	No	Ni ₉ S ₈ + Ni ₃ S ₄ +	54	29	1.45E+07	mp-6959
				Ga ₂ S ₃				
MnS ₂	P-3m1	0	No	۸	0	59	1.46E+07	mvc-14047
HfTe ₂	P-3m1	0	No	λ	0	103	1.48E+07	mp-32887
TiSe ₂	P-3m1	0	No	۸	0	92	1.48E+07	mp-2194
NaFeAs	P4/nmm	0	No	λ	0	105	1.50E+07	mp-22152
TaNiTe ₂	Pmna	0	No	۸	0	82	1.59E+07	mp-19810
Col ₂	P-3m1	0	No	Co + I	19	88	1.66E+07	mp-569610
VBr ₂ O	Pmmm	408	Yes	VBrO + Br	13	64	1.81E+07	mp-32450
CuAuO ₂	P2/m	0	No	λ	0	182	1.82E+07	mp-996978
Sr ₂ Cu(IO) ₂	P4/mmm	0	No	λ	0	41	1.87E+07	mp-549487
VS ₂	P-6m2	27	No	Λ	0	78	1.89E+07	mp-1013525
AlPd₅I₂	P4/mmm	0	No	١	0	50	1.90E+07	mp-27393
CeSil	P-3m1	0	No	Λ	0	43	1.92E+07	mp-29535
AuSe	C2/m	0	No	AuSe	10	74	1.92E+07	mp-570325
Ta₂Se	P4/nmm	0	No	λ	0	59	1.93E+07	mp-8732

Lal ₂	P4/mmm	0	No	λ	0	85	1.96E+07	mp-23194
Ag(AuS)₂	Рс	0	No	Ag ₃ AuS ₂ +	64	98	1.97E+07	mp-35835
				AgAuS ₂ + Au ₂ S				
EuBrO	P4/nmm	0	No	λ	0	59	2.08E+07	mp-504727
CuBr ₂	C2/m	0	No	λ	0	93	2.12E+07	mp-23219
Sr ₂ Co(ClO) ₂	P4/mmm	225	No	Sr ₂ Co(ClO) ₂	23	54	2.12E+07	mp-560610
RbMnP	P4/nmm	0	No	λ	0	46	2.13E+07	mp-21413
ZrTiTe₄	P2/m	0	No	TiTe ₂ + ZrTe ₂	25	113	2.13E+07	mp-8677
Ca(TiS ₂) ₈	P-3m1	0	No	λ	0	40	2.13E+07	mvc-16026
Sr ₂ Cu(BrO) ₂	P4/mmm	0	No	λ	0	48	2.13E+07	mp-546898
FeSe	P4/nmm	0	No	λ	0	85	2.15E+07	mp-20311
NbSe2	P-6m2	0	No	NbSe ₂	5	93	2.18E+07	mp-7597
VTe ₂	P-3m1	0	No	VTe ₂	22	98	2.19E+07	mp-1008626
NaMnAs	P4/nmm	0	No	Mn ₂₃ As ₁₆ +	73	93	2.20E+07	mp-20612
7-110	D 2m1	0	No		72	22	2 225 07	mp 1024058
	P-3m1	0	No	$2\Gamma Cl_2 + 2\Gamma H_2$	/3	33	2.23E+07	mp-1024958
	P4/mmm	142	No		0	42	2.20E+07	mp-545481
	P-3m1	142	No		0	79	2.28E+07	mp-27638
Tase ₂	P-6m2	0	No		3	69	2.29E+07	mp-500
	P4/IIIII	0	No		0	48	2.30E+07	mp-20422
	P4/mmm	0	No		20	(74	2.31E+07	mp-23102
	F4/111111		NO		20	03	2.34L+07	mp-23143
Nas(TiSa)to	Cm	0	No		0	/3	2 36F+07	mp-675056
	P4/nmm	0	No		0	163	2.36E+07	mp-20049
FeS	P4/nmm	0	No		0	83	2.30E+07	mp-505531
CoTes	P-3m1	0	No		0	165	2.42F+07	mp-1009641
NhS ₂	P-6m2	0	No		0	92	2.42E+07	mp-10033
Ndla	P4/mmm	0	No		0	94	2.57E+07	mp-28753
TaS	P-6m2	0	No		0	88	2.61E+07	mp-1984
Ta₄AgS ₈	P2 1/m	0	No	Ta₄AgS ₈	0	43	2.66E+07	mp-677597
NbNiTe ₅	Pmma	0	No	Λ	0	78	2.76E+07	mp-8999
MnSe	P4/nmm	0	No	MnSe	32	82	2.80E+07	mp-604910
GdBr	P-3m1	0	No	GdBr ₃ + Gd	70	57	2.84E+07	mp-1064427
Zr ₂ HBr ₂	P2_1/m	0	No	ZrBr + ZrH ₂ +	24	41	2.94E+07	mp-642803
				ZrBr ₃				
VSe ₂	P-3m1	0	No	λ	0	86	2.95E+07	mp-694
La ₂ PI ₂	P-3m1	0	No	λ	0	54	3.00E+07	mp-571647
TaTe₅Pt	Pmma	0	No	λ	0	70	3.01E+07	mp-14815
AgO ₂ F	P2_1/m	0	No	λ	0	78	3.02E+07	mp-997101
TaNiTe₅	Pmma	0	No	λ	0	73	3.03E+07	mp-8998
CoSe	P4/nmm	0	No	$Co_3Se_4 +$	16	104	3.04E+07	mp-604908
				C09568				

Sr ₂ MnClO ₃	P4/nmm	0	No	١	0	33	3.05E+07	mp-561903
TiBrO	Pmmn	0	No	Ti ₂ O ₃ + TiBr ₃	17	40	3.05E+07	mp-23002
La ₂ PBr ₂	P-3m1	0	No	١	0	51	3.20E+07	mp-570988
TaNi₂TeSe	Pmma	0	No	١	0	51	3.24E+07	mp-622009
NbTe₅Pd	Pmc2_1	0	No	NbTe ₄ + Te ₂ Pd + NbTe ₂	1	83	3.27E+07	mp-28616
Sr ₂ Cu(BiO ₃) ₂	Pmna	0	No	SrCuO ₂ + Sr(BiO ₂) ₂	70	37	3.32E+07	mp-555827
TiTe₂	P-3m1	0	No	λ	0	110	3.34E+07	mp-1907
Te ₂ Pd ₃ Pb ₂	Pmmn	0	No	λ	0	135	3.34E+07	mp-605028
Ti ₂ Te ₂ P	P-3m1	0	No	٨	0	57	3.40E+07	mp-12527
Hf ₃ Te ₂	P4/mmm	0	No	١	0	78	3.43E+07	mp-28919
TiNbS4	P2/m	0	No	TiS ₂ + NbS ₂	23	93	3.44E+07	mp-34289
NbTe ₂	P-3m1	0	No	NbTe ₂	47	106	3.47E+07	mp-1018150
TiBr ₂	P-3m1	0	No	Ti ₇ Br ₁₆ + Ti	38	61	3.50E+07	mp-27785
TiClO	Pmmn	0	No	Ti ₂ O ₃ + TiCl ₃	15	37	3.55E+07	mp-22992
Ta(NiTe)₂	Pmma	0	No	١	0	54	3.56E+07	mp-28667
Sr ₄ Mn ₃ (ClO ₄) ₂	P4/mmm	0	No	λ	0	26	3.59E+07	mp-25033
TiCl ₂	P-3m1	0	No	Ti ₇ Cl ₁₆ + Ti	55	90	3.63E+07	mp-28116
EulO	P4/nmm	0	No	λ	0	51	3.73E+07	mp-600622
CeBiS ₂ O	P4/nmm	0	No	Ce ₄ S ₃ O ₄ + Bi ₂ S ₃ + Bi	62	71	3.74E+07	mp-610469
LiCoAs	P4/nmm	0	No	λ	0	157	3.74E+07	mp-20698
TISCI	Pmmn	0	No	λ	0	60	3.99E+07	mp-1013900
Ca ₃ Cu ₂ (ClO ₂) ₂	P4/mmm	0	No	$Ca_4Cl_6O +$ $CaCu_3O_4 + CaO$	7	41	4.09E+07	mp-23095
Ca ₃ Cu ₂ (ClO ₂) ₂	P4/mmm P-3m1	0	No No	$Ca_4Cl_6O +$ $CaCu_3O_4 + CaO$ $In_4Te_3 + In_7Te_{10}$	7 36	41 51	4.09E+07 4.11E+07	mp-23095 mp-541885
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂	P4/mmm P-3m1 P4/mmm	0	No No No	$Ca_4Cl_6O + CaCu_3O_4 + CaO$ $In_4Te_3 + In_7Te_{10}$	7 36 0	41 51 26	4.09E+07 4.11E+07 4.16E+07	mp-23095 mp-541885 mp-545706
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄	P4/mmm P-3m1 P4/mmm P-3m1	0 0 0 0 0	No No No	$Ca_4Cl_6O + CaCu_3O_4 + CaO$ $In_4Te_3 + In_7Te_{10}$ $\$ Bi_2Se_3 + Bi	7 36 0 55	41 51 26 53	4.09E+07 4.11E+07 4.16E+07 4.17E+07	mp-23095 mp-541885 mp-545706 mp-542615
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn	0 0 0 0 0	No No No No	$Ca_4Cl_6O + CaCu_3O_4 + CaO$ $ln_4Te_3 + ln_7Te_{10}$ \backslash $Bi_2Se_3 + Bi$ $Ti_2O_3 + TiF_3$	7 36 0 55 71	41 51 26 53 47	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1	0 0 0 0 0 0 0	No No No No No	$Ca_4Cl_6O + CaCu_3O_4 + CaO$ $ln_4Te_3 + ln_7Te_{10}$ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	7 36 0 55 71 50	41 51 26 53 47 90	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1 P4/nmm	0 0 0 0 0 0 0 0	No No No No No No	$\begin{array}{c} Ca_4 Cl_6 O + \\ Ca Cu_3 O_4 + Ca O \\ ln_4 Te_3 + ln_7 Te_{10} \\ \\ \\ \\ Bi_2 Se_3 + Bi \\ Ti_2 O_3 + TiF_3 \\ \\ Tml_3 + Tm \\ CuSe \end{array}$	7 36 0 55 71 50 71	41 51 26 53 47 90 117	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-580226
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe Sc ₂ NCl ₂	P4/mmm P-3m1 P4/mmm P-3m1 P-3m1 P-3m1 P4/nmm P-3m1	0 0 0 0 0 0 0 0 0 0	No No No No No No No	$Ca_4Cl_6O + CaCu_3O_4 + CaO$ $ln_4Te_3 + ln_7Te_{10}$ \backslash $Bi_2Se_3 + Bi$ $Ti_2O_3 + TiF_3$ $Tml_3 + Tm$ $CuSe$ \backslash	7 36 0 55 71 50 71 0	41 51 26 53 47 90 117 41	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-580226 mp-28480
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe Sc ₂ NCl ₂ NiTe	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1 P4/nmm P-3m1 P-3m1	0 0 0 0 0 0 0 0 0 0 0 0 0	No No No No No No No No	$Ca_4Cl_6O + CaCu_3O_4 + CaO$ $In_4Te_3 + In_7Te_{10}$ \backslash $Bi_2Se_3 + Bi$ $Ti_2O_3 + TiF_3$ $Tml_3 + Tm$ $CuSe$ \langle $Ni_3Te_2 + NiTe_2$	7 36 0 55 71 50 71 0 0	41 51 26 53 47 90 117 41 125	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07 4.56E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-580226 mp-28480 mp-10264
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe Sc ₂ NCl ₂ NiTe PtPb ₄	P4/mmm P-3m1 P4/mmm P-3m1 P-3m1 P4/nmm P-3m1 P-3m1 P-3m1 P4/nbm	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No No No No No No No No No	$\begin{array}{c} Ca_4 Cl_6 O + \\ Ca Cu_3 O_4 + Ca O \\ In_4 Te_3 + In_7 Te_{10} \\ \\ \\ \\ N \\ Bi_2 Se_3 + Bi \\ Ti_2 O_3 + TiF_3 \\ Tml_3 + Tm \\ Cu Se \\ \\ \\ \\ \\ Ni_3 Te_2 + NiTe_2 \\ \\ \\ \\ \end{array}$	7 36 0 55 71 50 71 0 43 0	41 551 26 53 47 90 117 41 125 185	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07 4.56E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-280226 mp-28480 mp-10264 mp-21296
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe Sc ₂ NCl ₂ NiTe PtPb ₄ Zr ₂ Te ₂ P	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1 P4/nmm P-3m1 P-3m1 P4/nbm P-3m1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No No No No No No No No No	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	7 36 0 55 71 50 71 0 43 0 0	41 51 26 53 47 90 117 41 125 185 66	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07 4.56E+07 4.58E+07 4.67E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-29671 mp-28480 mp-10264 mp-10264 mp-11296 mp-16765
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe Sc ₂ NCl ₂ NiTe PtPb ₄ Zr ₂ Te ₂ P NiTe ₂	P4/mmm P-3m1 P4/mmm P-3m1 P-3m1 P4/nmm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P-3m1 P-3m1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No N	$\begin{array}{c} Ca_4 Cl_6 O + \\ Ca Cu_3 O_4 + Ca O \\ In_4 Te_3 + In_7 Te_{10} \\ \\ \\ \\ Ni_2 Se_3 + Bi \\ Ti_2 O_3 + TiF_3 \\ Tml_3 + Tm \\ CuSe \\ \\ \\ \\ \\ \\ Ni_3 Te_2 + NiTe_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	7 36 0 55 71 50 71 0 43 0 43 0 0	41 51 26 53 47 90 117 41 125 185 66 171	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07 4.56E+07 4.58E+07 4.67E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-28480 mp-28480 mp-10264 mp-21296 mp-16765 mp-2578
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe Sc ₂ NCl ₂ NiTe PtPb ₄ Zr ₂ Te ₂ P NiTe ₂ Li ₂ H ₂ Pd	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1 P4/nmm P-3m1 P4/nam P-3m1 P-3m1 P-3m1 P-3m1 P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P-3m1 P-3m1 P-3m1 P-3m1 P-3m1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No N	$\begin{array}{c} Ca_4 Cl_6 O + \\ Ca Ca_3 O_4 + Ca O \\ In_4 Te_3 + In_7 Te_{10} \\ \\ \\ \\ \\ \\ \\ Bi_2 Se_3 + Bi \\ \\ Ti_2 O_3 + TiF_3 \\ \\ Tml_3 + Tm \\ Cu Se \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	7 36 0 55 71 50 71 0 43 0 43 0 0 0 0	41 51 26 53 47 90 117 125 185 66 171 109	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07 4.56E+07 4.58E+07 4.67E+07 4.68E+07 4.68E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-28480 mp-28480 mp-10264 mp-10264 mp-16765 mp-2578 mp-644389
Instruct Ca3Cu2(ClO2)2 In3Te4 Ca3Cu2(BrO2)2 Bi3Se4 TiOF Tml2 CuSe Sc2NCl2 NiTe PtPb4 Zr2Te2P NiTe2 Li2H2Pd PtTe	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1 P4/nmm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P-3m1 P-3m1 P-3m1 P-3m1 P-3m1 P-3m1 P4/nbm P-3m1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No N	$\begin{array}{c} Ca_4 Cl_6 O + \\ Ca Cu_3 O_4 + Ca O \\ In_4 Te_3 + In_7 Te_{10} \\ \\ \\ \\ \\ \\ Bi_2 Se_3 + Bi \\ \\ Ti_2 O_3 + TiF_3 \\ \\ Tml_3 + Tm \\ Cu Se \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	7 36 0 55 71 50 71 0 43 0 0 0 0 0 0 0 0 0	41 51 26 53 47 90 117 41 125 185 66 171 109 145	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.36E+07 4.56E+07 4.58E+07 4.67E+07 4.68E+07 4.72E+07 4.86E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-28480 mp-10264 mp-10264 mp-10264 mp-11693
Instruct Ca3Cu2(ClO2)2 In3Te4 Ca3Cu2(BrO2)2 Bi3Se4 TiOF Tml2 CuSe Sc2NCl2 NiTe PtPb4 Zr2Te2P NiTe2 Li2H2Pd PtTe SrCu	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1 P4/nmm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P4/nbm P-3m1 P4/mmm P-3m1 P4/mmm P-3m1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No N	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	7 36 0 55 71 50 71 50 71 0 43 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41 55 26 53 47 90 117 105 185 66 171 109 145 180	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07 4.56E+07 4.58E+07 4.67E+07 4.68E+07 4.68E+07 4.86E+07 4.91E+07	mp-23095 mp-541885 mp-545706 mp-542615 mp-753059 mp-29671 mp-28480 mp-28480 mp-10264 mp-10264 mp-16765 mp-2578 mp-644389 mp-11693 mp-1025402
Ca ₃ Cu ₂ (ClO ₂) ₂ In ₃ Te ₄ Ca ₃ Cu ₂ (BrO ₂) ₂ Bi ₃ Se ₄ TiOF Tml ₂ CuSe Sc ₂ NCl ₂ NiTe PtPb ₄ Zr ₂ Te ₂ P NiTe PtTe SrCu Nb ₂ CS ₂	P4/mmm P-3m1 P4/mmm P-3m1 Pmmn P-3m1 P4/nmm P-3m1 P-3m1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No No	$\begin{array}{c} Ca_4 Cl_6 O + \\ Ca Ca_3 O_4 + Ca O \\ In_4 Te_3 + In_7 Te_{10} \\ \\ \\ \\ \\ \\ \\ \\ Bi_2 Se_3 + Bi \\ \\ \\ Ti_2 O_3 + Ti F_3 \\ \\ \\ \\ \\ Tml_3 + Tm \\ Cu Se \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	7 36 0 55 71 50 71 50 71 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41 51 26 53 47 90 117 125 185 185 66 171 109 145 180 54	4.09E+07 4.11E+07 4.16E+07 4.17E+07 4.27E+07 4.34E+07 4.36E+07 4.39E+07 4.56E+07 4.58E+07 4.67E+07 4.68E+07 4.68E+07 4.91E+07 4.96E+07	mp-23095 mp-541885 mp-542615 mp-753059 mp-29671 mp-28480 mp-10264 mp-10264 mp-16765 mp-2578 mp-644389 mp-11693 mp-1025402 mp-4384

ZrSiSe	P4/nmm	0	No	٨	0	84	5.34E+07	mp-4628
OsCl ₂ O	Pmmm	0	No	λ	0	67	5.45E+07	mp-29133
HfSiSe	P4/nmm	0	No	٨	0	78	5.50E+07	mp-13962
ZrGeTe	P4/nmm	0	No	١	0	71	5.51E+07	mp-3208
RuCl ₂ O	Pmmm	0	No	١	0	64	5.54E+07	mp-29132
Li ₂ H ₂ Pt	P4/mmm	0	No	١	0	108	5.56E+07	mp-644136
YCBr	C2/m	0	No	١	0	34	5.58E+07	mp-643367
SiTe ₂	P-3m1	0	No	Te + Si	53	91	5.63E+07	mp-2755
TbCBr	C2/m	0	No	١	0	39	5.67E+07	mp-1025023
HfSiTe	P4/nmm	0	No	١	0	63	5.69E+07	mp-13963
Ta ₂ CS ₂	P-3m1	22	No	١	0	42	5.94E+07	mp-7814
CeTe ₃	P4/nmm	0	No	١	0	62	6.11E+07	mp-571571
ZrTe ₃	Pmmn	0	No	١	0	95	6.22E+07	mp-2089
LiC ₁₂	P6/mmm	0	No	١	0	38	6.31E+07	mp-1021323
HfTe₃	Pmmn	0	No	HfTe₅ + HfTe₂	25	88	6.54E+07	mp-1025459
CuTe	Pmmn	0	No	١	0	79	9.05E+07	mp-20826
CuAgTe ₂	Pmm2	0	No	Ag ₂ Te + CuTe +	70	93	1.16E+08	mp-2977
				Те				
LaTe ₃	P4/nmm	0	No	١	0	57	1.47E+08	mp-1078612
Nd₂Te₅	P4/nmm	0	No	٨	0	29	1.60E+08	mp-1119
PrTe₃	P4/nmm	0	No	٨	0	56	1.60E+08	mp-12351
NdTe₃	P4/nmm	0	No	١	0	55	1.60E+08	mp-740
SmTe ₃	P4/nmm	0	No	١	0	57	1.64E+08	mp-9399
TbTe ₃	P4/nmm	0	No	٨	0	57	1.73E+08	mp-1084847
LuTe₃	P4/nmm	0	No	Lu ₂ Te ₃ + Te	9	58	1.73E+08	mp-1080689
ErTe₃	P4/nmm	0	No	١	0	57	1.74E+08	mp-1078991
TmTe ₃	P4/nmm	0	No	λ	0	57	1.74E+08	mp-1087512
НоТе₃	P4/nmm	0	No	١	0	57	1.75E+08	mp-1078508
DyTe ₃	P4/nmm	0	No	١	0	57	1.76E+08	mp-1086673
YTe₃	P4/nmm	0	No	١	0	61	1.78E+08	mp-945077
PrTe ₂ Se	P4/nmm	0	No	λ	0	52	1.87E+08	mp-30125
NdTe ₂ Se	P4/nmm	0	No	λ	0	51	1.91E+08	mp-4437
LaTe ₂ Se	P4/nmm	0	No	λ	0	44	2.09E+08	mp-4034

Table S3. Computed free energy of reaction species (with consideration of the effect of solvation), including ΔG (OOH*), ΔG (O*), and ΔG (OH*), theoretical limiting potential (U_L) and potential limiting step (PDS) for the ORR and OER on the 242 possible sites in the 199 candidate materials which screened from catalytic selectivity analysis.

Formula	ΔG (OOH*)	ΔG (O*)	ΔG (OH*)	PDS-ORR	UL (ORR)	PDS-OER	U _L (OER)
NbTe ₂	3.95	2.00	0.66	OH*↔H₂O	0.66	00H*↔0*	1.96
HfSiSe	3.94	1.34	0.48	OH*↔H₂O	0.48	00H*↔0*	2.60
HfTe₅_1	4.59	1.47	1.40	O*↔OH*	0.06	00H*↔0*	3.12
HfTe₅_2	4.87	1.86	1.60	O₂↔OOH*	0.05	00H*↔0*	3.02
Nb ₂ PdS ₆ _1	4.49	1.86	1.17	O₂↔00H*	0.43	00H*↔0*	2.64
Nb ₂ PdS ₆ _2	4.61	1.97	1.64	O₂↔OOH*	0.31	00H*↔0*	2.65
TiTe ₂	4.66	1.47	1.35	O*↔OH*	0.13	00H*↔0*	3.19
TiSe ₂	4.64	1.81	1.55	O*↔OH*	0.26	00H*↔0*	2.83
Ta₂NiS₅	4.73	2003	1.60	O₂↔00H*	0.19	00H*↔0*	2.70
Ta ₂ Te ₃	4.67	1.69	1.62	O₂↔OOH*	0.08	00H*↔0*	2.97
TaSe₃	4.44	2.08	1.26	O₂↔00H*	0.48	00H*↔0*	2.36
NbNiTe₅	4.39	1.73	1.39	O*↔OH*	0.34	00H*↔0*	2.66
ZrSiSe	4.12	1.58	0.71	OH*↔H ₂ O	0.71	00H*↔0*	2.54
TaNiTe₅	4.49	1.58	1.33	0*↔0H*	0.26	00H*↔0*	2.91
Ta₂NiSe₅	4.85	2.02	1.58	O₂↔OOH*	0.07	00H*↔0*	2.83
TaS₃	4.63	2.07	1.83	0*↔0H*	0.24	00H*↔0*	2.56
ZrGeTe	4.02	1.18	0.59	OH*↔H₂O	0.59	00H*↔0*	2.84
FeSe	4.17	1.65	0.49	OH*↔H₂O	0.49	00H*↔0*	2.52
FeS	4.67	1.53	1.43	0*↔0H*	0.11	00H*↔0*	3.14
NbCrSe₅	4.38	1.75	0.76	OH*↔H₂O	0.54	00H*↔0*	2.63
TaS₂	4.12	1.65	0.70	OH*↔H₂O	0.70	00H*↔0*	2.48
NbS ₂	3.95	1.55	0.57	OH*↔H₂O	0.57	00H*↔0*	2.40
NbCoTe ₂	4.28	1.64	1.13	0*↔0H*	0.51	00H*↔0*	2.64
Nb ₃ IrSe ₈	4.25	1.74	1.22	0*↔0H*	0.51	00H*↔0*	2.51
VTe ₂	3.85	1.93	0.57	OH*↔H₂O	0.57	00H*↔0*	1.92
Te ₂ Pd ₃ Pb ₂	3.70	1.97	0.50	OH*↔H₂O	0.50	00H*↔0*	1.73
CoSe	4.38	1.93	1.23	O₂↔OOH*	0.54	00H*↔0*	2.45
TaTe ₂	3.55	1.77	0.29	OH*↔H₂O	0.29	00H*↔0*	1.79
Te ₂ Mo	4.09	1.95	0.82	OH*↔H₂O	0.82	00H*↔0*	2.13
VTe ₂	3.09	1.07	-0.10	OH*↔H₂O	-0.10	00H*↔0*	2.02
ScCl	5.09	1.63	2.42	0*↔0H*	-0.78	00H*↔0*	3.46
TiNbS₄	4.54	1.74	1.34	O₂↔OOH*	0.38	00H*↔0*	2.80
TaFeTe ₃	4.07	1.34	0.76	OH*↔H₂O	0.58	00H*↔0*	2.73
Nb₃lrS ₈ _1	4.44	1.50	1.09	0*↔0H*	0.42	00H*↔0*	2.94
Nb₃IrS ₈ _2	4.53	1.60	1.50	0*↔0H*	0.10	00H*↔0*	2.93
MnSe	4.70	1.54	1.58	0*↔0H*	-0.04	00H*↔0*	3.16

					1		
Mn(InSe ₂) ₂ _1	3.34	0.45	0.63	0*↔0H*	-0.18	00H*↔0*	2.89
Mn(InSe ₂) ₂ _2	4.27	1.84	1.12	0₂↔00H*	0.65	00H*↔0*	2.43
TePt	4.02	1.83	0.80	OH*↔H₂O	0.80	00H*↔0*	2.20
NiTe	4.09	2.00	0.88	0₂↔00H*	0.83	00H*↔0*	2.09
Mn ₂ Ga ₂ S ₅	4.84	1.94	2.58	0*↔0H*	-0.64	00H*↔0*	2.90
SiTe₂	4.46	1.99	1.20	O₂↔OOH*	0.46	00H*↔0*	2.47
PtPb ₄ _1	3.68	1.28	0.47	OH*↔H₂O	0.47	00H*↔0*	2.40
PtPb4_2	3.65	1.83	0.65	OH*↔H₂O	0.65	00H*↔0*	1.82
NiTe ₂	4.01	1.60	0.76	OH*↔H₂O	0.76	00H*↔0*	2.41
Fe₄S₅	3.93	1.83	0.70	OH*↔H₂O	0.70	00H*↔0*	2.10
CoTe ₂	3.49	1.02	0.04	OH*↔H₂O	0.04	00H*↔0*	2.47
CeBiS ₂ O	3.20	0.98	-0.13	OH*↔H₂O	-0.13	00H*↔0*	2.21
Cr(GaS ₂) ₂	3.53	1.15	0.12	OH*↔H₂O	0.12	00H*↔0*	2.39
KFe ₂ Se ₃	3.86	0.90	0.64	0*↔0H*	0.25	00H*↔0*	2.96
Bi9l2_1	3.87	1.22	0.69	0*↔0H*	0.53	00H*↔0*	2.65
Bi9l2_2	3.79	1.83	0.62	OH*↔H₂O	0.62	00H*↔0*	1.96
LiCu ₂ (CO ₃) ₂	2.59	1.57	-0.53	OH*↔H₂O	-0.53	O₂↔00H*	2.33
CuAgTe ₂ _1	3.73	1.44	0.35	OH*↔H₂O	0.35	00H*↔0*	2.29
CuAgTe ₂ _2	3.70	1.50	0.37	OH*↔H₂O	0.37	00H*↔0*	2.19
CuSe	4.42	1.98	1.23	O₂↔OOH*	0.50	00H*↔0*	2.44
Na ₂ HfN ₂	2.00	1.42	-1.20	OH*↔H₂O	-1.20	O₂↔00H*	2.92
Bi4I_1	3.84	1.83	0.67	OH*↔H₂O	0.67	00H*↔0*	2.01
Bi4I_2	3.95	1.92	0.82	OH*↔H₂O	0.82	00H*↔0*	2.02
VCl₃	4.81	2.10	3.03	0*↔0Н*	-0.94	00H*↔0*	2.72
TaCoTe ₂	4.38	1.58	1.25	0*↔0H*	0.33	00H*↔0*	2.80
ZrTe ₅ _1	4.55	1.60	1.40	0*↔0Н*	0.20	00H*↔0*	2.95
ZrTe ₅ _2	4.86	1.86	1.68	O₂↔OOH*	0.06	00H*↔0*	3.00
TaTe₄Ir	4.36	1.91	1.16	O₂↔OOH*	0.56	00H*↔0*	2.44
TiS ₂	4.71	1.90	1.36	O₂↔OOH*	0.21	00H*↔0*	2.80
VS ₂	4.37	1.65	0.91	O₂↔OOH*	0.55	00H*↔0*	2.72
NbTe₄Ir	4.41	1.98	1.21	O₂↔OOH*	0.51	00H*↔0*	2.43
LiNi(PS ₃) ₂	4.31	1.72	0.99	O₂↔00H*	0.61	00H*↔0*	2.60
SrSbSe ₂ F	4.24	1.60	1.04	0*↔0H*	0.57	00H*↔0*	2.63
Te ₂ W	4.33	1.97	0.93	O₂↔00H*	0.59	00H*↔0*	2.36
VAg(PSe ₃) ₂	3.92	1.34	0.60	OH*↔H₂O	0.60	00H*↔0*	2.58
Ta ₂ PdS ₆	4.76	1.99	1.42	O₂↔00H*	0.16	00H*↔0*	2.76
TiS₃	4.72	1.80	1.83	0*↔OH*	-0.03	00H*↔0*	2.91
Ge5(Te4As)2	4.24	1.73	1.04	O₂↔00H*	0.68	00H*↔0*	2.50
Pr ₂ Br ₅ _1	2.66	0.57	-0.89	OH*↔H₂O	-0.89	0₂↔00H*	2.26
Pr ₂ Br ₅ _2	3.29	1.28	-0.28	OH*↔H₂O	-0.28	00H*↔0*	2.01
Pr ₂ Br ₅ _3	3.66	1.87	0.22	OH*↔H₂O	0.22	00H*↔0*	1.79
Pr ₂ Br ₅ _4	3.73	1.06	-0.16	OH*↔H₂O	-0.16	00H*↔0*	2.67
HfSe₃	4.76	1.69	1.63	0*↔0H*	0.05	00H*↔0*	3.07

NbS ₃	4.70	2.04	1.52	0₂↔00H*	0.22	00H*↔0*	2.65
Ge4Te7As2	4.32	1.83	1.17	0₂↔00H*	0.60	00H*↔0*	2.49
ZrSe₃	4.78	1.75	1.21	O₂↔OOH*	0.14	00H*↔0*	3.03
ZrSe ₂	4.76	1.75	1.34	0₂↔00H*	0.16	00H*↔0*	3.01
CuBrO2	4.30	1.69	1.79	0*↔0H*	-0.09	00H*↔0*	2.61
In ₂ Se ₃	4.35	1.51	1.09	0*↔0H*	0.42	00H*↔0*	2.83
Ti ₂ Te ₂ P	4.67	1.82	1.35	0₂↔00H*	0.25	00H*↔0*	2.85
Zr ₂ Te ₂ P	4.77	1.74	1.55	0₂↔00H*	0.15	00H*↔0*	3.02
Ta₂Te₅Pd₃_1	4.20	1.64	1.05	0*↔0Н*	0.59	00H*↔0*	2.55
Ta ₂ Te ₅ Pd ₃ _2	4.70	2.44	1.36	O₂↔00H*	0.22	00H*↔0*	2.25
Ta₄AgS ₈	4.48	1.94	1.14	O₂↔OOH*	0.44	00H*↔0*	2.54
Ag(TeMo) ₆	4.40	1.62	1.20	0*↔0H*	0.42	00H*↔0*	2.78
Ta₃SiTe₅	4.61	1.57	1.42	0*↔0H*	0.15	00H*↔0*	3.04
NbSe ₂	4.12	2.13	0.83	O₂↔OOH*	0.80	00H*↔0*	1.99
ВіТе	4.28	1.78	1.09	O₂↔OOH*	0.64	00H*↔0*	2.50
Ta ₃ Te ₁₄ Pd ₃ _1	4.26	1.78	1.10	O₂↔00H*	0.66	00H*↔0*	2.48
Ta ₃ Te ₁₄ Pd ₃ _2	4.16	1.81	1.15	O₂↔00H*	0.76	00H*↔0*	2.35
Ta ₃ Te ₁₄ Pd ₃ _3	4.28	1.93	1.06	O₂↔00H*	0.64	00H*↔0*	2.35
Nb ₃ SiTe ₆	4.58	1.85	1.40	O₂↔00H*	0.34	00H*↔0*	2.73
Nb ₃ GeTe ₆	4.51	1.27	1.24	0*↔0H*	0.03	00H*↔0*	3.24
Bi ₂ Rh ₃ S ₂	3.76	1.73	0.53	OH*↔H₂O	0.53	00H*↔0*	2.03
Ge ₃ (BiTe ₃) ₂	4.64	1.34	1.45	0*↔0H*	-0.11	00H*↔0*	3.30
Nb4lrSe10_1	4.29	1.21	1.61	0*↔0H*	-0.40	00H*↔0*	3.08
Nb4IrSe10_2	4.26	2.26	1.43	0₂↔00H*	0.66	00H*↔0*	2.00
Nb4IrSe10_3	4.85	2.55	1.45	0₂↔00H*	0.07	00H*↔0*	2.60
KFe ₂ S ₃	3.96	0.97	0.88	0*↔0H*	0.09	00H*↔0*	2.98
Nb ₉ IrSe ₂₀ _1	4.55	2.02	1.40	0 ₂ ↔00H*	0.37	00H*↔0*	2.53
Nb ₉ IrSe ₂₀ _2	4.80	2.31	1.85	0₂↔00H*	0.12	00H*↔0*	2.48
Nb9IrSe20_3	4.19	2.27	0.93	0₂↔00H*	0.73	00H*↔0*	1.91
CeZnPO	3.12	1.22	0.04	OH*↔H₂O	0.04	00H*↔0*	1.90
Bi ₃ Se ₄	3.61	1.70	0.32	OH*↔H₂O	0.32	00H*↔0*	1.91
Bi ₂ Te ₅ Pb ₂	4.59	1.78	1.24	0₂↔00H*	0.33	00H*↔0*	2.80
Na ₂ ZrN ₂	1.97	1.30	-1.19	OH*↔H₂O	-1.19	0₂↔00H*	2.95
CuTeO ₃	4.17	2.06	0.94	0*↔OH*	0.75	00H*↔0*	2.11
TiFeTe ₆ _1	4.85	1.70	1.63	0*↔0H*	0.07	00H*↔0*	3.14
TiFeTe ₆ _2	4.67	1.82	1.57	0*↔0H*	0.24	00H*↔0*	2.86
TiFeTe ₆ _3	4.53	1.96	1.28	0₂↔00H*	0.39	00H*↔0*	2.57
TiFeTe ₆ _4	4.39	2.10	1.07	0₂↔00H*	0.53	00H*↔0*	2.29
TbTe ₃	4.77	2.61	2.09	0₂↔00H*	0.15	00H*↔0*	2.16
PrTe ₃	4.81	2.52	1.98	0₂↔00H*	0.11	00H*↔0*	2.29
Nd ₂ Te ₅	4.79	2.47	1.66	0₂↔00H*	0.13	00H*↔0*	2.32
TbGal	4.24	2.71	0.85	0₂↔00H*	0.68	0*↔0H*	1.85
HfSiTe	4.19	0.70	0.79	0*↔0H*	-0.09	00H*↔0*	3.48

НоТе₃	4.70	2.62	1.66	O₂↔OOH*	0.22	00H*↔0*	2.08
LiC ₁₂	4.53	2.14	1.18	O₂↔OOH*	0.39	00H*↔0*	2.39
TaNiTe ₂	4.63	2.24	1.29	O₂↔00H*	0.29	00H*↔0*	2.39
ZrCl	4.77	2.34	1.62	O₂↔00H*	0.15	00H*↔0*	2.43
ZrSiTe	4.28	0.96	0.93	0*↔0H*	0.03	00H*↔0*	3.32
СиТе	4.43	2.21	1.31	O₂↔OOH*	0.49	00H*↔0*	2.22
NdI ₂	3.76	0.11	0.29	OH*↔H₂O	-0.18	00H*↔0*	3.65
Ta₂Se	3.54	0.94	0.35	OH*↔H₂O	0.35	00H*↔0*	2.60
NdTe₃	4.49	2.55	2.01	O₂↔00H*	0.13	00H*↔0*	2.24
NbSe ₃	4.73	2.55	1.78	O₂↔OOH*	0.19	00H*↔0*	2.17
TaNi₂TeSe	4.73	2.64	1.29	O₂↔OOH*	0.19	00H*↔0*	2.09
SmTe₃	4.79	2.59	2.07	O₂↔OOH*	0.13	00H*↔0*	2.20
HfTe ₂	4.81	0.24	1.05	0*↔0H*	-0.81	00H*↔0*	4.57
La ₂ Pl ₂	4.28	2.37	0.87	O₂↔OOH*	0.64	00H*↔0*	1.91
NdTe ₂ Se	4.75	2.46	1.44	O₂↔OOH*	0.17	00H*↔0*	2.29
Ca(TiS ₂) ₈	4.72	2.16	1.38	O₂↔OOH*	0.20	00H*↔0*	2.56
VSe ₂	4.86	2.25	0.94	O₂↔OOH*	0.06	00H*↔0*	2.61
PrTe ₂ Se	4.76	2.44	1.42	O₂↔OOH*	0.16	00H*↔0*	2.32
CrS ₂	2.58	0.09	-0.66	OH*↔H₂O	-0.66	00H*↔0*	2.49
YTe₃	4.76	2.60	1.64	O₂↔OOH*	0.16	00H*↔0*	2.15
EuBrO	3.74	1.92	1.88	0*↔0H*	0.04	OH*↔H₂O	1.88
TaNi ₂ Te ₃	4.58	1.17	1.48	0*↔0H*	-0.31	00H*↔0*	3.41
Ta(NiTe)2	4.62	2.71	1.46	O₂↔OOH*	0.30	00H*↔0*	1.91
ErTe ₃	4.75	2.61	1.50	O₂↔OOH*	0.17	00H*↔0*	2.13
TaTe₅Pt_1	4.48	2.24	1.23	O₂↔OOH*	0.44	00H*↔0*	2.23
TaTe₅Pt_2	4.81	2.28	1.48	O₂↔OOH*	0.11	00H*↔0*	2.53
LaTe₃	4.61	2.47	1.88	O₂↔OOH*	0.31	00H*↔0*	2.14
LaTe ₂ Se	4.56	2.39	1.30	O ₂ ↔00H*	0.36	00H*↔0*	2.17
CeTe₃	4.96	2.65	1.45	0₂↔00H*	-0.04	00H*↔0*	2.30
NbTe₅Pd_1	4.47	2.15	1.14	O₂↔00H*	0.45	00H*↔0*	2.32
NbTe₅Pd_2	4.44	2.22	1.53	O₂↔00H*	0.48	00H*↔0*	2.22
TiBr ₃	4.04	0.27	0.81	0*↔0H*	-0.53	00H*↔0*	3.76
TaSe ₂	4.18	2.17	0.90	0₂↔00H*	0.74	00H*↔0*	2.01
TiCl₃	4.94	0.20	0.30	O*↔OH*	-0.10	00H*↔0*	4.74
ZrTe ₃	4.64	1.27	1.17	0*↔0H*	0.10	00H*↔0*	3.37
AuSe	4.80	2.57	1.81	O₂↔00H*	0.12	00H*↔0*	2.23
TbBr	4.03	2.18	0.56	OH*↔H ₂ O	0.56	00H*↔0*	1.85
TaTe ₂	3.79	0.49	0.57	0*↔OH*	-0.09	00H*↔0*	3.30
Col ₂	3.48	0.67	0.49	0*↔0H*	0.18	00H*↔0*	2.81
CuSeO ₃	4.84	2.60	1.58	0₂↔00H*	0.08	00H*↔0*	2.23
VTe ₂	3.09	1.07	-0.10	OH*↔H₂O	-0.10	00H*↔0*	2.02
HfTe₃	4.54	1.02	0.86	0*↔0H*	0.16	00H*↔0*	3.52
ZrTiTe ₄	4.67	0.34	1.36	O*↔OH*	-1.02	00H*↔0*	4.33

NbFeTe ₂	3.64	0.68	0.35	0*↔0H*	0.33	00H*↔0*	2.96
Li ₂ H ₂ Pt	2.12	0.27	-0.80	OH*↔H₂O	-0.80	O₂↔00H*	2.80
VAg(PS ₃) ₂	4.27	0.89	0.74	O*↔OH*	0.15	00H*↔0*	3.38
Nb ₂ Te ₃ _1	3.23	0.17	0.04	OH*↔H₂O	0.04	00H*↔0*	3.06
Nb ₂ Te ₃ _2	4.77	2.34	1.67	O₂↔OOH*	0.15	00H*↔0*	2.43
AgHO ₂	3.70	2.38	1.21	0*↔0H*	1.17	00H*↔0*	1.32
NbTe ₂	2.19	0.32	-0.39	OH*↔H₂O	-0.39	0₂↔00H*	2.73
KV4O10	2.90	1.25	-0.26	OH*↔H₂O	-0.26	0₂↔00H*	2.02
Tml ₂	2.84	0.60	-0.58	OH*↔H₂O	-0.58	00H*↔0*	2.24
Ga ₂ NiS ₄	4.75	2.43	2.17	O₂↔OOH*	0.17	00H*↔0*	2.32
LiCoAs	2.63	0.04	-0.63	OH*↔H₂O	-0.63	00H*↔0*	2.59
V ₆ O ₁₃	3.71	0.72	0.38	0*↔0H*	0.34	00H*↔0*	2.99
NiPSe₃	3.61	0.21	0.32	0*↔0H*	-0.11	00H*↔0*	3.40
Ag(AuS)2_1	4.13	0.91	0.30	OH*↔H₂O	0.30	00H*↔0*	3.21
Ag(AuS)2_2	4.16	2.34	.01	O₂↔OOH*	0.76	00H*↔0*	1.82
CuSi ₂ P ₃ _1	3.13	0.25	-0.25	OH*↔H₂O	-0.25	00H*↔0*	2.88
CuSi ₂ P ₃ _2	4.44	0.66	0.88	O*↔OH*	-0.21	00H*↔0*	3.78
Cr ₃ Te ₄	4.64	0.96	1.34	0*↔0H*	-0.39	00H*↔0*	3.68
Nb ₂ Se ₃ _1	3.02	0.11	-0.11	OH*↔H ₂ O	-0.11	00H*↔0*	2.91
Nb ₂ Se ₃ _2	4.59	2.71	1.45	O₂↔OOH*	0.33	00H*↔0*	1.88
Ta ₂ PtSe ₇ _1	4.75	2.05	2.13	0*↔0H*	-0.08	00H*↔0*	2.70
Ta ₂ PtSe ₇ _2	4.58	2.42	1.49	0₂↔00H*	0.34	00H*↔0*	2.17
Ta ₂ PtSe ₇ _3	4.90	2.12	1.64	O₂↔OOH*	0.02	00H*↔0*	2.78
Ta ₂ CS ₂	4.81	2.28	1.88	O₂↔OOH*	0.11	00H*↔0*	2.53
Cel ₃ _1	3.26	0.53	0.07	OH*↔H₂O	0.07	00H*↔0*	2.73
Cel ₃ _2	3.29	1.44	0.79	0*↔0H*	0.65	00H*↔0*	1.85
TIIN	4.73	2.33	2.70	0*↔0H*	-0.37	OH*↔H₂O	2.70
CrP ₂ S ₇	4.29	0.85	0.54	0*↔0H*	0.31	00H*↔0*	3.44
FeBr ₃	4.80	2.63	1.80	O₂↔OOH*	0.12	00H*↔0*	2.16
CoBr ₂	4.87	2.55	2.35	O₂↔OOH*	0.05	OH*↔H₂O	2.35
NiPS ₃	3.86	0.99	0.55	OH*↔H₂O	0.44	00H*↔0*	2.87
MnSbSe₂I	4.06	1.25	0.63	0*↔0H*	0.62	00H*↔0*	2.81
Ta ₂ PdSe ₆ _1	4.67	2.51	1.43	0₂↔00H*	0.25	00H*↔0*	2.16
Ta ₂ PdSe ₆ _2	4.86	2.58	1.77	O₂↔OOH*	0.06	00H*↔0*	2.28
HfFeCl ₆	2.40	2.18	0.24	OH*↔H₂O	0.24	00H*↔0*	2.22
MnSbSe ₂ Br	3.50	0.36	-0.19	OH*↔H₂O	-0.19	00H*↔0*	3.13
MoCl ₃	3.99	0.77	1.75	0*↔0H*	-0.98	00H*↔0*	3.22
CuSeSe2	3.70	0.71	0.07	OH*↔H ₂ O	0.07	00H*↔0*	2.99
TaSe2	4.74	2.14	1.61	0₂↔00H*	0.17	00H*↔0*	2.61
Crl ₂	4.79	1.32	1.94	0*↔0H*	-0.62	00H*↔0*	3.47
CrTe ₃ _1	4.40	1.68	2.74	0*↔0H*	-1.06	OH*↔H₂O	2.74
CrTe₃_2	4.34	2.35	1.20	0₂↔00H*	0.58	00H*↔0*	1.99
Rb ₂ O	2.84	2.60	-0.17	OH*↔H₂O	-0.17	00H*↔0*	2.77

CuSbS ₂	3.80	0.85	0.12	OH*↔H₂O	0.12	00H*↔0*	2.95
CrPO₅	4.67	2.74	2.78	0*↔0H*	-0.04	OH*↔H₂O	2.78
Sc ₆ C ₂ I ₁₁	3.01	1.18	-0.44	OH*↔H₂O	-0.44	O ₂ ↔00H*	1.91
K ₂ As ₂ Pd	3.05	0.94	-0.07	OH*↔H₂O	-0.07	00H*↔0*	2.11
Nb ₂ GeTe ₄	4.87	2.74	1.67	O₂↔00H*	0.05	00H*↔0*	2.13
Zrl ₂	4.74	0.34	2.27	O₂↔OOH*	-1.93	00H*↔0*	4.40
MnPSe₃	3.86	1.24	0.58	OH*↔H₂O	0.58	00H*↔0*	2.62
PdSeO₃	4.90	2.76	1.31	0₂↔00H*	0.02	00H*↔0*	2.13
CrGeTe₃	4.10	2.45	0.86	O₂↔00H*	0.82	00H*↔0*	1.64
DyTe₃	4.72	2.6	1.65	O₂↔OOH*	0.20	00H*↔0*	2.11
LuTe₃	4.70	2.59	1.57	O₂↔00H*	0.22	00H*↔0*	2.11
Na ₃ (TiS ₂) ₁₀	4.75	2.17	1.39	O₂↔OOH*	0.17	00H*↔0*	2.58
BiSe	3.96	2.70	0.68	OH*↔H₂O	0.68	О*↔ОН*	2.02
Ta₂Se₃	2.84	0.87	0.47	0*↔0H*	0.39	O₂↔OOH*	2.08
In₃Te₄	4.59	2.52	1.28	0₂↔00H*	0.33	00H*↔0*	2.07
GdBr	4.19	1.91	0.61	OH*↔H₂O	0.61	00H*↔0*	2.29
Li ₂ Cr ₃ (CO ₃) ₆ _1	4.46	2.68	1.98	0₂↔00H*	0.46	OH*↔H₂O	1.98
Li ₂ Cr ₃ (CO ₃) ₆ _2	4.47	2.68	3.03	0*↔0H*	-0.35	OH*↔H₂O	3.03
Zn(InS ₂) ₂ _1	4.36	2.22	0.67	O₂↔OOH*	0.56	00H*↔0*	2.15
Zn(InS ₂) ₂ _2	4.41	2.54	1.10	O₂↔OOH*	0.51	00H*↔0*	1.87
Ta ₄ Co ₂ PdSe ₁₂ _1	4.83	2.28	1.81	O₂↔OOH*	0.09	00H*↔0*	2.54
Ta ₄ Co ₂ PdSe ₁₂ _2	4.85	2.28	2.04	O₂↔OOH*	0.07	00H*↔0*	2.57
Ta ₄ Co ₂ PdSe ₁₂ _3	4.69	2.71	1.80	O₂↔00H*	0.23	00H*↔0*	1.98
CuH2(SeO3)2	4.20	2.50	1.77	O₂↔OOH*	0.72	OH*↔H₂O	1.77
Li ₂ Cu ₂ F ₅ _1	4.33	2.18	0.31	OH*↔H₂O	0.31	00H*↔0*	2.14
Li ₂ Cu ₂ F ₅ _2	4.11	2.38	0.53	OH*↔H₂O	0.53	00H*↔0*	1.73
V ₂ P ₄ S ₁₃ _1	3.45	0.56	-0.11	$OH^* \leftrightarrow H_2O$	-0.11	00H*↔0*	2.90
V ₂ P ₄ S ₁₃ _2	4.87	0.91	1.78	0*↔0H*	-0.87	00H*↔0*	3.96
V ₂ P ₄ S ₁₃ _3	4.23	0.77	0.99	0*↔0H*	-0.2	00H*↔0*	3.45
V ₂ P ₄ S ₁₃ _4	4.88	0.91	1.68	О*↔ОН*	-0.77	00H*↔0*	3.96
V ₂ P ₄ S ₁₃ _5	4.88	0.68	1.57	0*↔0H*	-0.89	00H*↔0*	4.20
V ₂ P ₄ S ₁₃ _6	3.46	0.56	-0.10	OH*↔H₂O	-0.10	00H*↔0*	2.90
CuSeO₃	4.13	2.12	1.13	0₂↔00H*	0.79	00H*↔0*	2.01
Nb3l8	4.75	2.03	1.92	0*↔0H*	0.11	00H*↔0*	2.72

Table S4.	Computed	adsorption	free ei	nergy of	0*	and	$H_2O_2{}^{\ast}$	on t	the 2	25 (candidate	e mater	rial	surfaces.	А
solvation	correction o	of -0.27 eV w	as inclu	uded int	o H2	202 a	dsorpti	ion a	ccord	ding	g to the p	revious	s sti	Jdy. ²⁸	

Material	ΔG (O*, eV)	ΔG (H ₂ O ₂ *, eV)
ZrSiSe	1.58	3.52
TaSe ₂	2.17	3.80
NbSe ₂	2.13	3.79
Fe₄S₅	1.83	3.85
BiSe	2.70	3.66
TaS ₂	1.65	3.77
Nb ₉ IrSe ₂₀	2.02	3.77
Nb ₄ IrSe ₁₀	2.26	3.53
Mn(InSe ₂) ₂	1.84	3.75
NbTe ₂	2.00	3.68
BiTe	1.78	3.72
NiTe	2.00	3.77
Ge4Te7As2	1.83	3.51
MoTe ₂	1.95	3.66
Ge ₅ (Te ₄ As) ₂	1.73	3.31
PtTe	1.83	3.79
LiNi(PS ₃) ₂	1.72	3.60
Bigl2	1.83	3.47
CuH ₂ (SeO ₃) ₂	2.50	3.36
AgHO ₂	2.38	2.46
CuTeO ₃	2.06	3.04
Bi ₄ I	1.92	3.61
PtPb ₄	1.83	3.63
CuSeO ₃	2.12	3.11
TaTe ₂	1.77	3.36

Table S5. The space group (SG), the lattice constants (a, and b in Å, α , β , and γ in °), and the MP material-id (mp-id) for all 47 materials which exhibit the basal plane activity for oxygen electrocatalysis from the screening. The Publications related to the experimental available compounds are also given.

Formula	mp-id	Crystal System	Space	а	b	α	β	Ŷ	Reference for
			Group						material synthesis
VAg(PSe ₃) ₂	mp-6543	monoclinic	C2	6.35	6.36	90.00	90.00	60.05	Materials Research
									Bulletin 1988, 23
									1199-1209
MnSbSe₂I	mp-	monoclinic	C2/m	3.90	10.53	90.00	90.00	90.00	Solid State Sciences
	570268								2006, 8, 652-699
CuSeO₃	mp-22688	orthorhombic	Pbca	4.59	10.27	90.00	90.00	92.51	Crystalline
									Materials, 1986,
									175, 61-72
Bi₄I	mp-	monoclinic	C2/m	4.43	13.25	90.00	90.00	90.00	Eur. J. Inorg. Chem.,
	583234								2008: 5196-5202.
CuTeO ₃	mp-	monoclinic	P21/c	7.33	8.64	90.00	90.42	90.00	Journal of Solid
	558696								State Chemistry,
									1987, 291-295
Bi9l2	mp-28149	monoclinic	P21/m	4.44	13.28	90.00	90.00	90.00	Doklady Akademii
									Nauk SSSR 1990,
									310, 117-120
NiTe ₂	mp-2578	trigonal	P3m1	3.71	3.71	90.00	90.00	120.00	Bull. Soc. Chim.
									Belges, 1971, 80,
									107-116.
LiNi(PS ₃) ₂	mp-	monoclinic	C2	5.82	5.84	90.00	90.00	60.14	Solid State Ionics
	557500								1984, 14, 45-49
Ta ₃ Te ₁₄ Pd ₃	mp-	monoclinic	P21/m	3.74	21.80	90.00	90.00	90.00	Journal of Solid
	505132								State Chemistry
									1989, 78, 7-16

PtTe	mp-11693	trigonal	R-3m	3.92	3.92	90.00	90.00	60.00	Journal of the Less
									Common Metals
									1969, 19, 121-140;
									Nano Res. 2021,
									14, 1663–1667
Ge₅(Te₄As)₂	mp-28487	trigonal	P3m1	4.16	4.16	90.00	90.00	120.00	Acta Cryst. 1987,
									43, 2268-2270
MoTe₂	mp-7459	monoclinic	P21/m	3.40	6.35	90.00	90.00	90.00	Acta Cryst. 1966,
									20, 268-274
Ge4Te7As2	mp-	trigonal	R3m	4.15	4.15	90.00	90.00	60.00	Journal of Solid
	568730								State Chemistry
									1988, 74, 277-286
NiTe	mp-10264	trigonal	R-3m	3.78	3.78	90.00	90.00	60.00	Sov. Phys.
									Crystallogr 1964, 8,
									448-451
BiTe	mp-23224	trigonal	P3m1	4.43	4.43	90.00	90.00	120.00	Acta Cryst. 1979,
									35, 147-149
NbTe ₂	mp-11675	monoclinic	C2/m	3.43	9.79	90.00	90.00	79.90	Sci. Rep. 2018, 8,
									16984
Mn(InSe ₂) ₂	mp-	trigonal	R3m	4.10	4.10	90.00	90.00	60.00	Phys. Stat. Sol. A,
	1078140								1991, 126, 237-244
Nb ₄ IrSe ₁₀	mp-	triclinic	P1	6.01	9.12	90.00	90.00	72.31	N/A
	675326								
TaS ₂	mp-1984	hexagonal	P63/mmc	3.33	3.33	90.00	90.00	120.00	Acta Cryst. 1990,
									46, 1598-1599
BiSe	mp-27902	trigonal	P3m1	4.22	4.22	90.00	90.00	120.00	Journal of
									Structural
									Chemistry 1967, 8,
									584–589

Fe ₄ S ₅	mp-	tetragonal	P4	7.88	7.88	90.00	90.00	90.00	N/A
	850083								
NbSe ₂	mp-7597	trigonal	R3m	3.45	3.45	90.00	90.00	60.00	Journal of Solid
									State Chemistry
									1972, 4, 425-429
TaSe ₂	mp-	triclinic	P1	3.46	3.46	90.00	90.00	120.00	Physica B+C 1980,
	542495								99, 51-55
ZrSiSe	mp-4628	tetragonal	P4/nmm	3.52	3.52	90.00	90.00	90.00	Recl. Trav. Chim.
									Pays-Bas 1964, 83,
									776-783
GdBr	mp-	trigonal	P3m1	3.78	3.78	90.00	90.00	120.00	N/A
	1064427								
Sc ₆ C ₂ I ₁₁	mp-	triclinic	P1	9.05	16.16	90.00	90.00	83.11	N/A
	541102								
Li ₂ Cu ₂ F ₅	mp-	orthorhombic	Pnma	2.81	7.36	90.00	90.00	90.00	N/A
	762270								
Pd ₃ Pb ₂ Te ₂	mp-	orthorhombic	Pmmn	5.83	8.62	90.00	90.00	90.00	Canadian
	605028								Mineralogist 2009,
									47, 53–62.
Zn(InS ₂) ₂	mp-22253	trigonal	P3m1	3.89	3.89	90.00	90.00	120.00	J. Am. Chem. Soc.
									2017, 139, 22,
									7586–7594
Ta(NiTe)₂	mp-28667	orthorhombic	Pnma	3.51	6.44	90.00	90.00	90.00	Angew. Chem. Int.
									Ed. 1992, 31: 217-
									220
VTe ₂	mp-11687	monoclinic	C2/m	3.36	9.44	90.00	90.00	79.75	Journal of Solid
									State Chemistry
									1984, 53, 415-421

Bi ₃ Se ₄	mp-	trigonal	R-3m	4.30	4.30	90.00	90.00	60.00	Dokl. AN SSSR,
	542615								1955, 100, 1079-
									1082;
									Nanotechnology
									2018, 29, 085401
TaTe ₂	mp-	monoclinic	C2/m	3.53	9.72	90.00	90.00	79.60	J. Phys.: Condens.
	601823								Matter 1998, 10,
									761
Nb ₂ Se ₃	mp-2330	monoclinic	P21/m	3.38	9.81	90.00	90.00	90.00	Acta Cryst. 1968,
									24, 1102-1106
Pr ₂ Br ₅	mp-23169	monoclinic	P21/m	4.11	15.75	90.00	90.00	90.00	Journal of Solid
									State Chemistry
									1991, 95, 1-13
CeZnPO	mp-13207	trigonal	R-3m	3.93	3.93	90.00	90.00	60.00	Z. Anorg. Allg.
									Chem., 2008, 634,
									1339-1348.
EuBrO	mp-	tetragonal	P4/nmm	3.77	3.77	90.00	90.00	90.00	Z. Anorg. Allg.
	504727								Chem. 1965, 338:
									250-265
TbBr	mp-27924	trigonal	R-3m	3.79	3.79	90.00	90.00	60.00	Z. Anorg. Allg.
									Chem. 1980, 466,
									7-22
CrGeTe ₃	mp-	trigonal	R3	6.85	6.85	90.00	90.00	60.00	J. Am. Chem. Soc.
	541449								2020, 142, 9,
									4438–4444
PtPb ₄	mp-21296	tetragonal	P4/nbm	6.79	6.79	90.00	90.00	90.00	Phys. Rev. B 2021,
									104, 125127
CuH ₂ (SeO ₃) ₂	mp-24164	monoclinic	P21/c	7.03	8.62	90.00	90.00	90.00	Zeitschrift für
									Kristallographie -

									Crystalline
									Materials. 2001,
									216, 99-104
Ag(AuS)2	mp-35835	monoclinic	Рс	4.29	7.16	90.00	90.00	90.00	N/A
Nb ₉ IrSe ₂₀	mp-	triclinic	P-1	6.91	15.10	90.00	90.00	83.51	N/A
	675290								
AgHO ₂	mp-	monoclinic	Cm	5.42	5.48	90.00	90.00	80.84	N/A
	996958								
La ₂ PI ₂	mp-	trigonal	P-3m1	4.30	4.30	90.00	90.00	120.00	Zeitschrift für
	571647								Naturforschung B,
									2007, 62, 11, 2007,
									1377-1382
TbGal	mp-	trigonal	P-3m1	4.18	4.18	90.00	90.00	120.00	N/A
	1025099								
Cel₃	mp-	orthorhombic	Cmcm	4.33	10.10	90.00	90.00	90.00	N/A
	1025426								

Table S6. Adsorption free energies (Δ G) of the OOH*, O*, and OH* species, and the corresponding limiting potentials (U_L) for the ORR and OER on 77 built edges. The unit for adsorption energy and limiting potential are eV, and V, respectively. The major adsorption site is highlighted by red cycle.

Material	edge configuration	ΔG	ΔG	ΔG	UL	PDS of ORR	UL	PDS of OER	Active?
		(ООН*)	(0*)	(OH*)	(ORR)		(OER)		
ZrSiSe		-4.23	-2.29	-2.29	-2.29	OH*↔H₂O	9.15	00H*↔0₂	No
TaSe ₂		4.55	2.29	1.33	0.37	O ₂ ↔00H*	2.26	0*↔00H*	No
		3.64	0.92	0.42	0.42	OH*↔H₂O(I)	2.72	0*↔00H*	No
		3.81	0.40	0.52	-0.11	0₂↔00Н*	3.41	0*↔00H*	No
NbSe ₂		4.40	1.86	1.20	0.52	0 ₂ ↔00H*	2.54	О↔ООН	No
		5.26	1.81	0.69	-0.34	0 ₂ ↔00H*	3.46	0*↔00H*	No
		4.03	0.56	0.53	0.03	O*↔OH*	3.47	0*↔00H*	No
Fe ₄ S ₅		3.72	1.53	0.82	0.71	О*↔ОН*	2.19	0*↔00H*	ORR
		3.35	1.82	0.02	0.02	OH*↔H₂O	1.80	0H*↔0*	No
-----------------------	---	------	------	-------	-------	----------------------	------	---------	---------
		3.38	0.46	0.05	0.05	OH*↔H₂O	2.92	О*↔ООН*	No
		3.31	2.50	0.78	0.78	OH*↔H₂O	1.72	OH*↔O*	ORR&OER
BiSe		3.44	2.29	0.08	0.08	OH*↔H₂O	2.21	0H*↔0*	No
		3.63	2.20	0.27	0.27	OH*↔H₂O	1.94	0H*↔0*	No
		4.30	2.46	1.16	0.62	0 ₂ ↔00H*	1.84	0*↔00H*	ORR&OER
		4.74	0.57	0.79	-0.22	0*↔0H*	4.16	0*↔00H*	No
TaS ₂		3.28	0.01	-0.90	-0.90	OH*↔H₂O	3.27	0*↔00H*	No
	Ż	3.92	0.78	0.72	0.06	0*↔0H*	3.14	0*↔00H*	No
Nb₀IrSe ₂₀		4.02	0.68	0.88	-0.20	O*↔OH*	3.34	0*↔00H*	No

	3.51	1.86	0.40	0.40	OH*↔H₂O	1.65	0*↔00H*	OER
	2.91	-0.63	-0.76	-0.76	OH*↔H₂O	3.55	0*↔00H*	No
Nb4IrSe10	3.60	0.89	0.32	0.32	OH*↔H₂O	2.71	0*↔00H*	No
	3.27	0.01	-0.25	-0.25	OH*↔H₂O	3.26	0*↔00H*	No
	4.04	2.57	1.14	0.88	O ₂ ↔00H*	1.48	0*↔00H*	ORR&OER
	4.05	1.54	1.18	0.37	O*↔OH*	2.51	0*↔00H*	No
Mn(InSe₂)₂	2.89	0.68	-0.45	-0.45	OH*↔H₂O	2.21	0*↔00H*	No
	3.54	0.39	0.72	-0.33	0*↔0H*	3.15	0*↔00H*	No

	2.50	0.61	-0.73	-0.73	OH*↔H ₂ O	2.42	00H*↔0₂	No
	4.18	1.90	-0.41	-0.41	OH*↔H₂O	2.43	0*↔00H*	No
	3.78	1.46	0.35	0.35	OH*↔H₂O	2.33	0*↔00H*	No
	3.21	0.57	-0.01	-0.01	OH*↔H₂O	2.64	0*↔00H*	No
NbTe ₂	3.44	0.21	0.37	-0.16	O*↔OH*	3.23	0*↔00H*	No
	3.44	0.36	0.01	0.01	OH*↔H ₂ O	3.08	0*↔00H*	No
	3.18	0.24	-0.14	-0.14	OH*↔H₂O	2.94	0*↔00H*	No

	3.07	-0.15	-0.37	-0.37	OH*↔H₂O	3.22	0*↔00H*	No
	3.91	1.69	0.49	0.49	OH*↔H₂O	2.22	О*↔ООН*	No
	3.12	1.16	-0.13	-0.13	OH*↔H₂O	1.96	0*↔00H*	No
BiTe	3.79	1.41	0.54	0.54	OH*↔H₂O	2.38	0*↔00H*	No
	3.83	1.38	0.59	0.59	OH*↔H₂O	2.46	0*↔00H*	No
	3.27	1.28	-0.01	-0.01	OH*↔H₂O	2.00	0*↔00H*	No
Nite	3.11	1.11	-0.62	-0.62	OH*↔H2O	2.00	0*↔00H*	No
NITE	1.06	-0.15	-1.39	-1.39	OH*↔H₂O	4.16	O*+OH*↔O2	No
	3.25	-0.06	-0.05	-0.05	OH*↔H₂O	3.31	0*↔00H*	No
Ge4Te7As2	3.50	-0.34	-0.48	-0.48	OH*↔H₂O	3.84	0*↔00H*	No
	3.51	1.62	0.06	0.06	OH*↔H₂O	1.89	0*↔00H*	No

	4.61	1.12	1.29	-0.16	0*↔0H*	3.48	0*↔00H*	No
	3.83	1.51	0.66	0.66	OH*↔H₂O	2.32	0*↔00H*	ORR
	3.68	1.16	0.31	0.31	OH*↔H₂O	2.52	0*↔00H*	No
MoTea	4.01	0.96	0.85	0.11	O*↔OH*	3.05	0*↔00H*	No
NIO IE2	2.93	0.50	-0.32	-0.32	OH*↔H₂O	2.43	0*↔00H*	No
	3.21	-0.42	0.52	-0.93	O*↔OH*	3.63	0*↔00H*	No
	3.51	-0.14	-0.19	-0.19	OH*↔H₂O	3.65	0*↔00H*	2.16
Ge ₅ (Te ₄ As) ₂	3.68	1.52	0.87	0.65	0*↔0H*	2.16	0*↔00H*	ORR
	3.20	0.04	-0.17	-0.17	OH*↔H₂O	3.16	0*↔00H*	No
PtTe	3.52	1.46	0.19	0.19	OH*↔H₂O	2.06	O*>00H*	No

	3.47	1.40	0.63	0.63	OH*↔H₂O	2.07	0*↔00H*	ORR
LiNi(PS ₃) ₂	3.86	1.19	0.38	0.38	OH*↔H₂	2.66	0*↔00H*	No
	3.64	2.54	0.42	0.42	OH*↔H₂O	2.12	0H*↔0*	No
	3.97	1.36	1.00	0.37	O*↔OH*	2.60	0*↔00H*	Νο
	4.15	3.10	1.46	0.77	0₂↔00H*	1.64	0H*↔0*	ORR&OER
	3.72	1.31	0.43	0.43	OH*↔H₂O	2.42	0*↔00H*	No
Bi9l2	3.37	0.74	0.09	0.09	OH*↔H₂O	2.63	0*↔00H*	No

CuH2(SeO3)2	3.90	3.54	1.19	0.36	00H*↔0*	2.64	0H*↔0*	No
CuTeO₃	4.08	3.16	0.96	0.84	O ₂ ↔00H*	2.20	0H*↔0*	ORR
	3.01	0.76	-0.39	-0.39	OH*↔H₂O	2.25	0*↔00H*	No
	3.63	0.86	-1.09	-1.09	OH*↔H₂O	2.77	0*↔00H*	No
51.1	3.84	1.19	0.66	0.53	O*⇔OH*	2.65	0*↔00H*	No
Bi₄I –	3.57	1.11	0.52	0.52	OH*↔H₂O	2.46	0*↔00H*	No

PtPb4	3.29	0.55	-0.29	-0.29	OH*↔H₂O	2.74	0*↔00H*	Νο
	3.59	1.53	0.38	0.38	OH*↔H₂O	2.06	0*↔00H*	Νο
	3.27	0.65	0.07	0.07	OH*↔H₂O	2.62	0*↔00H*	Νο
AgHO ₂	3.87	3.67	1.00	0.21	00H*↔0*	2.67	0H*↔0*	No
CuSeO	3.83	3.77	1.18	0.05	00Н*↔0*	2.59	0H*↔0*	No
CuSeO3	3.93	3.17	0.89	0.76	00H*↔0*	2.28	0H*↔0*	ORR

	3.72	1.01	0.29	0.29	OH*↔H₂O	2.71	0*↔00H*	No
	3.53	0.67	0.27	0.27	OH*↔H₂O	2.85	0*↔00H*	No
TaTe ₂	3.68	0.27	0.41	-0.13	O*↔OH*	3.41	0*↔00H*	No
	3.21	0.05	-0.22	-0.22	OH*↔H₂O	3.17	0*↔00H*	No
	2.82	0.16	-0.39	-0.39	OH*↔H₂O	2.66	0*↔00H*	No
	 2.81	-0.29	-0.65	-0.65	OH*↔H₂O	3.10	0*↔00H*	No

Table S7. Summary of dissolution sites, dissolution processes, standard reduction potentials (U^0 , V vs SHE), and dissolution potentials (U_{diss} , V vs SHE) of 40 candidate materials screened out from activity analysis. U^0 values of different materials were obtained from ref. 24-26. For the materials whose dissolution process involves the protons, the function between the U_{diss} and pH was evaluated by Nernst equation. For example, U_{diss} on La₂Pl₂ is calculated as $U_{diss}(pH) = U_{diss}(pH = 0) - 0.0591/10 * log 1/ [H⁺]^{12} = U_{diss}(pH = 0) - 0.0709 pH$ according to the dissolution process of l₂ + 6H₂O \rightarrow 2lO₃⁻ + 12H⁺ + 10 e⁻. More explanations can be in the website: https://www.doitpoms.ac.uk/tlplib/pourbaix/printall.php.

Formula	Dissolution	Dissolution	U ⁰	U _{diss}	U _{diss}	Is the	U _{diss} at
	site	Process		at pH = 0	at pH = 0	dissolution	different
				without	with	pH-	pH level
				concentration	correction	dependent?	
				correction			
VAg(PSe ₃) ₂	Р	$P + 2H_2O \rightarrow H_3PO_2$	-0.51	-0.47	-0.72	Yes	-0.72 –
		+ H⁺ + e⁻					0.0591 pH
MnSbSe₂I	Sb	2Sb + 3H ₂ O →	0.15	-0.19	-0.24	Yes	-0.24 –
		Sb ₂ O ₃ + 6H ⁺ + 6e ⁻					0.0591 pH
CuSeO₃	Cu	$Cu \rightarrow Cu^{2+} + 2e^{-}$	0.34	0.10	-0.01	No	0.10
Bi ₄ I	Bi	Bi → Bi ³⁺ +3e ⁻	0.31	0.43	0.32	No	0.43
CuTeO ₃	Cu	$Cu \rightarrow Cu2^+ + 2e^-$	0.34	0.47	0.33	No	0.47
Bi ₉ I ₂	Bi	Bi → Bi ³⁺ +3e ⁻	0.31	0.61	0.50	No	0.61
NiTe ₂	Те	Te \rightarrow Te ⁴⁺ + 4e ⁻	0.57	0.76	0.67	No	0.76
LiNi(PS ₃) ₂	S	$S + 3H_2O \rightarrow H_2SO_3$	0.45	0.63	0.55	Yes	0.55 –
		+ 4H ⁺ + 4e ⁻					0.0591 pH
$Ta_3Te_{14}Pd_3$	Те	$Te \rightarrow Te^{4+} + 4e^{-}$	0.57	0.82	0.73	No	0.73
PtTe	Те	Te \rightarrow Te ⁴⁺ + 4e ⁻	0.57	0.92	0.83	No	0.83
Ge ₅ (Te ₄ As) ₂	Те	Te \rightarrow Te ⁴⁺ + 4e ⁻	0.57	0.84	0.75	No	0.75
MoTe ₂	Те	Te \rightarrow Te ⁴⁺ + 4e ⁻	0.57	0.99	0.90	No	0.90
Ge4Te7As2	Те	Te \rightarrow Te ⁴⁺ + 4e ⁻	0.57	0.84	0.75	No	0.75
NiTe	Те	$Te \rightarrow Te^{4+} + 4e^{-}$	0.57	1.13	1.04	No	1.04
BiTe	Те	Te \rightarrow Te ⁴⁺ + 4e ⁻	0.57	0.97	0.87	No	0.87
NbTe ₂	Те	$Te \rightarrow Te^{4+} + 4e^{-}$	0.57	1.05	0.95	No	0.95
Mn(InSe ₂) ₂	Se	Se + 3H ₂ O →	0.74	1.04	0.96	Yes	0.96 –
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
Nb ₄ IrSe ₁₀	Se	Se + 3H ₂ O →	0.74	1.13	1.04	Yes	1.04 —
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
TaS ₂	S	$S + 3H_2O \rightarrow H_2SO_3$	0.45	1.28	1.18	Yes	1.18 -
		+ 4H ⁺ + 4e ⁻					0.0591 pH
BiSe	Se	Se + $3H_2O \rightarrow$	0.74	1.26	1.17	Yes	1.17 –
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH

Fe₄S₅	S	$S + 3H_2O \rightarrow H_2SO_3$	0.45	1.34	1.26	Yes	1.26 -
		+ 4H ⁺ + 4e ⁻					0.0591 pH
NbSe ₂	Se	Se + $3H_2O \rightarrow$	0.74	1.50	1.40	Yes	1.40 -
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
TaSe₂	Se	Se + $3H_2O \rightarrow$	0.74	1.50	1.40	Yes	1.40 -
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
ZrSiSe	Se	Se + $3H_2O \rightarrow$	0.74	1.65	1.56	Yes	1.56 -
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
GdBr	١.	١	1	١	١	۸.	١.
Sc ₆ C ₂ I ₁₁	Sc	$Sc \rightarrow Sc^{3+} + 3e^{-}$	-2.09	-0.90	-1.00	No	-1.00
Li ₂ Cu ₂ F ₅	Cu	$Cu \rightarrow Cu^{2+} + 2e^{-}$	0.34	-0.01	-0.02	No	-0.02
Pd ₃ Pb ₂ Te ₂	Pb	$Pb \rightarrow Pb^{3+} + 3e^{-}$	-0.13	0.45	0.29	No	0.29
Zn(InS ₂) ₂	S	$S + 3H_2O \rightarrow H_2SO_3$	0.45	0.69	0.60	Yes	0.60
	_	$+ 4H^+ + 4e^-$					
Ta(NiTe) ₂	Te	$Te \rightarrow Te^{4+} + 4e^{-}$	0.57	0.85	0.76	No	0.76
VTe ₂	Те	Te \rightarrow Te ⁴⁺ + 4e ⁻	0.57	0.98	0.89	No	0.89
Bi ₃ Se ₄	Se	Se + $3H_2O \rightarrow$	0.74	1.13	1.04	Yes	1.04 -
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
TaTe ₂	Те	$Te \rightarrow Te^{4+} + 4e^{-}$	0.57	1.05	0.96	No	0.96
Nb ₂ Se ₃	Se	Se + $3H_2O \rightarrow$	0.74	1.54	1.45	Yes	1.45 –
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
Pr ₂ Br ₅	\		1	\	\	Ν	\
CeZnPO	\	\	\	λ	\	λ	\
EuBrO	Λ	Λ	1	λ	1	Λ	1
TbBr	١	١	١	١.	1	١	١
CrGeTe ₃	Ge	$Ge \rightarrow Ge^{2+} + 2e^{-}$	0.1	0.07	-0.10	No	-0.10
PtPb ₄	Pb	$Pb \rightarrow Pb^{3+} + 3e^{-}$	-0.13	0.26	0.07	No	0.07
CuH ₂ (SeO ₃) ₂	Cu	$Cu \rightarrow Cu^{2+} + 2e^{-}$	0.34	0.53	0.41	No	0.41
Ag(AuS)₂	S	$S + 3H_2O \rightarrow H_2SO_3$	0.45	0.71	0.63	Yes	0.63 –
		+ 4H ⁺ + 4e ⁻					0.0591 pH
Nb ₉ IrSe ₂₀	Se	Se + $3H_2O \rightarrow$	0.74	1.25	1.15	Yes	1.15 –
		$H_2SeO_3 + 4H^+ + 4e^-$					0.0591 pH
AgHO ₂	Ag	$Ag \rightarrow Ag^+ + e^-$	0.80	0.77	0.55	No	0.55
La ₂ PI ₂	1	$I_2 + 6H_2O \rightarrow 2IO_3^- +$	1.20	1.80	1.72	Yes	1.72 -
		12H⁺ + 10 e⁻					0.0709 pH
TbGal	۱	١	١	١	۱	۱	۱
Cel ₃	1	N	1	1	1	λ	ι N

Table S8 Calculated potential difference between U_{diss} and U_L ($U_{diss} - U_L$) as a function of pH, and the minimum pH requirement (pH_{mini}) of 14 ORR catalysts and 16 OER catalysts that excluded from the electrochemical stability analysis at pH = 0. For materials that the value of $U_{diss} - U_L$ remains constant at full pH level, the pH_{mini} is marked as "none". Unstable materials at full pH range were highlighted by red color.

Category	Formula	$U_{diss} - U_L$ as function of pH	pH _{mini}
	LiNi(PS ₃) ₂	-0.06 + 0.0591 pH	2
	VAg(PSe ₃) ₂	-1.32	none
	Ta ₃ Te ₁₄ Pd ₃	-0.02	none
	MnSbSe ₂ I	-0.86	none
	CrGeTe₃	-0.93 + 0.0591 pH	>14
ORR catalysts	CuSeO₃	-0.81 + 0.0591 pH	14
	AgHO ₂	-0.61 + 0.0591 pH	11
	PtPb ₄	-0.57 + 0.0591 pH	10
	Bi ₄ I	-0.50 + 0.0591 pH	9
	CuTeO₃	-0.42 + 0.0591 pH	8
	CuH ₂ (SeO ₃) ₂	-0.31 + 0.0591 pH	6
	Ag(AuS) ₂	-0.13	none
	Bi ₉ I ₂	-0.12 + 0.0591 pH	3
	NiTe ₂	-0.09	none
	Sc ₆ C ₂ I ₁₁	-2.91 + 0.0591 pH	>14
	Li ₂ Cu ₂ F ₅	-1.75 + 0.0591 pH	>14
	CrGeTe ₃	-1.75 + 0.0591 pH	>14
	PtPb ₄	-1.75 + 0.0591 pH	>14
	Pd ₃ Pb ₂ Te ₂	-1.28 + 0.0591 pH	>14
	CuH ₂ (SeO ₃) ₂	-1.36 + 0.0591 pH	>14
	Zn(InS ₂) ₂	-1.26	none
	Ag(AuS) ₂	-1.20	none
OER catalysts	Ta(NiTe) ₂	-1.15 + 0.0591 pH	>14
	VTe ₂	-1.03 + 0.0591 pH	>14
	Bi ₃ Se ₄	-0.87	none
	TaTe ₂	-0.83 + 0.0591 pH	14
	Nb9IrSe20	-0.76	none
	AgHO ₂	-0.77 + 0.0591 pH	13
	Nb ₂ Se ₃	-0.43	none
	La ₂ PI ₂	-0.19 – 0.1182 pH	none

 Table S9 Summary of theoretical and experimental progresses on the design of 2D materials for the oxygen

electrocatalysis.

	Material	Overpotential	Active site	Theory or Exp?	Stability of the original structure	Reference
	Pd ₃ Pb	330 mV in 0.1 M KOH	Pt sites	Theory & Exp.	Activity remains 77% after 5000 cycles	Small Methods 2018, 1700331
	MX ₂ (M= V, Nb, Mo, Ta, and W; X= S, Se and Te)	>=950 mV in aprotic media	Edge sites of VSe ₂	Theory & Exp.	N/A	Adv. Mater. 2019, 31, 1804453
	CoS ₂	580 mV	Co metal site within the Co oxide surface	Theory & Exp.	Unstable	ACS Appl. Energy Mater. 2019, 2, 8605-8614
	SnS, and SnS ₂	>1000 mV on SnS2 in 50 mM phosphate buffered saline	N/A	Exp.	Unstable	J. Phys. Chem. C 2016, 120, 24098–24111
	InS, InSe and InTe	>1000 mV in 1.0 M KOH solution	N/A	Exp.	Unstable	ChemCatChem 2019, 11, 2634 – 2642
ORR catalysts	FeNiS ₂	450 mV in 0.1 M phosphate buffer solution	N/A	Exp.	Stable	Nano Energy 27 (2016) 526–534
	Ni ₃ S ₂ /MoS ₂ heterostructure	280 mV in 0.1 M KOH electrolyte	Mo edges/Mo– Ni–S sites in the heterointerfac es	Exp.	2.7 h test with activity loss of 12.0%	J. Mater. Chem. A, 2019, 7, 8785–8789
	Nb/Ta doped MoS ₂ and WS ₂	>=450 mV on undoped MoS2 in 0.1 M KOH solution	N/A	Exp.	N/A	ACS Catal. 2016, 6, 5724–5734
	P doped MoS ₂	270 mV	N/A	Exp.	Over 2.7 h with activity loss of 18.8%	Chem. Commun., 2015, 51, 7903 7906
	$MX_2 (M = Nb,$ Ta, Mo, W; X = S, Se, Te)	540 mV	S/Te sites in the basal plane of NbS ₂ /TaSe ₂	Theory	N/A	Nano Research volume 12, pages 925–930 (2019)
	1T'-TaTe2	510 mV	Te sites in the basal plane	Theory	1, 2	Green Energy & Environment, https://doi.org/10.1 016/j.gee.2020.11.0 03
	PtTe	370 mV	Te sites in the basal plane	Theory	1, 2	J. Am. Chem. Soc. 2018, 140, 12732–12735

NiTe	450 mV	Te sites in the basal plane	Theory	1, 2, 4	J. Phys. Chem. C 2021, 125, 19164–19170
M ₂ S ₂ (M= Sc, Ti, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W, and Ir)	>=380 mV	S sites in the basal plane of Ti ₂ S ₂	Theory	N/A	Energy Fuels 2020, 34, 5006-5015
206 MS ₂ contain 2H, 1T, and 1T' phase	>=240 mV	Te sites in the basal plane of VTe ₂	Theory	1, 2, 3	J. Phys. Chem. Lett. 2022, 13, 58–65
Pt ₅ Se ₄	700 mV	Pt sites in the basal plane	Theory	1, 2, 4	ACS Appl. Mater. Interfaces 2020, 12, 12, 13896–13903
RuN ₂	240 mV	Ru sites the basal plane	Theory	1, 2, 3	ACS Appl. Mater. Interfaces 2020, 12, 49, 54517–54523
IrN ₂	470 mV	Ir sites in the basal plane	Theory	1,2,3	Journal of Colloid and Interface Science (2021), doi: https://doi.org/10.1 016/j.jcis.2021.05.0 28
MN4C12H4 (M=Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Ir, Pt, Pd, and Ag)	>=330 mV	Fe sites in the basal plane of FeN ₄ C ₁₂ H ₄	Theory	1,3	Journal of Catalysis 370 (2019) 378–384
	>=520 mV	Fe sites in the basal plane of Fe ₂ C ₁₂ N ₁₂ H ₁₂	Theory	N/A	Journal of Catalysis 352 (2017) 579–585
MC ₂ (M= Ti, V, Nb, Ta, and Mo)	>=370mV	C sites in the basal plane of TaC ₂	Theory	1,2	Adv. Funct. Mater. 2020, 30, 2000570
GeS, GeSe, and SnSe	>=520 mV	Ge sites in the basal plane of GeS	Theory	1, 3	J. Mater. Chem. A, 2017, 5, 1734–1741
Nb ₂ SbTe ₂	330 mV	Te sites in the basal plane	Theory	1,2	Inorg. Chem. 2022, 61, 4, 2284–2291
Ni2SbTe2, NiSb, NiTe2, NiSe2, Co2SbTe, and Ni2SbSe2	>=710 mV	(014) surface of Ni ₂ SbTe ₂	Theory	1, 2	J. Phys. Chem. C 2020, 124, 3671–3680
$MA_{2}Z_{4} (M = Ti,$ Zr, Hf, V, Nb, Ta, Cr, Mo, W; A = Si or Ge; Z = N,	>=490 mV	As sites in the basal plane of CrGe ₂ As ₄	Theory	1, 2	J. Phys. Chem. C 2021, 125, 22581–22590

	P, or As)					
	N-/P-doped TMD (MoS2, MoSe2, WS2, and WSe2)	>=310 mV	N sites in the N-doped WS ₂ monolayer	Theory	1	ChemElectroChem 2018, 5, 4029 – 4035
	Pt doped MoSe ₂	480 mV	Se sites in the basal plane	Theory	N/A	J. Mater. Chem. C, 2021, 9, 11331– 11342
	Fe ₂ S ₆ C ₆	372 mV at 20°C in 1.0 M N ₂ - saturated KOH electrolyte	Fe, and S sites in the basal plane	Theory & Exp.	50 h with activity loss of 6 mV.	ACS Energy Lett. 2022, 7, 343–348
	PtSe ₂	663 mV	Defective sites in the basal plane	Theory & Exp.	Over 10 h in 1 M KOH	Adv. Energy Mater. 2022, 12, 2102359
	MoS ₂ , and TaS ₂ with 1T and 2H phases	420 mV in 0.5 M H2SO4	Edge sites of the 1T-MoS ₂	Theory & Exp.	Stable	Adv. Mater. Interfaces 2016, 3, 1500669 3
	MX ₂ (M= V, Nb, Mo, Ta, and W; X= S, Se and Te)	>=800mV in aprotic media	Edge sites of VSe ₂	Theory & Exp.	N/A	Adv. Mater. 2019, 31, 1804453
	NiPS ₃ /Ni ₂ P heterostructure	260 mV in 1.0 M KOH	In-situ formed nickel hydroxides and/or oxyhydroxide s	Theory & Exp.	Unstable	ACS Nano 2019, 13, 7, 7975–7984
OER catalysts	Ni ₃ S ₂ nanosheet arrays on nickel foam	260 mV in basic media	In situ grown (210) high- index facet	Theory & Exp.	Retains the activity for over 200 h	J. Am. Chem. Soc. 2015, 137, 44, 14023–14026
	CoSe ₂	294.2 mV in 1 M NaOH	Co vacancies in in-situ formed metal hydroxides	Theory & Exp.	Unstable	Nat Commun 11, 1664 (2020).
	PtTe ₂	368 mV	Newly formed Pt sites	Exp.	Unstable	Nanotechnology, 2020, 31 375601
	Co doped MoS ₂	220 mV	Newly formed high valence state Co species	Exp.	Unstable	Adv. Mater. 2018, 30(29), 1801450
	Fe doped CoS ₂	302 mV	N/A	Exp.	Maintains the catalytic activity for at least 20 h	Chem. Commun., 2019,55, 2469-2472
	FeNiS ₂	310 mV in 0.1 M KOH solution	Newly formed NiOOH species	Exp.	Unstable	Nano Energy 27 (2016) 526–534
	FePS ₃	288 mV in 0.1 M KOH	Newly formed	Exp.	Unstable	Small Methods 2019, 1900632

	solution	FeOOH species			
WS ₂ /CNT heterostructure	430 mV in 0.1 M KOH solution	W-bonded C atoms at the WS ₂ CNT interface	Exp.	Stable	Adv. Energy Mater. 2017, 7, 1602217
GeS, and GeSe	>=970mV	N/A	Exp.	Unstable	Phys. Chem. Chem. Phys., 2016, 18, 16991711
SnS, and SnS ₂	>1000mV in 50 mM phosphate buffered saline	N/A	Exp.	Unstable	J. Phys. Chem. C 2016, 120, 24098–24111
InS, InSe and InTe	>1000mV in 1.0 M KOH solution	N/A	Exp.	Unstable	ChemCatChem 2019, 11, 2634 – 2642
Pt ₅ Se ₄	350 mV	Pt sites in the basal plane	Theory	1, 2, 4	ACS Appl. Mater. Interfaces 2020, 12, 12, 13896–13903
MN ₂ (M= V, Co, W, Re, Rh, Pd, Ir)	>=270 mV	Ir sites in the basal plane of IrN ₂	Theory	1,2,3	Journal of Colloid and Interface Science (2021), doi: https://doi.org/10.1 016/j.jcis.2021.05.0 28
206 MS ₂ contain 2H, 1T, and 1T' phase	>=300 mV	Te sites in the basal plane of TaTe ₂	Theory	1, 2, 3	J. Phys. Chem. Lett. 2022, 13, 58–65
MN ₄ C ₁₂ H ₄ (M=Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Ir, Pt, Pd, and Ag)	>=460 mV	Ni sites in the basal plane of NiN4C12H4	Theory	1,3	Journal of Catalysis 370 (2019) 378–384
MC ₆ N ₆ H ₆ (M= V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd)	>=320 mV	Rh sites in the basal plane of RhN ₆ C ₆ H ₆	Theory	N/A	Journal of Catalysis 352 (2017) 579–585
MC ₂ (M= Ti, V, Nb, Ta, and Mo)	>=450mV	C sites in the basal plane of MoC ₂	Theory	1,2	Adv. Funct. Mater. 2020, 30, 2000570
Metal atom doped Ga ₂ FeS ₄	>=480 mV	Au atom doped Ga2FeS4	Theory	1	J. Mater. Chem. A, 2021, 9, 18594– 18603

Fig. S1. Top view of structure (a), band structure (b), and reaction pathway along the oxygen reduction reaction for the TaS_2 and Ta_2CS_2 .

Fig. S2. Side view of adsorption configuration and the corresponding adsorption free energy of H_2O_2 (use the H_2O and H_2 as the energy references) at the active site of 25 2D materials that is predicted for the fourelectron oxygen electrocatalysis.

Fig. S3. Adsorption analysis for the O^{*} and $H_2O_2^*$ on 25 four-electron pathway preferable materials that were identified using the free energy of O^{*} as the descriptor.

Fig. S4. Computed free energy profile of ORR on the Pt(111) (a), and of OER on the $IrO_2(110)$ (b). The solvation contribution of -0.3, 0.0, -0.3 eV were included in the free energy computations for the OOH*, O*, OH*, respectively, to ensure all the computations are under the same computation level, and to be comparable as the activity benchmark. Note that the corrected adsorption free energies are of well agreement with the previous work. ²⁸ For example, the computed free energy value of 3.088 eV for OOH* adsorption on the IrO_2 (110) is very close to the reported value of 3.1 eV. No clear solvation correction was found for the O* adsorption, which also agrees well with our correction strategy. The slight difference might be raised by the dipole effect on the polar surfaces of IrO_2 (110) due to the inclusion of explicit water molecules in their study.

Fig. S5. Kinetic simulation of ORR on the PtTe and NbSe₂ surfaces at three different potential (zero potential, theoretical limiting potential, and equilibrium potential). The key reaction intermediates along the rate limiting step obtained from the climbing image nudged elastic band (CI-NEB) method are also shown.

Fig. S6. Relative stability analysis on the possible configuration of Ni_{0.75}Fe_{0.25}OOH.

Fig. S7. Free energy diagrams for the OER on three different sites of Ni_{0.75}Fe_{0.25}OOH, including OH and O vacancies. The potential limiting step (PDS) was highlighted by yellow line. Note that the self-interaction error in GGA method could strongly affect the adsorption on the transitional oxides, as conventional DFT is not canceled out in redox reactions where the electrons are transferred between significantly different environments. To address this issue, DFT+U computations was carried out, where the U values for the Ni and Fe were set as 6.2 and 5.3 eV, respectively, following the strategy in the Materials Project database.

Fig. S8. (a) 25 basal plane active materials for the oxygen reduction reaction. (b) 13 candidates for the oxygen evolution reaction. (c) nine compounds with bifunctional capability for both oxygen reduction and oxygen evolution reactions.

	VAg(PSe ₃) ₂	OOH*	O *	OH*
Top view				
Side view				200000
ΔΖΡΕ		0.45	0.08	0.37
ΔΗ	\	0.08	0.03	0.05
ΔΤS	\	0.16	0.06	0.08
ΔG	\	3.92	1.34	0.60
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.60

Fig. S9. Optimized structures and computed thermodynamic data (include zero-point energy (Δ ZPE), enthalpy (Δ H), entropy (Δ TS), and Gibbs free energy (Δ G)) of oxygen-containing species on the **VAg(PSe₃)**₂ surface. The corresponding U_L value for **ORR** is also shown.

	MnSbSe ₂ I	OOH*	O *	OH*
Top view				
Side view		8		
ΔΖΡΕ		0.43	0.07	0.35
ΔΗ	\	0.09	0.03	0.05
ΔΤS		0.18	0.05	0.08
ΔG		4.06	1.25	0.63
PDS	$O* \rightarrow$	► OH*	U _L (ORR)	0.62

Fig. S10. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **MnSbSe**₂I surface. The corresponding U_L value for **ORR** is also shown.

	CuSeO ₃	OOH*	O *	OH*
Top view				
Side view	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
ΔΖΡΕ	\	0.42	0.08	0.36
ΔΗ	\	0.11	0.03	0.05
ΔΤS	\	0.24	0.05	0.09
ΔG		4.13	2.12	1.13
PDS	$O_2 \rightarrow OOH^*$		U _L (ORR)	0.79

Fig. S11. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **CuSeO**₃ surface. The corresponding U_L value for **ORR** is also shown.

	Bi ₄ I	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.42	0.06	0.32
ΔΗ	\	0.10	0.03	0.06
ΔΤS	\	0.21	0.06	0.12
ΔG		3.95	1.92	0.82
PDS	$OH^* \rightarrow H_2O$		U _L (ORR)	0.82

Fig. S12. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Bi**₄I surface. The corresponding U_L value for **ORR** is also shown.

	CuTeO ₃	OOH*	0*	OH*
Top view				
Side view	22532253		****	22532253
ΔΖΡΕ		0.42	0.07	0.34
ΔΗ	\	0.10	0.04	0.06
ΔΤS	\	0.21	0.07	0.11
ΔG	\	4.17	2.06	0.94
PDS	$O* \rightarrow$	• OH*	U _L (ORR)	0.75

Fig. S13. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **CuTeO**₃ surface. The corresponding U_L value for **ORR** is also shown.

	Bi ₉ I ₂	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.42	0.06	0.32
ΔH	\	0.08	0.03	0.07
ΔΤS		0.14	0.06	0.13
ΔG		3.79	1.83	0.62
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.62

Fig. S14. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Bi**₉I₂ surface. The corresponding U_L value for **ORR** is also shown.

	NiTe ₂	OOH*	0*	OH*
Top view				
Side view	******		****	
ΔΖΡΕ	\	0.42	0.06	0.33
ΔΗ		0.10	0.03	0.06
ΔΤS		0.21	0.06	0.12
ΔG		4.01	1.60	0.76
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.76

Fig. S15. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **NiTe**₂ surface. The corresponding U_L value for **ORR** is also shown.

	LiNi(PS ₃) ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.08	0.37
ΔH		0.09	0.03	0.04
ΔΤS		0.18	0.05	0.08
ΔG		4.31	1.72	0.99
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.61

Fig. S16. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the LiNi(PS₃)₂ surface. The corresponding U_L value for **ORR** is also shown.

	Ta ₃ Te ₁₄ Pd ₃	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.06	0.33
ΔΗ		0.10	0.04	0.07
ΔΤS		0.21	0.06	0.14
ΔG		4.16	1.81	0.85
PDS	$O_2 \rightarrow OOH^*$		U _L (ORR)	0.76

Fig. S17. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Ta₃Te₁₄Pd₃** surface. The corresponding U_L value for **ORR** is also shown.

	TePt	OOH*	O *	OH*
Top view				
Side view			*	
ΔΖΡΕ	\	0.42	0.06	0.33
ΔH	\	0.10	0.04	0.04
ΔΤS	\	0.22	0.09	0.08
ΔG		4.02	1.83	0.80
PDS	$OH^* \rightarrow H_2O$		U _L (ORR)	0.80

Fig. S18. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **PtTe** surface. The corresponding U_L value for **ORR** is also shown.

	Ge ₅ (Te ₄ As) ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.41	0.05	0.32
ΔΗ		0.09	0.04	0.06
ΔΤS	\	0.17	0.09	0.12
ΔG		4.24	1.73	1.04
PDS	$O_2 \rightarrow OOH^*$		U _L (ORR)	0.68

Fig. S19. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Ge**₅(**Te**₄**As**)₂ surface. The corresponding U_L value for **ORR** is also shown.

	MoTe ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.06	0.34
ΔΗ	\	0.10	0.04	0.06
ΔΤS		0.19	0.08	0.11
ΔG		4.08	1.95	0.82
PDS	$O_2 \rightarrow OOH^*$		U _L (ORR)	0.82

Fig. S20. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **MoTe**₂ surface. The corresponding U_L value for **ORR** is also shown.

	Ge ₄ Te ₇ As ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.41	0.05	0.32
ΔΗ		0.11	0.04	0.06
ΔΤS	\	0.24	0.09	0.12
ΔG	\	4.32	1.83	1.17
PDS	$O_2 \rightarrow OOH^*$		U _L (ORR)	0.60

Fig. S21. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Ge₄Te₇As₂** surface. The corresponding U_L value for **ORR** is also shown.

	NiTe	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.42	0.06	0.33
ΔH	\	0.10	0.03	0.07
ΔΤS	\	0.22	0.06	0.15
ΔG	\	4.09	2.00	088
PDS	$O_2 \rightarrow OOH^*$		U _L (ORR)	0.83

Fig. S22. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **NiTe** surface. The corresponding U_L value for **ORR** is also shown.
	BiTe	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.42	0.06	0.34
ΔΗ	\	0.10	0.04	0.06
ΔΤS	\	0.20	0.08	0.11
ΔG		4.28	1.78	1.09
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.64

Fig. S23. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **BiTe** surface. The corresponding U_L value for **ORR** is also shown.

	NbTe ₂	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.06	0.33
ΔΗ	\	0.07	0.04	0.07
ΔΤS	\	0.14	0.08	0.14
ΔG		3.95	2.00	0.66
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.66

Fig. S24. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **NbTe**₂ surface. The corresponding U_L value for **ORR** is also shown.

	Mn(InSe ₂) ₂	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.42	0.06	0.33
ΔH	\	0.08	0.04	0.07
ΔΤS	\	0.17	0.09	0.14
ΔG		4.27	1.84	1.12
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.65

Fig. S25. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Mn(InSe_2)**² surface. The corresponding U_L value for **ORR** is also shown.

	Nb ₄ IrSe ₁₀	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.44	0.06	0.33
ΔΗ		0.09	0.04	0.06
ΔΤS		0.18	0.07	0.13
ΔG		4.26	2.26	1.43
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.66

Fig. S26. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Nb**₄**IrSe**₁₀ surface. The corresponding U_L value for **ORR** is also shown.

	TaS ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.44	0.08	0.35
ΔΗ	\	0.09	0.03	0.06
ΔΤS	\	0.18	0.06	0.13
ΔG	\	4.12	1.65	0.70
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.70

Fig. S27. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **TaS**₂ surface. The corresponding U_L value for **ORR** is also shown.

	BiSe	OOH*	O *	OH*
Top view				
Side view			**************************************	
ΔΖΡΕ	\	0.43	0.05	0.34
ΔΗ		0.10	0.04	0.06
ΔΤS		0.20	0.10	0.11
ΔG		3.96	2.70	0.68
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.68

Fig. S28. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **BiSe** surface. The corresponding U_L value for **ORR** is also shown.

	Fe ₄ S ₅	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.08	0.34
ΔΗ	\	0.10	0.02	0.06
ΔΤS	\	0.20	0.03	0.12
ΔG		3.93	1.83	0.70
PDS	OH* -	$\rightarrow H_2O$	U _L (ORR)	0.70

Fig. S29. Optimized structures and computed thermodynamic data (include Δ ZPE, Δ H, Δ TS, and Δ G) of oxygen-containing species on the **Fe**₄**S**₅ surface. The corresponding U_L value for **ORR** is also shown.

	NbSe ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.44	0.07	0.34
ΔΗ		0.09	0.03	0.06
ΔΤS	\	0.20	0.05	0.13
ΔG		4.12	2.13	0.83
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.80

Fig. S30. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **NbSe**₂ surface. The corresponding U_L value for **ORR** is also shown.

	TaSe ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.44	0.07	0.34
ΔH		0.09	0.03	0.04
ΔΤS	\	0.20	0.05	0.08
ΔG		4.18	2.17	0.90
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.74

Fig. S31. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **TaSe**₂ surface. The corresponding U_L value for **ORR** is also shown.

	ZrSiSe	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.42	0.07	0.32
ΔΗ	\	0.09	0.03	0.04
ΔΤS	\	0.18	0.04	0.07
ΔG	\	4.12	1.58	0.71
PDS	OH* -	$\rightarrow H_2O$	U _L (ORR)	0.71

Fig. S32. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **ZrSiSe** surface. The corresponding U_L value for **ORR** is also shown.

	GdBr	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.06	0.33
ΔΗ	\	0.08	0.05	0.06
ΔΤS	\	0.17	0.12	0.11
ΔG		4.19	1.91	0.61
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.61

Fig. S33. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **GdBr** surface. The corresponding U_L value for **ORR** is also shown.

	CrGeTe ₃	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.06	0.34
ΔΗ	\	0.09	0.04	0.06
ΔΤS		0.19	0.08	0.11
ΔG		4.10	2.45	0.86
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.82

Fig. S34. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **CrGeTe**₃ surface. The corresponding U_L value for **ORR** is also shown.

	PtPb ₄	OOH*	O *	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.41	0.02	0.30
ΔΗ	\	0.11	0.06	0.03
ΔΤS	\	0.22	0.14	0.04
ΔG		3.65	1.83	0.65
PDS	OH* -	\rightarrow H ₂ O	U _L (ORR)	0.65

Fig. S35. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **PtPb**₄ surface. The corresponding U_L value for **ORR** is also shown.

	CuH ₂ (SeO ₃) ₂	OOH*	0*	OH*
Top view				
Side view		~~~~	A A A A	~~~~
ΔΖΡΕ	\	0.42	0.08	0.35
ΔΗ	\	0.10	0.03	0.05
ΔΤS	\	0.21	0.05	0.08
ΔG		4.20	2.50	1.77
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.72

Fig. S36. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **CuH₂(SeO₃)**² surface. The corresponding U_L value for **ORR** is also shown.

	Ag(AuS) ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ		0.43	0.06	0.36
ΔΗ		0.10	0.03	0.05
ΔΤS		0.19	0.05	0.08
ΔG		4.16	2.34	1.01
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.76

Fig. S37. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Ag(AuS)**₂ surface. The corresponding U_L value for **ORR** is also shown.

	Nb ₉ IrSe ₂₀	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.44	0.06	0.35
ΔΗ		0.09	0.04	0.06
ΔΤS		0.20	0.07	0.06
ΔG		4.19	2.27	0.93
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.73

Fig. S38. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Nb**₉**IrSe**₂₀ surface. The corresponding U_L value for **ORR** is also shown.

	AgHO ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.42	0.08	0.34
ΔΗ	\	0.10	0.03	0.06
ΔΤS	\	0.21	0.04	0.11
ΔG		3.70	2.38	1.21
PDS	O* →	≻ OH*	U _L (ORR)	1.17

Fig. S39. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **AgHO**₂ surface. The corresponding U_L value for **ORR** is also shown.

	La ₂ PI ₂	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ		0.43	0.06	0.33
ΔΗ	\	0.08	0.04	0.06
ΔΤS		0.16	0.07	0.10
ΔG		4.28	2.37	0.87
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.64

Fig. S40. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the La₂Pl₂ surface. The corresponding U_L value for **ORR** is also shown.

	TbGaI	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.43	0.06	0.31
ΔΗ		0.09	0.04	0.07
ΔΤS		0.17	0.08	0.14
ΔG		4.24	2.71	0.85
PDS	$O_2 \rightarrow$	OOH*	U _L (ORR)	0.68

Fig. S41. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **TbGal** surface. The corresponding U_L value for **ORR** is also shown.

	CeI ₃	OOH*	0*	OH*
Top view				
Side view				
ΔΖΡΕ	\	0.44	0.04	0.33
ΔΗ	\	0.09	0.03	0.06
ΔΤS	\	0.18	0.03	0.11
ΔG		3.29	1.44	0.79
PDS	O*→	· OH*	U _L (ORR)	0.65

Fig. S42. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Cel**₃ surface. The corresponding U_L value for **ORR** is also shown.

	$Sc_6C_2I_{11}$	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.33	0.06	0.44
ΔΗ	\	0.06	0.04	0.10
ΔΤS		0.12	0.10	0.21
ΔG		-0.44	1.18	3.01
PDS	OOH*	$\checkmark \rightarrow O_2$	U _L (OER)	1.91

Fig. S43. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Sc**₆**C**₂**I**₁₁ surface. The corresponding U_L value for **OER** is also shown.

	Li ₂ Cu ₂ F ₅	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.37	0.07	0.44
ΔΗ	\setminus	0.04	0.03	0.09
ΔΤS	\	0.07	0.05	0.18
ΔG		0.53	2.38	4.11
PDS	O*→	OOH*	U _L (OER)	1.73

Fig. S44. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the Li₂Cu₂F₅ surface. The corresponding U_L value for **OER** is also shown.

	Te ₂ Pd ₃ Pb ₂	OH*	O *	OOH*
Top view				
Side view				
ΔΖΡΕ		0.33	0.05	0.41
ΔH	\	0.06	0.04	0.11
ΔΤS	\	0.10	0.07	0.24
ΔG	\	0.50	1.97	3.70
PDS	O*→	OOH*	U _L (OER)	1.73

Fig. S45. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Pd₃Pb₂Te₂** surface. The corresponding U_L value for **OER** is also shown.

	$Zn(InS_2)_2$	OH*	0*	OOH*
Top view				
Side view		******* ******************************	********* ***********	
ΔΖΡΕ	\	0.41	0.07	0.42
ΔΗ	\	0.03	0.03	0.10
ΔΤS		0.05	0.05	0.21
ΔG		1.10	2.54	4.41
PDS	O*→	OOH*	U _L (OER)	1.87

Fig. S46. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Zn(InS₂)**² surface. The corresponding U_L value for **OER** is also shown.

	Ta(NiTe) ₂	OH*	O *	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.32	0.05	0.41
ΔΗ	\	0.07	0.04	0.08
ΔΤS		0.14	0.07	0.17
ΔG	\	1.46	2.71	4.62
PDS	O*→	OOH*	U _L (OER)	1.91

Fig. S47. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Ta(NiTe)**² surface. The corresponding U_L value for **OER** is also shown.

	VTe ₂	OH*	0*	OOH*
Top view				
Side view				1000000
ΔΖΡΕ	\	0.33	0.06	0.43
ΔΗ	\	0.07	0.04	0.10
ΔΤS	\	0.13	0.08	0.21
ΔG		0.57	1.93	3.85
PDS	O*→	OOH*	U _L (OER)	1.92

Fig. S48. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **TaS**₂ surface. The corresponding U_L value for **OER** is also shown.

	Bi ₃ Se ₄	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.34	0.06	0.43
ΔH	\	0.06	0.04	0.10
ΔΤS	\	0.12	0.09	0.20
ΔG	\	0.32	1.70	3.61
PDS	O*→	OOH*	U _L (OER)	1.91

Fig. S49. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Bi₃Se₄** surface. The corresponding U_L value for **OER** is also shown.

	TaTe ₂	OH*	0*	OOH*
Top view				
Side view		******	3:00000	******
ΔΖΡΕ	\	0.34	0.06	0.43
ΔΗ	\	0.06	0.04	0.10
ΔΤS	\	0.13	0.09	0.22
ΔG		0.29	1.77	3.55
PDS	O*→	OOH*	U _L (OER)	1.79

Fig. S50. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **TaTe**₂ surface. The corresponding U_L value for **OER** is also shown.

	Nb ₂ Se ₃	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.33	0.06	0.42
ΔH	\	0.07	0.04	0.10
ΔΤS	\	0.13	0.07	0.23
ΔG	\	1.45	2.71	4.59
PDS	O*→	OOH*	U _L (OER)	1.88

Fig. S51. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Nb₂Se₃** surface. The corresponding U_L value for **OER** is also shown.

	Pr ₂ Br ₅	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.32	0.05	0.43
ΔH	\	0.07	0.02	0.10
ΔΤS	\	0.13	0.04	0.19
ΔG	\	0.22	1.87	3.66
PDS	O*→	OOH*	U _L (OER)	1.79

Fig. S52. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Pr₂Br**₅ surface. The corresponding U_L value for **OER** is also shown.

	CeZnPO	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ		0.35	0.06	0.44
ΔH	\	0.05	0.04	0.09
ΔΤS	\	0.09	0.07	0.18
ΔG	\	0.04	1.22	3.12
PDS	O*→	OOH*	U _L (OER)	1.90

Fig. S53. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **CeZnPO** surface. The corresponding U_L value for **OER** is also shown.

	EuBrO	OH*	O *	OOH*
Top view				
Side view				
ΔΖΡΕ		0.32	0.07	0.44
ΔΗ	\	0.06	0.03	0.08
ΔΤS	\	0.12	0.05	0.15
ΔG		1.88	1.92	3.74
PDS	H ₂ O*-	→ OH*	U _L (OER)	1.88

Fig. S54. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **EuBrO** surface. The corresponding U_L value for **OER** is also shown.

	TbBr	OH*	O *	OOH*
Top view				
Side view				
ΔΖΡΕ		0.33	0.06	0.43
ΔΗ	\	0.07	0.04	0.10
ΔΤS	\	0.12	0.10	0.20
ΔG	\	0.56	2.18	4.03
PDS	$O^* \rightarrow$	OOH*	U _L (OER)	1.85

Fig. S55. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **TbBr** surface. The corresponding U_L value for **OER** is also shown.

	CrGeTe ₃	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.34	0.06	0.43
ΔH	\	0.06	0.04	0.09
ΔΤS	\	0.11	0.08	0.19
ΔG		0.86	2.45	4.10
PDS	$O^* \rightarrow$	OOH*	U _L (OER)	1.64

Fig. S56. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **CrGeTe**₃ surface. The corresponding U_L value for **OER** is also shown.

	PtPb ₄	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.30	0.02	0.41
ΔΗ	\	0.03	0.06	0.11
ΔΤS	\	0.04	0.14	0.22
ΔG	\	0.65	1.83	3.65
PDS	$O^* \rightarrow$	OOH*	U _L (OER)	1.82

Fig. S57. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **PtPb**₄ surface. The corresponding U_L value for **OER** is also shown.

	CuH ₂ (SeO ₃) ₂	OH*	0*	OOH*
Top view				
Side view		~~~~~	~~~~	~~~~
ΔΖΡΕ	\	0.35	0.08	0.42
ΔΗ	\setminus	0.05	0.03	0.10
ΔΤS	\	0.08	0.05	0.21
ΔG		1.77	2.50	4.20
PDS	H ₂ O -	→ OH*	U _L (OER)	1.77

Fig. S58. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **CuH₂(SeO₃)**₂ surface. The corresponding U_L value for **OER** is also shown.
	Ag(AuS) ₂	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.36	0.06	0.43
ΔH		0.05	0.03	0.10
ΔΤS	\	0.08	0.05	0.19
ΔG		1.01	2.34	4.16
PDS	$O^* \rightarrow OOH^*$		U _L (OER)	1.82

Fig. S59. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Ag(AuS)**² surface. The corresponding U_L value for **OER** is also shown.

	Nb ₉ IrSe ₂₀	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.35	0.06	0.44
ΔΗ	\	0.06	0.04	0.09
ΔΤS	\	0.06	0.07	0.20
ΔG	\	0.93	2.27	4.19
PDS	$OOH^* \rightarrow O^*$		U _L (OER)	1.91

Fig. S60. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Nb**₉**IrSe**₂₀ surface. The corresponding U_L value for **OER** is also shown.

	AgHO ₂	OH*	O *	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.34	0.08	0.42
ΔH	\	0.06	0.03	0.10
ΔΤS	\	0.11	0.04	0.21
ΔG		1.21	2.38	3.70
PDS	$O^* \rightarrow OOH^*$		U _L (OER)	1.32

Fig. S61. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **AgHO**₂ surface. The corresponding U_L value for **OER** is also shown.

	La ₂ PI ₂	OH*	0*	OOH*
Top view				
Side view			*****	*****
ΔΖΡΕ		0.33	0.06	0.43
ΔΗ		0.06	0.04	0.08
ΔΤS	\	0.10	0.07	0.16
ΔG		0.87	2.37	4.28
PDS	$O^* \rightarrow$	OOH*	U _L (OER)	1.91

Fig. S62. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the La₂Pl₂ surface. The corresponding U_L value for **OER** is also shown.

	TbGaI	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.31	0.06	0.43
ΔΗ		0.07	0.04	0.09
ΔΤS		0.14	0.08	0.17
ΔG		0.85	2.71	4.24
PDS	$OH^* \rightarrow O^*$		U _L (OER)	1.85

Fig. S63. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **TbGal** surface. The corresponding U_L value for **OER** is also shown.

	CeI ₃	OH*	0*	OOH*
Top view				
Side view				
ΔΖΡΕ	\	0.33	0.04	0.44
ΔΗ	\	0.06	0.03	0.09
ΔΤS	\	0.11	0.03	0.18
ΔG	\	0.79	1.44	3.29
PDS	$O^* \rightarrow OOH^*$		U _L (OER)	1.85

Fig. S64. Optimized structures and computed thermodynamic data (include ΔZPE , ΔH , ΔTS , and ΔG) of oxygen-containing species on the **Cel**₃ surface. The corresponding U_L value for **OER** is also shown.

Fig. S65. Theoretical limiting potential (U_L) of ORR (a) and OER(b) on 77 edge surfaces in comparison with the potential on the basal planes.

Fig. S66. Work flow for electrochemical stability analysis.

Fig. S67. Density of states (DOS) and the crystal orbital Hamilton populations (COHP) of the OOH* adsorbed on the active sites of AgHO₂ (a and c), and TaTe₂ (b and d). The results indicate that both of the two catalysts can strongly interact with the OOH* via band hybridization. Upon adsorption, OOH* can form the fully occupied orbitals below the Fermi level and partial occupied molecular orbitals around the Fermi level. By comparison with the AgHO₂, TaTe₂ can downshift the molecular orbitals of OOH* toward a lower energy level, which results in a stronger binding. The bonding states or the occupied orbitals between the OOH* and TaTe₂ are all distributed below the -5.97 eV, much lower than that in the AgHO₂ (-2.19 eV). Specifically, through integrating the COHP up to the Fermi level, the different band hybridization can be further unveiled. In principle, a more negative value of integrated-COHP (ICOHP) generally implies a stronger binding. The calculated ICOHP value on the TaTe₂ (-3.33 eV) is more negative than that of -2.48 eV on the AgHO₂, which is consistent with the trend of adsorption free energy calculations (3.55 eV for the TaTe₂ vs 3.70 eV for the AgHO₂). Notably, the ideal situation for the oxygen electrocatalysis is that the Gibbs free energy changes in each elementary step are the same at zero potential so that potential barriers of each step can be zero when the electrode potential reaches the equilibrium potential. Thus, the optimal $\Delta G(OOH^*)$ value is estimated at 3.69 eV (4.92 – 1.23 = 3.69). Since the AgHO₂ has a nearly ideal $\Delta G(OOH^*)$ of 3.69 eV, the AgHO₂ is predicted to have a better performance for the OER than the TaTe₂.

Fig. S68. Energy profiles along 5 ps AIMD simulation for the two benchmark materials of CoTe₂ and NiPS₃, and nine typical compounds which screened from dissolution potential analysis. A canonical ensemble was simulated using the algorithm of Nosé. The temperature was set at 300K.

Fig. S69. Oxygen adsorption induced structure change for the NiPS₃ during the MD simulation.

Fig. S70. Comparison of energy profiles of ORR on the NbSe₂ obtained from the direct correction and implicit solvation model.

Fig. S71. Reaction pathway and theoretical limiting potential (U_L) of ORR/OER on PtTe (a) and NbSe₂ monolayers (b) at different coverage conditions. (c) Schematic illustration of the contact models of 2D materials on catalytic substrates.

References

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 2. P. E. Blochl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 3. V. Wang, N. Xu, J.-C. Liu, G. Tang and W.-T. Geng, *Comput. Phys. Commun.*, 2021, **267**, 108033.
- 4. S. Grimme, J. Comput. Chem., 2006, **27**, 1787-1799.
- 5. G. K. H. Madsen and D. J. Singh, *Comput. Phys. Commun.*, 2006, **175**, 67-71.
- 6. T. Stauber, N. M. R. Peres and F. Guinea, *Physical Review B*, 2007, **76**, 205423.
- 7. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.
- 8. J. D. Goodpaster, A. T. Bell and M. Head-Gordon, J. Phys. Chem. Lett., 2016, 7, 1471-1477.
- 9. H. Xiao, T. Cheng, W. A. Goddard and R. Sundararaman, J. Am. Chem. Soc., 2016, **138**, 483-486.
- 10. X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen and S. Huang, ACS Catal., 2019, 9, 11042-11054.
- 11. H. Xu, D. Cheng, D. Cao and X. C. Zeng, *Nat. Catal.*, 2018, **1**, 339-348.
- 12. F. Calle-Vallejo, J. I. Martinez and J. Rossmeisl, *Phys Chem Chem Phys*, 2011, **13**, 15639-15643.
- K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias and R. G. Hennig, J. Chem. Phys., 2014, 140, 084106.
- 14. R. Sundararaman, K. Letchworth-Weaver, K. A. Schwarz, D. Gunceler, Y. Ozhabes and T. A. Arias, *SoftwareX*, 2017, **6**, 278-284.
- 15. K. F. Garrity, J. W. Bennett, K. M. Rabe and D. Vanderbilt, *Comput. Mater. Sci*, 2014, **81**, 446-452.
- 16. R. Sundararaman and W. A. Goddard, *J. Chem. Phys.*, 2015, **142**, 064107.
- 17. R. Sundararaman, W. A. Goddard and T. A. Arias, J. Chem. Phys., 2017, 146, 114104.
- 18. Z. Duan and G. Henkelman, ACS Catalysis, 2021, **11**, 14439-14447.
- 19. C. Seitz Linsey, F. Dickens Colin, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, Y. Hwang Harold, K. Norskov Jens and F. Jaramillo Thomas, *Science*, 2016, **353**, 1011-1014.
- 20. Z. Wang, X. Guo, J. Montoya and J. K. Nørskov, npj Comput. Mater., 2020, 6, 160.
- 21. H. Xiao, T. Cheng and W. A. Goddard, J. Am. Chem. Soc., 2017, **139**, 130-136.
- 22. J. C. Liu, H. Xiao and J. Li, J. Am. Chem. Soc., 2020, **142**, 3375-3383.
- 23. G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.
- 24. A. M. Patel, S. Vijay, G. Kastlunger, J. K. Nørskov and K. Chan, J. Phys. Chem. Lett., 2021, 12, 5193-5200.
- 25. L. Bornstein, *Subvolume A, Pure Substances (Springer, 1999)*, 1999.

- 26. D. C. Harris, *Quantitative chemical analysis*, Macmillan, 2010.
- 27. D. R. Lide, *CRC handbook of chemistry and physics*, CRC press, 2004.
- 27. M. O. Almeida, M. J. Kolb, M. R. V. Lanza, F. Illas and F. Calle-Vallejo, *ChemElectroChem*, 2022, **9**, e202200210.
- 28. J. A. Gauthier, C. F. Dickens, L. D. Chen, A. D. Doyle and J. K. Nørskov, *J. Phys. Chem. C* 2017, **121**, 11455–11463.
- 29. D. Y. Kuo, J. K. Kawasaki, J. N. Nelson, J. Kloppenburg, G. Hautier, K. M. Shen, D. G. Schlom and J. Suntivich, *J. Am. Chem. Soc.*, 2017, **139**, 3473-3479.