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1. Spectral Data Processing and Analysis:

Due to inhomogeneities in the active layer (slightly fluctuating thickness) and the movement 

of the web (slight variance of web position and tilt with respect to the spectrometer beam), the 

spectral raw data has a noisy appearance. However, the majority of this “noise” is systematic 

and identical for all wavelengths, as can be seen in Figure S1 (grey curves). Consequently, the 

temporal evolution of the absorption at the isosbestic point (~600 nm), i.e., the wavelength at 

which the absorbance should – in theory – stay constant over time, can be used to 

correct/smoothen the signals at all other wavelengths using Equation S1. 

          Eq. S1
𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝜆,𝑡𝑥) =

𝐴𝑟𝑎𝑤(𝜆,𝑡𝑥)
𝐴𝑖𝑠𝑜𝑠𝑏𝑒𝑠𝑡𝑖𝑐(𝑡𝑥)

∗ 𝐴̅𝑖𝑠𝑜𝑠𝑏𝑒𝑠𝑡𝑖𝑐

Here,  is the absorbance at a certain wavelength and a certain point in time, 𝐴𝑟𝑎𝑤(𝜆,𝑡𝑥)

 the respective absorbance at the isosbestic point, and  the average 𝐴𝑖𝑠𝑜𝑠𝑏𝑒𝑠𝑡𝑖𝑐(𝑡𝑥) 𝐴̅𝑖𝑠𝑜𝑠𝑏𝑒𝑠𝑡𝑖𝑐

absorbance over all times at the isosbestic wavelength. The resulting processed data is also 

plotted in Figure S1 (colored curves).

The respective mass fractions of the donor and acceptor are calculated from the spectral data 

according to Equation S2 and Equation S3. 
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          Eq. S2
𝑤𝐷(𝑡𝑥) =

𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(517 𝑛𝑚,𝑡𝑥) ‒ 𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(517 𝑛𝑚,𝑡0)
𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(517 𝑛𝑚,𝑡𝑒𝑛𝑑) ‒ 𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(517 𝑛𝑚,𝑡0)

          Eq. S3𝑤𝐴(𝑡𝑥) = 1 ‒ 𝑤𝐷(𝑡𝑥)
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Figure S1: Temporal evolution of the spectral raw data (grey/black) and the data processed 

according to Eq. S1 (colored) for three different wavelengths.

2. Determination of dry film thickness:

The dry film thickness of the SnO2 variation is calculated with the following formula, where 

we assumed that the space filling of SnO2 nanoparticles is 0.74. The bulk densities of SnO2 and 

Butanol are 6.95 g/cm³ and 0.81 g/cm³, respectively. This calculation gives a rough estimate of 

the final dry film thickness.

     Eq. 
𝐷𝑟𝑦 𝑓𝑖𝑙𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =

𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒
𝑊𝑒𝑏 𝑠𝑝𝑒𝑒𝑑 × 𝐶𝑜𝑎𝑡𝑖𝑛𝑔 𝑤𝑖𝑑𝑡ℎ

×
𝐶𝑜𝑛𝑐(𝑤/𝑤) × 𝜌 𝐵𝑢𝑂𝐻

𝜌 𝑆𝑛𝑂2 × 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

S4



3. Experimental Design:

Figure S2: (a) Multi Channel Slot Die with 13 reservoirs (blue circles) and 14 individual inlets 

(red circles, the one on the far right is not connected to a reservoir) , which is used for active 

layer, HTL and Ag NW coating. On each photograph, one of the channels which connect inlets 

to reservoirs is marked exemplarily with black dashed lines. (c) full view of the roll-to-roll 

coating machine.



Figure S3: Top: Schematic of the measured sheets, where the red lines mark the P1 lines 

(removal of bottom electrode), the blue lines the removal of the top electrode, the red boxes 

the active area of the solar cells, the dashed lines the five different SnO2 stripes, the yellow 

circles the contact spots of the top and bottom electrode and the black circles the alignment 

holes. Bottom: Measurement board that was specifically designed and built to measure these 

sheets. After mounting the sheets, the measurement board is covered with a glass plate (not 

shown here), sealed, and flooded with nitrogen for 30 s before exposing it to the solar simulator.



4. Comparison of solar cell parameters with results obtained by blade-coating on single 

substrates

In Figure S4, we present experimental data for D:A variation that we obtained by blade coating 

on separate substrates, with PCE, FF, Voc, Jsc, injection current (extracted from the light curve 

at +1.2 V) and leakage current (extracted from the dark curve at –0.5 V) given in the separate 

panels. The layer stack is the same as used in the R2R experiment 

(PET/IMI/SnO2/P3HT:oIDTBR/PEDOT:PSS/AgNW). The SnO2 thickness was 23 nm and 

the D:A ratio was varied as 2:1, 1.5:1, 1:1, 1:1.5, and 1:2. Figure 2 shows that the highest 

efficiency is achieved for a D:A ratio of 1:1.5, due to the highest Jsc for all the ratios that were 

tried. This value and also the general parameter dependence are consistent with the optimum 

ratio of 1.44 obtained from the high throughput experiment.

Figure S4: Performance parameters obtained from the D:A ratio variation with P3HT:o-

IDTBR by manual blade coating on single substrates. 

In Figure S5, we present analogous experimental data for SnO2 layer thickness variation and 

D:A ratio of 1:1. The layer thickness variation is achieved by varying the coating speed and 

the concentration of the SnO2 solution. The determination of layer thickness is not as 



straightforward as for the R2R experiment. Instead of calculating it from the used volume of 

the ink and the concentration, layer thicknesses were calibrated by measuring several films 

with a profilometer (shown in Figure S6). The accuracy of this measurement is limited by the 

thickness variation that can occur on the small substrate.

In the manual experiment, variation 6 with an approximate layer thickness of 11.5 nm exhibits 

the best efficiency value. This is consistent with the results in the main manuscript, where the 

variation with 12.1 nm thickness gives the best efficiency. Whereas there are further trends that 

are the same in both automated and manual experiment (a pronounced drop in Voc for SnO2 

thicknesses below ~10 nm, or a pronounced drop in Jsc for thicknesses of ~100nm), other trends 

cannot be exactly reproduced (for instance, the automated experiment shows a clear optimum 

at 12.1 nm, whereas the in manual experiment variations 2,3,4,5 are very similar within the 

statistical variation). 

Figure S5: Performance parameters obtained from the variation of the SnO2 layer thickness by 

manual blade coating on single substrates (D:A ratio 1:1). 



Figure S6: Calibration of SnO2 Layer thickness obtained from profilometer measurements. 

Left: measured values, right: interpolation for the coating speeds used for the data shown in 

Figure 3. For variations 6 – 9, thickness values were calculated under the assumption that the 

thickness is inversely proportional to the dilution.

5. GPR Analysis

Figure S7. Spectral decomposition of the lowest energetic optical absorption of the donor 

polymer (suffix “D”) in the solid state into contributions from the ordered (blue) and 

amorphous phase (orange, suffix “a”). The decomposed spectra are further decomposed into 

vibronic contributions, according to Spano’s model [Refs. 23, 24a (main manuscript)], 



assuming a single essential vibronic progression (dashed lines). For a donor-acceptor blend, 

the same analysis is done for the lowest energetic acceptor absorption. As the relative height 

of the dashed lines and their energetic spacing are both given by a single parameter (hD and Δc, 

respectively), the model accommodates significant spectral overlap between donor and 

acceptor absorption while still yielding reasonable uncertainties for the phase specific 

morphological parameters

List of spectral features and their relation to morphological parameters

Name 

[unit]

Provenience Meaning Morphology relation

aD/A 

[eV]

Fit 

parameter

Total area under blue curve Persistence length, 

anisotropy, film thickness

bD/A 

[eV]

Fit 

parameter

Gaussian bandwidth of each single 

blue dashed curve

Energetic disorder

cD/A 

[eV]

Fit 

parameter

Center energy of dashed curve for 

(0-0) vibronic transition 

Domain size / dielectric 

coupling

hD/A [] Fit 

parameter

Huang-Rhys factor for single 

effective vibronic progression 

Wavefunction delocalization 

(on-chain ordering)

nD/A [] Fit 

parameter

Relative suppression of (0-0) 

vibronic due to weak H 

aggregation according to Spano’s 

model (fixed to 0.5)

Weak H aggregates (on-

chain ordering)

Δc 

[eV]

Fit 

parameter

Effective single vibronic 

progression (fixed to 0.185 eV)

Vibronic coupling

atot 

[eV]

𝑎𝐷 + 𝑎𝑎𝐷 + 𝑎𝐴 + 𝑎1𝐴Total area under black curve 

(donor + acceptor)

Film thickness, anisotropy

Atot 

[eV]

𝑎𝐴 + 𝑎𝑎𝐴 Total area under black curve (only 

acceptor)

Total amount of acceptor

Dtot 

[eV]

𝑎𝐷 + 𝑎𝑎𝐷 Total area under black curve (only 

acceptor)

Total amount of donor

XA [] 𝐴𝑡𝑜𝑡/𝑎𝑡𝑜𝑡 Relative spectral weight of 

acceptor in lowest energetic 

D:A ratio



optical transition

XamD [] 𝑎𝑎𝐷/𝐷𝑡𝑜𝑡 Relative spectral weight of 

amorphous phase in donor 

absorption

Order, domain size

XamA [] 𝑎𝑎𝐴/𝐴𝑡𝑜𝑡 Relative spectral weight of 

amorphous phase in acceptor 

absorption

Order, domain size



Figure S8: Prediction of VOC from active layer morphology by minimum Redundancy 

Maximum Relevance embedded Gaussian Process Regression (mRMR-GPR). a) results 

mRMR-GPR runs: single predictor (blue symbols); two predictors including best blue predictor 

(orange); three predictors including best blue and best orange predictor (green), four predictors 

(red), five predictors(purple). b) differential explanation of variance by each selected predictor. 

Explanation values below 10% are considered irrelevant. The predictors are arranged in a 

spring model according to their explanation of variance c) one-dimensional intersections 

through the approximate objective function for VOC, as obtained by mRMR-GPR (blue solid 

line), light blue and dark blue areas: 95% confidence intervals for the uncertainty of a single 

prediction and uncertainty of the mean, respectively.

Figures S8a shows the working principle of the minimum Redundancy Maximum Relevance 

(mRMR) embedded feature extraction using GPR [Ref. 22 (main manuscript)]. First, VOC is 

predicted using only single predictors one by one (blue symbols). Several features are able to 

explain around 20 % of the variance in the measured VOC values. Next, the strongest single 

predictor (atot) is retained and a second predictor is included from the remaining predictor list 

(orange symbols). Comparing the orange symbols with the blue ones, we find for most of the 

predictors (see e.g. bA, cA) that they do not provide additional explanation of variance once atot 

is considered. However, there are two examples (bD and XamD) where the explanation of 

variance increases under the presence of atot (orange symbol has higher value than blue 



symbol). This points to a non-linear correlation between bD and VOC which was only found 

once the main correlation of atot was included in the feature list. Again, the stronger of these 

two predictors(bD) is included into the feature list, and the procedure is repeated (green 

symbols) until a maximum number of allowed features is reached (5 in this work). 



Figure S9: Prediction of VOC from active layer morphology and dETL by mRMR-GPR. a) 

results of mRMR-GPR runs clearly showing that dETL is more important for VOC than AL 

morphology: as a single predictor (blue), atot explains 25% of the variance, as shown in Figure 

S2a. But as soon as dETL (given as logarithmic value named  log_th) is included into GPR 

(orange), atot provides no additional explanation of variance, compare blue symbol with 

symbols of other colors at position “atot”, b) explanation of variance by selected predictors, c) 

one-dimensional intersections through the approximate objective function for VOC, as obtained 

by mRMR-GPR (blue solid line), light blue and dark blue areas: 95% confidence intervals for 

the uncertainty of a single prediction and uncertainty of the mean, respectively.



Figure S10: Prediction of dETL from active layer morphology by mRMR-GPR. a) Differential 

explanation of variance by selected predictors, b) mRMR – GPR procedure.

Figure S11: Prediction of the cross-web position Y from active layer morphology by mRMR-

GPR. a) Differential explanation of variance by selected predictors, b) results of mRMR – GPR 

procedure. c) One-dimensional intersections through the approximate objective function for 

VOC, as found by GPR (blue solid line), light blue and dark blue areas: 95% confidence intervals 

for the uncertainty of a single prediction and uncertainty of the mean, respectively.



Figure S12: Evolution of active layer morphology across (y) and along (x) the web direction. 

a) Donor exciton bandwidth, b) total exciton absorption (donor + acceptor), c) acceptor exciton 

energy.

Figure S12 shows the evolution of active layer morphology across (y) and along (x) the web 

direction. We find that the donor bandwidth (panel a) shows a variation nearly exclusively 

along x, where the D:A ratio is varied. Hence, in acceptor-rich blends (x>50, corresponding to 

wA  0.7 – 0.75), we find that donor bandwidth is high, which may point to an increase of ≅

disorder in the donor phase. From this observation, in Fig. 5d in the main text we draw causal 

links from x to wA, and from wA to bD, but we draw no arrow from y to bD.

In contrast, the total exciton absorption atot is mainly influenced along the cross-web direction 

y, see Fig. S12b. The total absorption, and hence the film thickness, is especially high for y>40, 

which is the region of the thinnest ETL stripe. This explains the high correlation between ETL 

thickness and atot, found in Fig. S8a; therefore, in the knowledge graph in Fig. 5d, we can draw 

a causal connection from y to an unknown processing condition PAL acting on AL, and from 

PAL to atot. We can speculate that PAL is given by an unequal distribution of nozzle flow rates. 

Finally, the acceptor exciton energy cA is influenced by both x and y, see Fig. S12c. A lower 

exciton energy means extended J aggregates. Along the web forward direction, we find that the 

exciton energy decreases for acceptor-rich blends, which makes sense because domains will be 

the larger the less disturbed by the polymer donor. However, we also see a symmetric evolution 

of cA along the cross-web direction y, meaning that the exciton energy is higher at the edges 

than in the center. This means that at constant XA, in the center larger acceptor domains are 

formed than in the edges, which may come from a small temperature gradient over the 

annealing mat, being slightly colder in the edges.



6. Optimal processing parameters

In order to find the uncertainty of the optimal processing parameters, we perform a brute force 

sampling of the two-dimensional objective function displayed in Fig. 5c), to encounter the data 

range where ucb >= max(PCE), where ucb is the upper confidence bound for PCE with respect 

to the uncertainty of the mean. We find XA,i=0.59+-0.04; and dETL = 17+-4 nm.

7. Drift-Diffusion Simulations

The drift-diffusion simulations were performed using the open-source program SIMsalabim 

version 4.45.[1, Ref. 25 in main manuscript]

SIMsalabim solves the 1D drift-diffusion equations which consist of a set of three main 

equations, the Poisson, continuity and drift-diffusion equations.

The Poisson equation:

∂
∂𝑥(𝜀(𝑥)

∂𝑉
∂𝑥) =  ‒ 𝑞 (𝑝(𝑥) ‒  𝑛(𝑥) +  𝐶𝑖(𝑥))

where x is the position in the device,1 q the electric charge, V the electrostatic potential, n and 

p the electron and hole concentrations, and ε the permittivity. Ci can represent any other type 

of charges in the systems such as: (i) doping with N-
A and N+

D being the ionized p-type and n-

type doping respectively, or (ii) the charged traps Σ+
T and Σ-

T for hole and electron traps. Such 

as the Poisson equation may be written as:

∂
∂𝑥(𝜀

∂𝑉
∂𝑥) =  ‒ 𝑞 (𝑝 ‒  𝑛 +  𝑁 ‒

𝐷 ‒ 𝑁 +
𝐴 + Σ +

𝑇 ‒ Σ ‒
𝑇 ))

The current continuity equations:

1 Note that for notation convenience the x dependence of the variables will be dropped in the following. 
However, in a multilayer stack not only densities values are meant to vary with x but also values such as 
mobilities and dielectric constant.



∂𝐽𝑛

∂𝑥
=  ‒ 𝑞 (𝐺 ‒ 𝑅) 

∂𝐽𝑝

∂𝑥
=  𝑞 (𝐺 ‒ 𝑅) 

with Jn,p the electron and hole currents, G and R the generation and recombination rate 

respectively. 

The movement of these free charges is governed either by diffusion due to a gradient in carrier 

density or by drift following the electric field such as the electron and hole currents can be 

written as:

𝐽𝑛 =  ‒ 𝑞 𝑛 µ𝑛 
∂𝑉
∂𝑥

 +  𝑞 𝐷𝑛
∂𝑛
∂𝑥

𝐽𝑝 =  ‒ 𝑞 𝑝 µ𝑝 
∂𝑉
∂𝑥

‒ 𝑞 𝐷𝑝
∂𝑝
∂𝑥

with µn,p the charge carrier mobilities and Dn,p carrier diffusion coefficients. The carrier 

diffusion coefficients can be written following Einstein's equation such as:

𝐷𝑖 =
𝑘𝐵𝑇

𝑞
µ𝑖

with kB the Boltzmann's constant, T the absolute temperature. 

For the simulation, we chose to place the cathode at x = 0 and the anode at x = L as a 

convention, L being the total thickness of the device.

In order to numerically solve the system of equations presented above we need to specify the 

boundary conditions for the carrier densities:

𝑛(0) =  𝑁𝑐 𝑒𝑥𝑝( ‒ 𝑞
𝜑𝑛

𝑘𝐵𝑇)     ⋯     𝑛(𝐿) =  𝑁𝑐 𝑒𝑥𝑝( ‒ 𝑞
𝐸𝑔 ‒ 𝜑𝑛

𝑘𝐵𝑇 ) 

𝑝(0) =  𝑁𝑣 𝑒𝑥𝑝( ‒ 𝑞
𝐸𝑔 ‒ 𝜑𝑝

𝑘𝐵𝑇 )     ⋯     𝑝(𝐿) =  𝑁𝑣 𝑒𝑥𝑝( ‒ 𝑞
𝜑𝑛

𝑘𝐵𝑇)



and the potential at the contacts:

𝑞 (𝑉(𝐿) ‒ 𝑉(0) + 𝑉𝑎𝑝𝑝) =  𝑊𝑐 ‒  𝑊𝑎

with Nc and Nv the effective density of states for the conduction and valence band respectively, 

here we chose Nc and Nv  to be equal, n and p the electron and hole injection barrier at the 𝜑 𝜑

cathode and anode, Vapp being the externally applied voltage and Wa and Wc the anode and 

cathode work functions respectively. 

The recombination rate R is typically expressed by adding the contribution from the band-to-

band/bimolecular recombination and Shockley-Read-Hall (SRH) recombination from 

equations:

𝑅𝐵 = 𝛾(𝑛𝑝 ‒  𝑛2
𝑖)

𝑅𝑆𝑅𝐻 =
𝐶𝑛𝐶𝑝Σ𝑇

𝐶𝑛(𝑛 + 𝑛1) + 𝐶𝑝(𝑝 + 𝑝1)(𝑛𝑝 ‒  𝑛2
𝑖)

γ is the bimolecular recombination rate constant, ni is the intrinsic carrier concentration, n1 and 

p1 are constants that depend on the trap energy level (Etrap), and Cn and Cp are the capture 

coefficients for electrons and holes respectively. n1 and p1 are defined as followed:

𝑛1 =  𝑁𝑐𝑒𝑥𝑝( ‒ 𝑞
𝐸𝐶 ‒  𝐸𝑡𝑟𝑎𝑝

𝑘𝐵𝑇 )
𝑝1 =  𝑁𝑣𝑒𝑥𝑝( ‒ 𝑞

𝐸𝑡𝑟𝑎𝑝 ‒ 𝐸𝑣 

𝑘𝐵𝑇 )
For more information about how this system of equations is solved we encourage the readers 

to read references [2,3,4].



Table S1: Device parameters used to simulate the devices. The varied parameters values for 

each donor:acceptor combination and the different SnO2 thicknesses can be found in Figures 

S10a-f. Note that for simplicity and to remove some parameters to optimize for the fits the 

PEDOT:PSS/AgNW is set as an effective electrode forming an ohmic contact with the active 

layer and with a work function Wa.

Parameter Unit Value

P3HT:o-IDTBR

Ec / Ev eV 3.6 / 4.8

Nc m-3 2 × 1027

L nm 100

εr - 3.5

µp m2 V-1 s-1 2.52 × 10 ‒ 8

µn m2 V-1 s-1 Varied

Gehp m-3 s-1 Varied

γ m3 s-1 Varied

ΣT m-3 Varied

Etrap eV 4.21

Cn / Cp m3 s-1 10 ‒ 13

SnO2

Ec / Ev eV Varied / 8.18

Nc m-3 3.63 × 1024

L nm 4.1 – 12.2 – 36.6 

εr - 10

ST (SnO2 Interface) m-2 Varied

Electrode Work functions

Wa 

(PEDOT:PSS/AgNW)

eV 4.8

Wc

(IMI)

eV Aligned to the SnO2 Ec

External Parameters

Rs Ω m2 Varied

Rsh Ω m2 Varied



T K 295



Figure S13: Fitting results for the different donor:acceptor ratios for the different SnO2 

thicknesses: a) 4.1 nm b) 12.1 nm and c) 36.6 nm



Figure S14: Additional parameters obtained from drift-diffusion fitting, plotted against the 

acceptor mass fraction wA and for different ETL thicknesses (blue: 4.1nm, green: 12.1nm, 

violet: 36.6 nm, as given in panel a).  a) series resistance Rs, b) parallel resistance Rp, c) 

bimolecular recombination coefficient , d) electron mobility µn, e) bulk trap density T, f) 

surface trap density ST. None of these parameters show a clear dependence on the acceptor 

fraction or the ETL thickness. 

8. Fitting procedure with Bayesian optimization

Our fitting procedure is based on the bayesian optimization package from scikit-

optimize[https://scikit-optimize.github.io/stable/] using the skopt.Optimizer framework.

The skopt.Optimizer is used to minimize the mean-square error (MSE) between the 

experimental data and the simulated data with SIMsalabim by optimizing the value of the 

different material parameters described in table S1. Figure S15 describes the logic behind the 

optimization procedure. In our case, the experimental data is the 1 sun JV curve for each device 

and the physical model is the drift-diffusion model described in the previous section. The cost 

function to minimize is the MSE and we used a gaussian process regressor (GPR) as a surrogate 

model (we also tested other surrogates but the GPR performed the best). To ensure a good 

balance between exploration and exploitation of the entire parameter space we used the 

‘gp_hedge’ option for the acquisition function. We performed a random initial sampling (80 

points) using the Latin hypercube algorithm followed by 200 points of bayesian optimization 

distributed over 4 cores. 



Figure S15: Flowchart describing the optimization procedure to perform the JV-curve fitting 

procedure using Bayesian optimization.
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