Supporting Information:

Unveiling coordination transformation for dynamically enhanced hydrogen evolution catalysis

Liming Deng^a, Sung-Fu Hung^b, Sheng Zhao^a, Wen-Jing Zeng^b, Zih-Yi Lin^b, Feng Hu^a, Yaoyi Xie^a, Lijie Yin^a, Linlin Li^a, and Shengjie Peng^a*

^a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. Email: pengshengjie@nuaa.edu.cn
^b Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

Experimental section

Material synthesis

Materials:

All chemicals and materials were used as received without further purification. Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 99%), sodium borohydride (NaBH₄, 96%), potassium hydroxide (KOH, 99%), Ti₃AlC₂ powders (200 mesh), lithium fluoride (LiF, 99%), hydrochloric acid (HCl), sodium carbonate (Na₂CO₃, 99%), sodium tungstate (Na₂WO₄·2H₂O, 99%) and platinum on graphitized carbon (Pt/C, 20 wt%) were purchased from Macklin.

Preparation of $Ti_3C_2T_x$ MXene nanosheets:

Ti₃C₂T_x MXene was synthesized by selective etching Al from Ti₃AlC₂ using in situ HFforming etchants. The etching solution was prepared by adding 2.0 g of LiF into 30 mL of 9 M HCl, followed by stirring for 5 min. Then, 2.0 g of Ti₃AlC₂ powder was slowly added into the above solution at 45 °C and stirred for 36 h. Subsequently, the acidic mixed solution containing MXene was washed with distilled water several times by centrifugation (4500 rpm) until the supernatant reached neutral pH (d > 6). Finally, the obtained powders were dispersed in 250 mL of distilled water and sonicated for 2 h under Ar flow, followed by centrifuging for 1 h at 3500 rpm. The resultant supernatant was decanted and collected. (MXene dispersion content \approx 3 mg mL⁻¹).

Preparation of CoB_i/MXene and CoB_i:

In order to obtain MXene nanosheets that have metal ions adsorbed onto them, a solution was prepared by dissolving 30 mL of MXene dispersion (3 mg mL⁻¹) and 10 mmol of $Co(NO_3)_2 \cdot 6H_2O$ in N₂-saturated deionized water (DI, 30 mL). This solution was designated as solution A. Solution B was prepared by dissolving 10 mmol of NaBH₄ in N₂-saturated DI water under an ice bath. Solution B was added dropwise to solution A while stirring in an ice bath, and the resulting mixture was allowed to stand for 1 h. The formed precipitate, $CoB_i/MXene$, was washed with DI water and then vacuum-dried at 60

°C for 6 h. As a comparison, individual CoB_i was prepared as a counterpart. To obtain CoB_i , the excess NaBH₄ solution was directly added to an N₂-saturated mixed solution of $Co(NO_3)_2$ ·6H₂O in an ice bath. The precipitate was also washed and dried as before.

Preparation of CoC_i/MXene and CoW_i/MXene:

To prepare CoC_i/MX ene, a solution denoted as A was obtained by dissolving 10 mmol of Na_2CO_3 in 30 mL of DI. Next, 10 mmol of $Co(NO_3)_2 \cdot 6H_2O$ was dissolved in a mixture of 30 mL of MXene and 30 mL of DI water saturated with N_2 , resulting in a solution referred to as B. Solution B was then gradually added dropwise to solution A and stirred at room temperature for 6 h. Subsequently, the dispersion was collected through centrifugation, washed, and dried. The same procedure was followed to prepare CoW_i/MX ene, but Na_2CO_3 was replaced with Na_2WO_4 .

Fabrication of Pt/C at Ni foam:

An immobilization ink solution was firstly prepared by mixing 10 mg Pt/C with 40 μ L Nafion, then dispersed in 1.0 mL of water-ethanol solution (V_{Water}/V_{Ethanol} = 4:1), followed by 40 min sonication. A piece of the treated Ni foam was then immersed into the ink solution for 1 min and dried in air at room temperature. Such a loading treatment process was repeated for 3 times to obtain Pt/C work electrode with a Pt/C mass loading of ~1.5 mg cm⁻².

Material Characterizations

Observations of the morphologies and microstructures of various materials were conducted using SEM (Regulus 8100), TEM, and HRTEM (FEI Tecnai G2 F20). The crystal structures of electrocatalysts were examined using XRD (Bruker D8). To determine the surface composition of the catalysts, measurements were taken with Al K α X-rays utilizing XPS (Escalab 250Xi electron spectrometer). The BET-specific surface area was obtained by conducting N₂ adsorption-desorption tests using the V-Sorb 2008P instrument. X The XANES and EXAFS measurements were conducted at the Taiwan Photon Source (TPS) beamline, 44A Quick-scanning XAS, located at the National

Synchrotron Radiation Research Center (NSRRC) in Hsinchu, Taiwan. The in-situ Raman spectra were collected utilizing RENISHAW instrumentation, with an excitation wavelength of 633 nm.

A specialized acrylic container with a 1-millimeter gap was designed and sealed using Kepton tape to perform in-situ XRD measurements under conditions similar to those utilized during electrochemical characterization. The sample and electrolyte were then subjected to 16 keV of incident X-rays transmitted perpendicular to the surface, with the signal from the resulting synchrotron X-ray diffraction collected through the use of a large Debye-Scherrer camera located at BL-01C2 within the NSRRC in Taiwan. The XRD patterns were calibrated against a CeO₂ standard and calibrated to a wavelength of 1.5418 Å using Winplotr.

In-situ X-ray absorption spectroscopy, including XANES and EXAFS at Co K-edge, were collected in total-fluorescence-yield mode using a silicon drift detector in BL-44A at National Synchrotron Radiation Research Center (NSRRC), Taiwan. The measurement in a typical three-electrode setup as the same condition in the electrochemical characterization case was performed in a specially designed Teflon container with a window sealed by Kempton tape. The scan range was kept in an energy range of 7600-8300 eV for Co K-edge. Subtracting the baseline of pre-edge and normalizing that of post-edge obtained the spectra. EXAFS analysis was conducted using Fourier transform on k²-weighted EXAFS oscillations. All EXAFS spectra are presented without phase correction.

Electrochemical measurements

The electrochemical measurements were carried out in a three-electrode system utilizing an Autolab PGSTAT302 in a 1 M KOH electrolyte. The working electrode was fabricated by mixing the obtained catalyst with a conductive agent (carbon black) and binder (Polyvinylidene fluoride, PVDF) in a mass ratio of 7:2:1 to obtain a catalyst slurry. The slurry was subsequently coated on a 1×1 cm₂ nickel foam substrate and dried at 60 °C under vacuum for 12 h, resulting in a loading mass of approximately 1.5 mg cm⁻². A graphite rod was used as the counter electrode (CE), while Ag/AgCl (Saturated KCl) electrode was employed as the reference electrode (RE). All potentials were converted to the reversible hydrogen electrode (RHE) scale by applying the Nernst equation ($E_{RHE} = E_{Ag/AgCl} + 0.198 + 0.0591 \times pH$). Linear sweep voltammetry (LSV) curves were recorded at a scan rate of 5 mV s⁻¹, and *iR* compensation was applied. The ECSA was calculated from non-Faraday regions of the cyclic voltammetry (CV) curves obtained at different scan rates. EIS was performed with a frequency range of 0.1-10⁵ Hz and an amplitude of 5 mV.

Computational Methods

To conduct the DFT calculations within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) formulation, the Vienna Ab Initio Package (VASP) was utilized. The ionic cores were described using projected enhanced wave (PAW) potentials, and valence electrons were taken into account using a plane-wave basis set with a kinetic energy cutoff of 450 eV. The Gaussian smearing method with a width of 0.05 eV was employed to allow for partial occupancies of the Kohn-Sham orbitals. The electronic energy was considered self-consistent when the energy change was less than 10⁻⁴ eV, and a geometry optimization was deemed convergent when the force change was less than 0.05 eV Å⁻¹. Dispersion interactions were described using Grimme's DFT-D3 methodology, and the Brillouin zone integral used the surface structures of a 1×1×1 Monkhorst-Pack K-point sampling. The free energies (ΔG) of basic reaction steps were calculated as $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S$, where ΔE is the difference in total energy, ΔE_{ZPE} and ΔS represent the differences in zero-point energy and entropy variation, and T denotes the temperature (set to 300 K here).

Supplementary Fig.s

Fig. S1. SEM images of (a and b) accordion-like MXene $Ti_3C_2T_x$. (c and d) SEM images of bare CoB_i at different magnifications.

The HF-etched $Ti_3C_2T_x$ presents an accordion-like multilayer structure. From the SEM image of CoB_i , it can be observed that they are smooth and uniform with a micron-sized planar area.

Fig. S2. SEM images of CoBi/MXene with different ratios (a) $CoB_i/Mxene-10$; (b) $CoB_i/Mxene-30$; (c) $CoB_i/Mxene-50$.

CoB_i/MXene hybrids with different addition portions of MXene solution show no significant morphology change.

Fig. S3. (a) TEM and (b) HRTEM images of the CoB_i nanosheets.

Fig. S4. HADDF-STEM image and corresponding elemental mappings of CoB_i/MXene.

The uniform distribution of Co, B, Ti, O, and C elements in CoB_i/MXene nanohybrids was visualized by elemental mapping analysis.

Fig. S5. XRD patterns of CoB_i/MX ene with different ratios.

The absence of peaks in the XRD pattern suggests that CoB_i/MX ene hybrids with different amounts of MXene are amorphous.

Fig. S6. XRD patterns of CoB_i/MXene-500°C.

The material crystallinity can be enhanced by annealing to confirm its composition. In the XRD pattern of CoB_i/MX ene-500°C, the diffraction peak are well-matched with $Co_3(BO_3)_2$ (PDF #25-102), indicating that CoB_i/MX ene is a composite of amorphous $Co_3(BO_3)_2$ and MXene.

Fig. S7. The pore size distribution diagram and N_2 adsorption and desorption curve of CoB_i and CoB_i/MX ene.

Fig. S8. High-resolution XPS spectra of (a) Co 2p, (b) Ti 2p, and (c) B 1s.

Fig. S9. (a) Polarization curves corresponding to different LSV scans of CoB_i/MXene on the CFP substrate. (b) Performance comparison of catalyst A-CoB_i/MXene on nickel foam (NF) and carbon fiber paper (CFP) substrates.

Fig. S10. Consecutive LSV curves of HER for (a) MXene and (b) CoB_i.

Fig. S11. Complete LSV curves of (a) CoB_i/MX ene and (b) CoB_i during the activation process with the scan rate of 50 mV s⁻¹.

Fig. S12. LSV curves of A-MXene, A-CoB_i, and A-CoB_i/MXene in comparison with commercial Pt/C in the range of $0\sim 200$ mA cm⁻².

Fig. S13. LSV curves of different electrodes before and after iR correction in 1.0 M KOH.

Fig. S14. EIS curves of A-MXene, A-CoB_i, A-CoB_i/MXene, and Pt/C, respectively.

Fig. S15. (a) HER Polarization curves, (b) Tafel slope of $CoB_i/MXene$ with different ratios.

CoB_i/MXene exhibited the best HER electrocatalytic performance compared to other catalysts with different amounts of MXene.

Fig. S16. (a-c) CV of A-MXene, A-CoB_i, and A-CoB_i/MXene at different scan rates in the voltage range of 0.56 to 0.66 V, respectively; (d) Double-layer capacitance (C_{dl}) of A-MXene, A-CoB_i, and A-CoB_i/MXene (where ΔJ is the difference between anodic and cathodic current densities in CV curves at different scan rates in a non-Faradaic region).

The value of C_{dl} was calculated to evaluate the electrochemical surface area (ECSA).

Fig. S17. (a) ECSA values of A-MXene, A-CoB_i, and A-CoB_i/MXene. (b) HER polarization curves normalized by ECSA.

Fig. S18. LSV polarization curves with 85% iR correction and Tafel plots of (a and b) A-CoB_i/MXene and (c and d) commercial Pt/C catalysts measured at different temperatures ranging from 313 to 343 K in 1 M KOH solution.

Fig. S19. The detected and theoretical volume of H_2 generated in a potentiostatic experiment.

Fig. S20. (a) HER polarization curves of $A-CoB_i/MXene$ in different electrolytes. (b) Chronopotentiometry curve of $A-CoB_i/MXene$ in 1 M KOH seawater electrolytes.

Fig. S21. (a) Schematic of the two-electrode AEM electrolyzer devices using Pt/C or A- CoB_i/MX ene and NiFe LDH as cathode and anode. (b) Polarization curves for overall water splitting of the devices with Pt/C or A- CoB_i/MX ene and NiFe LDH electrodes. (c) Chronopotentiometric curve of the device with a A- CoB_i/MX ene electrode in 1 M KOH electrolyte.

Fig. S22. SEM images of (a and b) CoB_i/MXene-10th.

Fig. S23. TEM images of A-CoB_i/MXene.

Fig. S24. (a) Low-magnified and (b) high-magnified TEM images of MXene, respectively.

Fig. S25. The photo of the contact angle of CoB_i .

Fig. S26. Comparison of the (a) Co 2p, (b) Ti 2p, (c) B 1s, (d) O 1s XPS spectra before and after activation of CoB_i/MXene.

Fig. S27. WT-EXAFS of CoB_i at different stages of reaction.

Fig. S28. (a and b) XANES and FT-EXAFS spectra of the CoB_i/MXene electrode after different cycles. (c) The radial distance of the Co–O shell and the Co–Co shell for CoB_i/MXene.

Fig. S29. (a) First derivative curves (b) Co K-edge EXAFS oscillation function of CoB_i/MXene-1st, CoB_i/MXene-5th, CoB_i/MXene-20th, and CoB_i/MXene-50th.

Fig. S30. XRD patterns of CoB_i/MXene before and after long-term stability testing in 1 M KOH.

After long-term stability testing, the XRD results indicated that the Co(OH)₂ phase was continuously retained.

Fig. S31. Co 2p for CoB_i/MXene after the HER stability test.

Fig. S32. The DFT Calculated structural models for (a) CoB_i , (b) $CoB_i/MXene$, (c) $Co(OH)_2/MXene$, (d) B_i - $Co(OH)_2/MXene$.

Fig. S33. Charge density difference of Co(OH)₂/MXene.

Fig. S34. The projected density of states (PDOS) of (a) CoB_i , (b) $CoB_i/MXene$, (c) $Co(OH)_2/MXene$, (d) B_i -Co(OH)_2/MXene.

The projected density of state (PDOS) suggests that the local density of state at the Fermi level of Co 3d orbital increases with the coordination of the $B(OH)_4$, which boosts the catalytic activity.

Fig. S35. Chemisorption models of (a) H₂O, (b) H and OH, (c) OH, and (d) H on the CoB_i.

Fig. S36. Chemisorption models of (a) H_2O , (b) H and OH, (c) OH, and (d) H on the $CoB_i/MXene$.

Fig. S37. Chemisorption models of (a) H_2O , (b) H and OH, (c) OH, and (d) H on the $Co(OH)_2/MX$ ene.

Fig. S38. Chemisorption models of (a) H_2O , (b) H and OH, (c) OH, and (d) H on the B_i -Co(OH)₂/MXene.

Fig. S39. LVS curves of (a) CoC_i/MXene, (b) CoW_i/MXene.

Fig. S40. SEM images of (a) CoC_i/MXene and (b) CoW_i/MXene.

Fig. S41. XRD patterns of (a) $CoC_i/MXene$, (b) $CoW_i/MXene$ before and after long-term stability testing in 1 M KOH.

Fig. S42. SEM images of (a) A-CoC_i/MXene and (b) A-CoW_i/MXene.

Fig. S43. (a) Co 2p of $CoC_i/MXene$ and A-Co $C_i/MXene$. (b) Co 2p of $CoW_i/MXene$ and A-Co $W_i/MXene$.

Fig. S44. XAS of (a and b) CoC_i/MXene, (c and d) CoW_i/MXene.

Fig. S45. The projected density of states (PDOS) of (a) CoCi/MXene, (b) CoWi/MXene.

Fig. S46. Chemisorption models of H on the (a) $Ci-Co(OH)_2/MX$ ene and (b) Wi-Co(OH)_2/MXene.

Reaction coordinate

Fig. S47. The Gibbs free energy of H adsorption (ΔG_{H^*}) of X-Co(OH)₂/MXene (X = B_i, C_i, and W_i).

Supplementary Tables

	ICP (wt%)	XPS (at%)
Со	65.2%	9.2%
Ti	6.4%	2.6%

 Table S1. Inductive Coupled Plasma (ICP) results and XPS data of CoBi/MXene.

Pre-catalyst	Activated-catalyst	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
CoB _i /MXene	Bi-Co(OH)2/MXene	15	30.5	This work
Co _{3-x} Ni _x O ₄ /NF	Co _y Ni _{1-y} O	57	76.9	ACS Catal., 2021, 11, 8174
NiSe ₂	NiSe	65	76	ACS Energy Lett., 2020, 5, 2483
$CoSe_{1.26}P_{1.42}$	Co(OH) ₂ and metallic Co	43	90	ACS Energy Lett., 2019, 4, 987
Mo ₂ C- Mo(VI)O _x /CC	Mo ₂ C-Mo(IV)O _x /CC (1.0 M HClO ₄)	60	53	Angew. Chem. Int. Ed., 2020, 59, 3544
Ni-BDT NSs	Ni NSs	80	70	Chem, 2017, 3, 122
СоР	CoP and Co(OH)x	100	76	Chem. Sci., 2019, 10, 2019
CoW sulfide	CoO/Co(OH) ₂ +WO ₄ ²⁻	189	127	J. Mater. Chem. A, 2021, 9, 11359
$TiO_2@Co_2P_4O_{12}$	metallic Co	81@20	87	J. Mater. Chem. A, 2019, 7, 12457
CoNPs@C	Co(OH) ₂	58	51	Nano Energy, 2018, 49, 14
NiS ₂	metallic Ni	67	63	Nano Energy, 2017, 41, 148
Ni ₃ S ₂ @NPC	O2-induced Ni3S2@NPC	91.6 (1M H ₂ SO ₄)	63.5	Nano Energy, 2017, 36, 85
TiO ₂ @CoCH	Co(OH) ₂	97@20	80	Nano Energy, 2021, 82, 105732
1T'-MoTe ₂	distortion of the MoTe ₂	178 (1M H ₂ SO ₄)	68	Nat. Commun., 2019, 10, 4916
CoF ₂	Co(OH) ₂	54	56	Adv. Sci. 2021, 2103567
Ni₄Mo alloy	metal Ni+Mo ₂ O ₇ ²⁻	86@100	-	Angew. Chem. Int. Ed. 2021, 60, 7051
MoP@PC	MoP and a few layers of coated graphene	68	41	Nano-Micro Lett., 2021, 13, 215
CoFeO@BP	CoFe phosphide	88	51	Angew. Chem. Int. Ed., 2020, 59, 21106

Table S2. Comparison of the HER activity for a-CoBi/MXene with other activated electrocatalysts.

	Overpotential	rpotential Overpotential	
Sample	(mV) @10 mA	(mV) @500 mA	References
	cm ⁻²	cm ⁻²	
A-CoBi/MXene	15	180	This work
2H Nb _{1.35} S ₂	46	247	Nat Mater. 2019, 18, 1309.
NiMoO _x /NiMoS	38	186	Nat. Commun. 2020, 11, 5462.
MoS ₂ /Mo ₂ C	45	191	Nat. Commun. 2019, 10, 269.
FeP/Ni ₂ P	85	230	Nat. Commun. 2018, 9, 2551.
CF/VMFP	45	230	Nat. Commun. 2021, 12, 1380.
MoC-Mo ₂ C-790	98.2	292	Nat. Commun. 2021, 12, 6776.
HC-MoS ₂ /Mo ₂ C	280	320	Nat Commun. 2020, 11, 3724.
Co-doped CeO ₂	75	240	J. Am. Chem. Soc. 2020, 142, 6461
Ni ₂ P/NF	85	245	J. Am. Chem. Soc. 2019, 141, 7537
Co-NC-AF	85	272	Adv.Mater. 2021, 33, 2103533.
P-Fe ₃ O ₄ /IF	39	212	Adv. Mater. 2019, 31, 1905107.
Cr _{0.4} Mo _{0.6} B ₂	180	390	Adv. Mater. 2020, 32, 2000855.
Co-Mo ₅ N ₆	19	206	Adv. Energy Mater. 2020, 10, 2002176.
C-Ni _{1-x} O/3DPNi	32	220	Adv. Energy Mater. 2020, 10, 2002955.
Ni/FeOOH	38	287	Adv. Energy Mater. 2020, 10, 1904020.
NFN-MOF/NF	87	293	Adv. Energy Mater. 2018, 8, 1801065.
E-Co SAs	59	280	Adv. Funct. Mater. 2021, 31, 2100547.
Pt@Cu-0.3	35	300	Adv. Funct. Mater. 2021, 31, 2105579.
Ni-Mo-B HF	23	329	Adv. Funct. Mater. 2021, 32, 2107308.
PS-Cu	121	750	Adv. Funct. Mater.2022, 2112367.
Ni ₂ P-CuP ₂	51	360	ACS Nano. 2021, 15, 5586-5599.
NiMnOP/NF	81	195	Nano Energy. 2020, 69, 104432.
NiFe- LDH/MXene/NF	132	205	Nano Energy. 2019, 63, 103880.
MFN-MOFs(2:1)/NF	79	234	Nano Energy. 2019, 57, 1–13.
Co ₁ /PCN	89	N.A.	Nat. Catal. 2018, 2, 134.
CrO _x /Cu–Ni	48	N.A.	Nat. Energy 2018, 4, 107.
W ₁ Mo ₁ -NG	67	N.A.	Sci. Adv. 2020, 23, 6586.
NFP/C-3	87	N.A.	Sci. Adv. 2019, 5, 6009.
Fe(OH) _x @Cu-MOF NBs	112	N.A.	Sci. Adv. 2021, 7, 580.
PW-Co ₃ N NWA/NF	41	N.A.	Nat. Commun. 2020, 11, 1853.
Ni–Fe NP	46	N.A.	Nat. Commun. 2019, 10, 5599.

Table S3. Comparison of the HER activity for A-CoBi/MXene with other non-noble metal-based electrocatalysts in alkaline electrolyte.

NiCo-SAD-NC	61	N.A.	Nat Commun. 2021, 12, 6766.
3CoMo-Vs	75	N.A.	Nat Commun. 2020, 11, 2253.
$1T_{0.72}$ -MoS ₂ @NiS ₂	95	N.A.	Nat Commun. 2021, 12, 5260.
MoC-Mo ₂ C-790	98.2	N.A.	Nat Commun. 2021, 12, 6776.
LSC/K-MoSe ₂	128	N.A.	Nat Commun. 2021, 12, 4606.
CuCo-CAT/CC	52	N.A.	Adv. Mater. 2021, 33, 2106781.
CoNi-inf	72	N.A.	Adv. Mater. 2020, 32, 2002857.
Ni/Ni(OH) ₂	77	N.A.	Adv. Mater. 2020, 32, 1906915.
Ni@N-HCGHF	95	N.A.	Adv. Mater. 2020, 32, 2003313.
MoO ₂ -FeP@C	103	N.A.	Adv. Mater. 2020, 32, 2000455.
Ni ₄ Mo	34	N.A.	Angew. Chem. Int. Ed. 2021, 60, 7051.
Ni ₃ N-Co ₃ N PNAs/NF	43	N.A.	Angew. Chem. Int. Ed. 2021, 60, 5984.
S-NiFe ₂ O ₄	61	N.A.	Angew. Chem. Int. Ed. 2021, 60, 14117
$Co-MoS_2@CoS_2$	76	N.A.	Angew. Chem. Int. Ed. 2022, 61, 202114899.
CoFeO@BP	88	N.A.	Angew. Chem. Int. Ed. 2020, 59, 21106.
P-MoP/Mo ₂ N	89	N.A.	Angew. Chem. Int. Ed. 2021, 60, 6673.
CoP _x @CNS	91	N.A.	Angew. Chem. Int. Ed. 2020, 59, 21360.
N-c-CoSe ₂	98	N.A.	Angew. Chem. Int. Ed. 2021, 60, 21575.
S-Co _{0.85} Se-1	108	N.A.	Angew. Chem. Int. Ed. 2021, 60, 12360.
2D meso-Mo ₂ C/Mo ₂ N	110	N.A.	Angew. Chem. Int. Ed. 2022, 61, 202112298.
NiP ₂ -650	134	N.A.	Angew. Chem. Int. Ed. 2021, 60, 259.
Co-MoS ₂	137	N.A.	Angew. Chem. Int. Ed. 2021, 60, 7251.
Co _{0.9} Ni _{0.1} Se	185.7	N.A.	Angew. Chem. Int. Ed. 2020, 59, 22743.

Table S4. Comparison of the HER activity for A-CoBi/MXene with other noble metalbased electrocatalysts in alkaline electrolyte.

Sample	Overpotential (mV) @10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	References
A-CoBi/MXene	15	30.5	This work
Pt/MgO	39	39	Nat. Commun. 2022, 13, 2024
Cl-Pt/LDH	25.2	34.33	Nat. Commun. 2022, 13, 6875
Pt-ACs/CoNC	40	N.A.	Nat. Commun. 2022, 13, 2430
V _O -Ru/HfO ₂ -OP	39	29	Nat. Commun. 2022, 13, 1270
Ru NPs/NC-900	19	40	J. Am. Chem. Soc. 2022, 144, 19619
Ru-a-CoNi	15	34	Angew. Chem. Int. Ed. 2022, 61, e202114160
Ru/P-TiO ₂	27	28.3	Angew. Chem.Int. Ed. 2022, 61, e202212196
$Pt_{doped} @WC_x$	20	15	Adv.Mater. 2022, 34, 2206368
Pt _{SA} -Mn ₃ O ₄	24	54	Energy Environ. Sci. 2022, 15, 4592- 4600
D-NiO-Pt	20	31.1	Adv. Energy Mater. 2022, 12, 2200434

path	CN ^a	$\sigma^2(\text{\AA})^2$	$\Delta E (eV)$	R (Å)	R factor
Со-О	5.4(3)	0.003(5)	-4.1(2)	1.92(2)	0.007
Со-О-Со	4.0(1)	0.002(5)	-4.1(2)	2.82(2)	- 0.007
Со-О	5.2(1)	0.002(1)	-6.7(1)	1.88(1)	0.010
Со-О-Со	5.0(2)	0.004(2)	-6.7(1)	2.83(3)	
Со-О	6.0(4)	0.001(3)	-2.2(1)	1.90(1)	0.015
Со-О-Со	5.0(1)	0.002(2)	-2.2(1)	2.86(2)	- 0.015
Со-О	7.2(3)	0.003(2)	-3.6(5)	1.88(5)	- 0.013
Со-О-Со	5.8(4)	0.001(1)	-3.6(5)	2.84(1)	
Со-О	7.8(2)	0.002(1)	-1.9(4)	1.89(2)	- 0.010
Со-О-Со	5.6(1)	0.003(3)	-1.9(4)	2.84(3)	- 0.010
	path Co-O Co-O-Co Co-O-Co	path CN ^a Co-O 5.4(3) Co-O-Co 4.0(1) Co-O 5.2(1) Co-O-Co 5.0(2) Co-O 5.0(2) Co-O 6.0(4) Co-O-Co 5.0(1) Co-O 7.2(3) Co-O-Co 5.8(4) Co-O-Co 5.8(2) Co-O-Co 5.6(1)	path CN^a $\sigma^2 (Å)^2$ Co-O5.4(3)0.003(5)Co-O-Co4.0(1)0.002(5)Co-O5.2(1)0.002(1)Co-O-Co5.0(2)0.004(2)Co-O6.0(4)0.001(3)Co-O-Co5.0(1)0.002(2)Co-O7.2(3)0.003(2)Co-O-Co5.8(4)0.001(1)Co-O7.8(2)0.002(1)Co-O-Co5.6(1)0.003(3)	path CN^a $\sigma^2 (\AA)^2$ $\Delta E (eV)$ Co-O5.4(3)0.003(5)-4.1(2)Co-O-Co4.0(1)0.002(5)-4.1(2)Co-O5.2(1)0.002(1)-6.7(1)Co-O5.0(2)0.004(2)-6.7(1)Co-O6.0(4)0.001(3)-2.2(1)Co-O5.0(1)0.002(2)-2.2(1)Co-O5.8(4)0.001(1)-3.6(5)Co-O7.8(2)0.002(1)-1.9(4)Co-O-Co5.6(1)0.003(3)-1.9(4)	path CN^a $\sigma^2 (Å)^2$ $\Delta E (eV)$ $R (Å)$ Co-O5.4(3)0.003(5)-4.1(2)1.92(2)Co-O-Co4.0(1)0.002(5)-4.1(2)2.82(2)Co-O5.2(1)0.002(1)-6.7(1)1.88(1)Co-O5.0(2)0.004(2)-6.7(1)2.83(3)Co-O6.0(4)0.001(3)-2.2(1)1.90(1)Co-O-Co5.0(1)0.002(2)-2.2(1)2.86(2)Co-O7.2(3)0.003(2)-3.6(5)1.88(5)Co-O-Co5.8(4)0.001(1)-3.6(5)2.84(1)Co-O7.8(2)0.002(1)-1.9(4)1.89(2)Co-O-Co5.6(1)0.003(3)-1.9(4)2.84(3)

Table S5. FEFF fitting parameters for Co–K edge of CoB_i/MXene in situ XAS data.

^aCoordination number.

Condition	path	CN ^a	$\sigma^2 (\text{\AA})^2$	$\Delta E (eV)$	R (Å)	R factor
OCV -	Со-О	4.9(2)	0.005(1)	-4.1(4)	1.90(2)	- 0.014
	Со-О-Со	3.2(1)	0.002(2)	-4.1(4)	2.84(2)	- 0.014
-0.05 V	Со-О	5.1(3)	0.002(1)	-1.5(4)	1.89(7)	- 0.010
-0.05 V	Со-О-Со	5.1(4)	0.001(4)	-1.5(4)	2.83(6)	- 0.010
-0.10 V	Со-О	5.6(2)	0.005(1)	-5.1(5)	1.90(1)	0.008
	Со-О-Со	5.8(4)	0.002(3)	-5.1(5)	2.84(2)	- 0.008
-0.15 V	Со-О	5.8(5)	0.005(1)	-5.0(4)	1.92(1)	- 0.010
	Со-О-Со	5.8(6)	0.003(2)	-5.0(4)	2.84(2)	- 0.010
-0.20 V	Со-О	6.0(3)	0.001(2)	-3.5(3)	1.93(2)	- 0.012
	Со-О-Со	5.8(2)	0.002(5)	-3.5(3)	2.86(5)	0.012

Table S6. FEFF fitting parameters for Co–K edge of CoB_i in situ XAS data.

^aCoordination number.

	d-band center (eV)	$\Delta G_{\mathrm{H}^{*}}\left(\mathrm{eV}\right)$	E _{ads} (H ₂ O*) (eV)	Kinetic barrier (eV)
CoB _i	-1.496	-0.69713	-0.574	0.85261
CoB _{i/} MXene	-1.305	-0.41334	-1.031	0.76135
Co(OH) ₂ /MXene	-1.139	-0.36545	-1.566	0.52659
B _i -Co(OH) ₂ /MXene	-0.965	-0.20436	-1.819	0.41065

 Table S7. Comparison of different calculated energies on the prepared catalysts.