SUPPORTING INFORMATION – 6 pages

Contactless Measurement of Photovoltage in BiVO₄ Photoelectrodes

Sahar Daemi,^a Anna Kundmann,^a Kathleen Becker, ^a Peter Cendula, ^b Frank E. Osterloh,*,^a

^a Department of Chemistry, University of California, Davis, CA 95616, USA (fosterloh@ucdavis.edu)

^b Faculty of Electrical Engineering and Information Technology, University of Žilina, Liptovsky

Mikulas, 03104, Slovakia

 Table S1. Semiconductor and junction information.

Semiconductors	n-BiVO ₄	
Band Gap / eV	2.4	
Dielectric Constant	68.0 ª	
Thickness / µm	1.4	
Conduction Band edge / V vs RHE	0.041	
Valence band edge / V vs RHE	2.44	
E _F (Flatband potential) / V vs RHE	0.10 ^b	

Redox Couples	I ₃ -/I-	SO4 ²⁻ /SO3 ²⁻	O ₂ /H ₂ O ₂	HCF 3-/4-	
E ⁰ / V vs NHE	0.54	0.17	0.70	0.36	
E ⁰ / V vs RHE (calculated)	0.85 at pH 6.7 (KI ₃ :KI 5:95)	0.17 at pH 9.6	0.70 at pH 4.2	0.70 at pH 5.6	
E _F / V vs RHE (experimental)	0.89	0.17	0.80	0.70	
Built-in potential (band bending) / V	0.79	0.07	0.70	0.60	
Depletion layer width / nm ^c	11	3	10	9	

^a from Wang et al. ¹

 $^{\rm b}$ from Kim et al. 2

^c calculated from Poisson equation.

Figure S2. Photos of semiconductor electrodes. a) $BiVO_4$ on FTO. b) $BiVO_4/H_2O_2$ after SPV experiment, c) $BiVO_4$ electrode during short circuit current experiment in aqueous H_2O_2 .

Figure S3. Additional surface photovoltage data under monochromatic illumination of variable irradiance. BiVO₄ film on FTO in contact with aqueous solutions of a) KI/KI₃ (470 nm) b) Na₂SO₃ (400 nm), c) H₂O₂ (400 nm), or d) K_{3/4}[Fe(CN)₆] (HCF) (400 nm). Empty circles are light and filled circles are dark periods.

BiVO ₄ / K(I ₃ ,I)				BiVO ₄ / Na ₂ SO ₃		
	average	STD /	STD /		STD /	
Intensity / mW cm ⁻²	$\Delta CPD / V$	V	%	Intensity / mW cm ⁻² Δ CPD / V	V	STD / %
0.002	-0.03	0.02	66	0.0007 -0.012	0.006	50
0.02	-0.15	0.06	37	0.004 -0.03	0.02	67
0.23	-0.31	0.03	9	0.03 -0.075	0.01	13
2.25	-0.42	0.02	4	0.55 -0.158	0.02	13
23.0	-0.50	0.01	2	5.8 -0.167	0.006	4
32.5	-0.52	0.01	2	48.1 -0.17	0.01	6
BiVO ₄ /H ₂ O ₂				BiVO₄/ HCF		
	average	STD /	STD /		STD /	
Intensity / mW cm ⁻²	$\Delta CPD / V$	V	%	Intensity / mW cm ⁻² ΔCPD / V	V	STD / %
0.004	-0.035	0.01	28	0.0007 0	-	-
0.03	-0.11	0.02	18	0.004 0	-	-
0.42	-0.24	0.01	4	0.03 0	-	-
3.9	-0.36	0.02	5	0.55 0	-	-
36.9	-0.46	0.02	4	5.8 0	-	-
51.6	-0.49	0.01	2	48.1 0	-	-

 Table S4. SPV statistics. Data from Figures 3 and S2.

Figure S5. FTO/BiVO₄ Fermi levels from OCP measurements versus calomel electrode in the dark and under monochromatic illumination (irradiances given in mW cm⁻²). For the K(I₃,I) electrolyte a 470 nm LED was used, while all other systems used a 400 nm LED. All electrolytes (except for c) were de-aerated with N₂ gas, except for c. Data in b) was obtained after exposing the BiVO₄ photoelectrode to a light-dark cycle (168 mW cm⁻² of 400 nm) to establish a stable Fermi level in the dark.

Figure S6. Short circuit photocurrent against Pt counter electrode in aqueous electrolyte. a) n-BiVO₄/K(I₃,I) under LED light (470 nm, 201 mW cm⁻²), b) BiVO₄/ Na₂SO₃ under LED light (400 nm, 575 mW cm⁻²), c) BiVO₄/ H₂O₂ under LED light (400 nm, 435 mW cm⁻²), d) BiVO₄/ HCF under LED light (400 nm, 435 mW cm⁻²). The weak 10 μ A cm⁻² current is attributed to reduction of O₂ traces at the counter electrode. Electrolytes were de-aerated with bubbling N₂ gas, except for c), which was recorded in the presence of air.

References

- 1. Wang, Q. *et al.* Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure. *Journal of the American Chemical Society* **139**, 1675-1683, (2017).
- 2. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. *Science* **343**, 990-994, (2014).