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Supplementary Experimental Section

Electrochemical Evaluations

To compare the capacity retention of Li|LiCoO, full cells at low-temperature compared to that
at room-temperature, fully charged full cells at room-temperature were discharged at 0 °C, -20
°C, and -30 °C, respectively. The fast-charging performance of the Li|LiCoO, full cell was
evaluated by sequentially increasing the charging C-rate to C/3, C/2, 1C, 2C, 3C, 5C, 7C, and
10C at a fixed discharge rate of C/3. After the 10C evaluation, capacity retention was examined
at a charging C-rate of C/3. The evaluation voltage range was set at 3.0-4.4 V vs. Li/Li". The
Li" transference number of each electrolyte was calculated using the Bruce—Vincent method
and monitored in Li|Li cells using a combination of DC polarization and electrochemical
impedance spectroscopy (EIS). A constant polarization bias (AV) of 5 mV was applied to
record the initial (Iy) and steady-state (Is) currents, along with the impedance before (Ry) and
after (Ry) polarization. For EIS, a constant voltage between 1 MHz and 10 mHz was applied
under open-circuit conditions to record the impedance before (R() and after (Ry) polarization.
Subsequently, the Li* transference number was calculated with the following equation.!

1,(AV -1 R.,)

Li* transference number:

The aforementioned cells were all fabricated in an argon-filled glovebox.

Characterization

To monitor the chemical composition of 1,2-bis(1,1,2,2-tetrafluoroethoxy)ethane (TFEE), it
was analyzed by 500-MHz 'H, 3C, 170, and '°F NMR spectroscopy using a coaxial nuclear
magnetic resonance (NMR) tube (Willmad-LabGlass). THF-dg (99.5%, NMR grade, BK

Instruments Inc.) with 1 wt.% of hexafluorobenzene (C¢Fg, 99.5%, NMR grade, Sigma-



Aldrich) was used as an internal standard for NMR analysis. Donor number (DN) of 1,2-
dimethoxyethane (DME) and TFEE was measured by 2’Na analysis. 20 mM of NaTFSI was
dissolved in DME and TFEE respectively, for DN measurement.> 0.5M NaClO4 D,0 was used
as an internal reference for 22Na NMR analysis. DN was calculated by the following equation:
(2.106*238) + 32.74. The amount of free solvents (DME and TFEE) in the electrolytes was
analyzed by Fourier Transform Infrared Spectroscopy (FT-IR). For EIS, a constant voltage
between | MHz and 10 mHz was applied under open-circuit conditions to record the resistance
of the SEI during cycling (10%, 30, and 50" cycles) with each electrolyte. In-situ DEMS
analysis was used to monitor the gas evolution during the first charging of the Li|LiCoO, full
cells with LiFSI DME (1.3 M) (LCE), LiFSI DME/TFEE (1.3 M; 2/8, v%) (PWSE), and LiFSI
DME/TFEE (1.3 M; 2/8, v%)+1% LiFMDFB+0.05% AgNO; (PWSE+LiFMDFB+AgNO;)
from the open-circuit voltage (OCV) to 4.8 V vs. Li/Li" under 25 °C. The gas evolution in the
cells was detected at 5 min intervals. The amount of transition-metal deposition on the Li-metal
anodes after a storage test at 60 °C for 10 days was analyzed using Time-of-Flight Secondary
Ion Mass Spectrometry (TOF-SIMS). Thermogravimetric analysis (TGA) was used to analyze
the volatility of DME, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), TFEE,

LHCE, and PWSE in the temperature range of 30 °C to 150 °C under a N, environment.



Supplementary Notes

Note S1. Peak shift of LiFSI in PWSE structure (170 NMR)
The 70 signal of the sulfonyl oxygen group of LiFSI was up-shifted from 171.15 to 166.35
ppm, indicating that the amount of FSI-anion involved in the solvation-structure increased

after the introduction of TFEE into the electrolyte (Fig. S5(a)).

Note S2. Defluorination mechanism of TFEE

Density functional theory (DFT) calculations were used to analyze the defluorination
mechanism of TFEE (which contributes to LiF-based SEI formation). As indicated by the
reaction diagram of the reductive decomposition of TFEE, the reaction pathway involving 2 e~
reduction was thermodynamically favorable and the TFEE was decomposed to C,H, and
C,HOF,~ (Fig. S19(a)). The LUMO energy levels of TFEE, according to the degree of
reduction, validated the occurrence of a 2 e reduction of TFEE (Fig. S19(b)). The
defluorination of the C,HOF, anion, possible due to interactions with Li*-ions, formed LiF
(Fig. S19(c)). Thus, interactions with Li*-ions significantly influence the defluorination
mechanism, transforming the reaction to a kinetically and thermodynamically favorable

reaction.

Note S3. Scanning electron microscopy (SEM) morphology after Li deposition on Cu
substrate

Fig. S29 shows the surface and cross-sectional SEM images of electrochemically plated Li on
a Cu. Despite the presence of compressive forces, Li was electrochemically deposited in a
nonuniform size and shape (mainly fibrous) in the LCE, with a void between the
electrodeposited Li with a thickness of 41.8 um. LCE showed a low ICE of ~15.3%; thus, the

electrodeposited Li is possibly composed of active Li and large amounts of LiSFI- and DME-



decomposition byproducts. Moreover, porous lithium deposition increased the surface area of
Li, which increased the probability of direct contact between the electrolyte and active Li.3
This may cause severe problems, such as active Li consumption, reduction of the CE, and
electrolyte depletion.* Furthermore, thick and resistive Li deposition obstructs the migration of
Li*-ions, which contributes to the formation of dead Li in an electrochemically isolated state.
However, in TFEE containing electrolytes, Li was deposited in a relatively uniform size and
shape (mainly particle-like deposition), and there was almost no void between the deposited
Li, resulting in a relatively thin Li layer. Due to the deposition of small and densely arranged
Li, compact Li deposition was observed in PWSE+LiFMDFB+AgNO;. Thus, TFEE,
LiFMDFB, and AgNO; facilitate the formation of a stable SEI, which minimizes undesirable

electrolyte decomposition on the Li metal anode.

Note S4. Effect of LIFMDFB and AgNO; on the Li metal anode, respectively

SEM images of Li deposition on a Cu in PWSE+LiFMDFB (LiFSI DME/TFEE (1.3 M; 2/8,
v%)+1% LiFMDFB) and PWSE+AgNO; (LiFSI DME/TFEE (1.3 M; 2/8, v%)+0.05%
AgNO;) were used to analyze the effect of LIFMDFB and AgNO; on the Li metal anode
further. Without a compressive force, PWSE+LiFMDFB showed dendritic morphology; highly
resistive LiF-based SEI formation caused Li deposition along the vertical path, without direct
penetration of the SEI (Fig. S30(a) and (b)).> However, in PWSE+AgNQO;, formation of an
LiF-Ag based SEI enabled Li deposition through the SEI (lateral growth) (Fig. S30(c) and (d)).
With a compressive force (1.3T spacer), due to the effect of pressure, PWSE+LiFMDFB
showed nodule-like morphology at the surface and dendritic morphology at the bottom of the
deposited Li (Fig. S30(e) and ()).* However, in PWSE+AgNQO;, compact and particle-like
morphology was observed, with/without compressive forces (Fig. S30(g) and (h)). Dendritic

morphology was not observed when LIFMDFB and AgNO; were applied together, indicating



that AgNOj significantly influenced Li deposition.

Note SS. Effect of stable and ion-conductive SEI (LiF+Ag-incorporated SEI) under a high
areal-capacity condition

Fig. S31 shows the morphology and inset digital photographs of Li deposition on a Cu with a
compressive force, according to different areal-capacities. At a low areal-capacity of 2 mAh
cm2, nonuniform Li deposition occurred in the LCE. At areal-capacities of 6 mAh cm and 10
mAh cm2, SEI-containing deposited Li occupied the marginal space, and no porous parts were
observed (Fig. S31(a)). Unlike the LCE, the PWSE showed relatively uniform Li deposition at
2 mAh cm2. The morphology of deposited Li was maintained relatively well, even at 6 mAh
cm2. However, at 10 mAh cm2, the deposited Li was partially compressed nonuniformly (Fig.
S31(b)). Interestingly, PWSE+LiFMDFB+AgNO; showed completely compact and uniform
Li deposition from 2 mAh cm? to 10 mAh cm2 (Fig. S31(c)). In an environment with relatively
low pressurization, the trend shown in Fig. S31(a) was observed (Fig. S32 and S33). Very little
Li deposition occurred at 2 mAh cm? in the LCE; the deposited Li showed a mossy morphology
with numerous voids (Fig. S32). Additionally, despite an increased amount of Li deposition on
Cu, due to weak adhesion, the Li detached easily from Cu. In the PWSE, relatively large
particles were deposited on the Cu substrate. However, at 10 mAh ¢cm or higher, dendritic
deposition was observed. Systems with a high areal-capacity show larger amounts of Li
deposition than those with a low areal-capacity within the same time. Therefore, Li metal-
electrolyte interfaces constructed by TFEE are unsuitable for large amounts of Li deposition,
which accompanies severe volume changes. A steady and dense deposition of relatively small
Li particles was observed in PWSE+LiFMDFB+AgNOj;. Notably, its plating overpotential,
even under high areal capacities, was lower than that of other electrolytes, since the stable SEI

developed by functional additives could withstand the stress accompanied by severe volume



changes (Fig. S33).

Note 6. Optimal amounts of TFEE, LiFMDFB, and AgNO; for Li|LiCoO, full cell
operation

The optimal amounts of TFEE, LIFMDFB, and AgNOs for the stable cyclability of Li|LiCoO,
full cells were determined through electrode-electrolyte interface stabilization.
PWSE+LiIFMDFB+AgNO; shows the best cycle stability due to the enhanced oxidative
stability of the electrolyte and construction of an optimal SEI and cathode-electrolyte interface
(CED) by TFEE, LiFMDFB, and AgNOs. Insufficient TFEE may adversely influence the
oxidative stability of the electrolyte, because of the increased possibility of nucleophilic attack
with free DME (Fig. S39). Moreover, lean additives may be insufficient for acceptable SEI and

CEI generation (Fig. S40).



Table S1. Details of the electrolytes (LCE, PWSE, PWSE+LiIFMDFB+AgNOj3, and LHCE)

PWSE
Electrolyte LCE PWSE {LiFMDFB LHCE
+AgNO;
LiFSI (M) 13 13 13 13
DME/TFEE ~ DME/TFEE  DME/TTE
Solvents DME (2/8, %) (2/8, V%) (2/8. V%)
1% LiFMDFB
Additives - - +0.05% -
AgNO3
lonic conductivity 17.67 4.34 4.5 3.65
(mS cm™)
Viscosity (cP) 221 5.50 5.65 42
Transference
0.528 0.502 0.485 0.325
number (tr;+)
Li* diffusion ) ) )
coetticient (msty 442910 2.803 x 10 i 158 % 10

Table S2. Electrolyte used for testing the Li|LiCoO, full cell cyclability

Amount of electrolyte (56.67 u@)

Per a coin cell E/C ratio

0.0408 g cell! 8.5 mg mAh!
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Fig. S1. Beneficial effects of the PWSE structure on battery performance.
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Fig. S2. Reason for choosing LiFSI, DME, TFEE, LiFMDFB, and AgNO; for developed

electrolyte in the present study.
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Fig. S3. Comparison of cycle performance at 25 °C, storage performance at 60 °C (open-

circuit voltage (OCV) drop), viscosity, ionic conductivity, and Li transference number of LCE,

HCE, LHCE, WSE, PWSE, and PWSE+LiIFMDFB+AgNO;. 1.3 M LiFSI DME is labeled as

LCE, 4 M LiFSI DME is labeled as HCE, 1.3 M LiFSI DME/TTE (2/8, v%) is labeled as

LHCE, 4 M LiFSI DEE is labeled as WSE, 1.3 M LiFSI DME/TFEE (2/8, v%) is labeled as

PWSE, and 1.3 M LiFSI DME/TFEE (2/8, v%)+1% LiFMDFB+0.05% AgNO; is labeled as

PWSE+LiIFMDFB+AgNO:s.
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Fig. S5. Comparison of solvation-structures of the LCE and PWSE. (a) "0 NMR spectra of
1,2-dimethoxyethane (DME), DME/TFEE (2/8, v%), and the LCE and PWSE. (b) '°F NMR

spectra of DME/TFEE (2/8, v%) and the PWSE.
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Fig. S6. 170 NMR spectra of 1.3 M LiFSI DME/TFEE (1/9, v%), 1.3 M LiFSI DME/TFEE
(2/8, v%), 1.3 M LiFSI DME/TFEE (3/7, v%), 1.3 M LiFSI DME/TFEE (5/5, v%), 1.3 M

LiFSI DME/TFEE (7/3, v%), and 1.3 M LiFSI DME/TFEE (9/1, v%).
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Fig. S9. (a) 'F NMR spectra of 1.3 M LiFSI DME/TFEE (1/9, v%), 1.3 M LiFSI DME/TFEE
(2/8, v%), 1.3 M LiFSI DME/TFEE (3/7, v%), 1.3 M LiFSI DME/TFEE (5/5, v%), 1.3 M
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result of TFEE (oxygen atoms). (c) Electrostatic potential result of TFEE molecule.
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well as the presence of lithium salt.
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of the Li*-ion with the TFEE molecule.



DME LiFSI TFEE

@c UH @0 @N
OF Os QL I

LCE condition
1.3 M LiFSI in DME

PWSE condition
1.3 M LiFSI in DME/TFEE
(2/8 vol%)

Fig. S15. Model systems for molecular dynamics (MD) simulations considering two types of
electrolyte conditions (namely, the LCE and PWSE). For the LCE condition, the number of
DME and LiFSI molecules are 500 and 68, respectively. For the PWSE condition, the number

of DME, TFEE, and LiFSI molecules are 500, 1168, and 338, respectively.
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Fig. S17. (a) Molecular structures for calculating the binding energies of the Li*-ion in the LCE
and PWSE. Each molecular structure is obtained from the results of MD simulations. (b)

Binding energies of the Li*-ion in the LCE and PWSE.
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Fig. S18. Construction of LiF-rich solid-electrolyte interphase (SEI) on Li metal anodes by
TFEE. (a) C 1s, (b) O 1s, and (c) F 1s XPS profiles of Li metal anodes (size: 15 pi) after being

kept in contact with DME (solvent) and TFEE (solvent) for 3 days at 25 °C.
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Fig. S19. (a) Reaction diagram of the reductive decomposition of TFEE according to the degree
of reduction. Red colored boxes indicate the most thermodynamically favorable molecular
structures, black colored boxes indicate the other decomposed configurations, and the label ‘e’
indicates an electron. (b) Lowest unoccupied molecular orbital (LUMO) energy level diagram
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Fig. S21. Adsorption energies of the investigated salt (LiFSI), solvents (DME and TFEE), and

additives (LiIFMDFB and AgNO;) on the Li (100) surface, which is the most stable Li metal
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The FMDFB anion can be defluorinated on the Li surface.
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Fig. S22. Surface chemistry of Li metal anodes retrieved from Li|LiCoO, full cells precycled
with the LCE, PWSE, and PWSE+LiFMDFB+AgNO;. (a) C 1s, (b) O 1s, (¢) F Is, and (d) Ag

3d XPS profiles of a Li metal anode after precycling at 25 °C.
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Fig. S23. Electrochemical characteristics of Li|Cu cells. Voltage profiles of Li|Cu cells cycled
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Fig. S24. (a) Magnified voltage profiles of initial Li plating in Li|Cu cells. (b) Comparison of

the initial Coulombic efficiency (ICE) and initial plating overpotential of Li|Cu cells.
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Fig. S25. Li corrosion test of Li|Cu cells at 0 V vs. Li/Li*, 75 h after precycling at 25 °C.
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Fig. S27. Electrochemical performances of Li|Li cells. Voltage profiles of a CCD test with the
(a-b) LCE, (c-d) PWSE, and (e-f) PWSE+LiFMDFB+AgNO; at current densities from 0.5 mA

cm?to 10 mA cm™2.
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Fig. S28. Voltage profiles of Li|Li symmetric cells at 1 mA cm2, 2 mAh cm2, and 55 °C.
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Fig. S29. Surface morphologies and digital images of Li deposited on Cu with the (a) LCE, (b)
PWSE, and (c) PWSE+LiIFMDFB+AgNOj;. Cross-sectional SEM images of the Li metal after
plating on Cu with the (d) LCE, (e) PWSE, and (f) PWSE+LiFMDFB+AgNO;. Energy
dispersive spectrometer analysis of Li deposited on Cu with the (g) LCE, (h) PWSE, and (i)
PWSE+LiIFMDFB+AgNOQOj; electrolytes. All the analyses are conducted using a 2016 coin-cell
with a compressive force (1.0T spacer). A foil-type 20 um Li metal anode was used, and the

areal-capacity of the spent Li as a counter electrode was 2 mAh cm™.
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Fig. S30. Surface morphologies and digital images of Li deposited on Cu with the (a)
PWSE+LiIFMDEFB and (c) PWSE+AgNO; obtained by SEM, and the corresponding probable
mechanisms of Li deposition in the (b) PWSE+LiFMDFB and (d) PWSE+AgNO; during Li
plating without a compressive force (0.5T spacer). Surface and cross-sectional SEM images of
the Li metal after plating on Cu in the presence of a compressive force (1.3T spacer) with the
(e-f) PWSE+LiIFMDEFB and (g-h) PWSE+AgNOs. A foil-type 20 um Li metal anode was used
and the areal-capacity of the spent Li as a counter electrode was 2 mAh c¢cm™ (theoretical

thickness : 10 pm).
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Fig. S31. Cross-sectional, surface morphologies and inset digital images of Li deposited on Cu
with the (a) LCE, (b) PWSE, and (c) PWSE+LiFMDFB+AgNO; with areal-capacities of 2
mAh cm2, 6 mAh cm2, and 10 mAh cm2. All the analyses are conducted using a 2032 Li|Cu
coin-cell with a compressive force (1.3T spacer). A foil-type 200 pm Li metal anode was used

and the C-rate for Li plating was C/10.
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Fig. S32. Surface morphologies and inset digital images of Li deposited on Cu substrates with
the (a) LCE, (b) PWSE, and (c) PWSE+LiFMDFB+AgNOj; with different areal-capacities (2
mAh cm2, 6 mAh cm2, 10 mAh cm?, and 15 mAh cm). All the analyses are conducted using
a 2016 coin-cell without a compressive force (0.5T spacer). A foil-type 200 um Li metal anode

was used and the C-rate for Li plating was C/10.
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Fig. S33. Comparison of the plating overpotentials under various areal-capacities (2 mAh cm-
2,4 mAh cm?, 6 mAh cm2, 8 mAh cm2, 10 mAh cm™, and 15 mAh ¢m™) in the LCE, PWSE,

and PWSE+LiIFMDFB+AgNO; with a (a) compressive force (1.3T spacer) and (b) without a

compressive force (0.5T spacer).
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Fig. S34. Schematic illustration of Li|LiCoO, full cell configuration.
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Fig. S35. Voltage profiles of Li|LiCoO, full cells during precycling at 25 °C in the LCE, PWSE,

and PWSE+LIFMDFB+AgNO:s.
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Fig. S36. Cycle performance of Li|LiCoO, full cells with a charge voltage cut-off of 4.4 V vs.

Li/Li* at 25 °C. Magnified (a) discharge capacity and (b) Coulombic efficiency (CE).
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Fig. S37. Reproducibility of cycle performance of Li|LiCoO, full cells cycled with (a) LCE,
(b) PWSE, and (c) PWSE+LiIFMDFB+AgNO; electrolytes with a charge voltage cut-off of 4.4

V vs. Li/Lit at 25 °C.
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Fig. S38. Electrochemical performance of Li|LiCoO, full cells cycled in the LCE, PWSE, and
PWSE+LiIFMDFB+AgNO;. Voltage profiles of Li|LiCoO, full cells with a charge cut-off
voltage of 4.4 V wvs. Li/Li", cycled in the (a) LCE, (b) PWSE, and (c)
PWSE+LiIFMDFB+AgNOs;, and charge cut-off voltage of 4.5 V vs. Li/Li", cycled in the (d)

LCE, (¢) PWSE, and (f) PWSE+LiFMDFB+AgNOs.
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Fig. S39. Electrochemical characteristics of Li|LiCoO, full cells cycled in the DME,

DME/TFEE (5/5, v%) (LiFSI DME/TFEE (1.3 M; 5/5, v%)), DME/TFEE (4/6,

v%) (LiFSI

DME/TFEE (1.3 M; 4/6, v%)), DME/TFEE (3/7, v%) (LiFSI DME/TFEE (1.3 M; 3/7, v%)),

and DME/TFEE (2/8, v%) (LiFSI DME/TFEE (1.3 M; 2/8, v%)). (a) Voltage profiles during

precycling and (b-c) cycle performance of Li|LiCoO, full cells in the potential range of 3.0 V

to 4.4 V vs. Li/Lit at 25 °C.
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Fig. S40. Electrochemical characteristics of Li|LiCoO, full cells cycled with various salt and
additive concentrations. (a) Cycle performance of Li|LiCoO, full cells cycled with LiFSI
DME/TFEE (1 M; 2/8, v%)+1% LiFMDFB+0.05% AgNO; (1 M), LiFSI DME/TFEE (1.3 M;
2/8, v%)+1% LiIFMDFB+0.05% AgNO; (1.3 M), and LiFSI DME/TFEE (1.5 M; 2/8, v%)+1%
LiFMDFB+0.05% AgNOs (1.5 M) electrolytes. (b) Cycle performance of Li|LiCoO, full cells
cycled with LiFSI DME/TFEE (1.3 M; 2/8, v%) (TFEE), LiFSI DME/TFEE (1.3 M; 2/8,
v%)+1% LiFMDFB (PWSE+LiFMDFB), LiFSI DME/TFEE (1.3 M; 2/8, v%)+0.05% AgNO;
(PWSE+AgNOs;), and LiFSI DME/TFEE (1.3 M; 2/8, v%)+1% LiFMDFB+0.05% AgNO;
(PWSE+LiFMDFB+AgNO;). (c) Cycle performance of Li|LiCoO, full cells cycled with LiFSI
DME/TFEE (1.3 M; 2/8, v%)+0.5% LiFMDFB+0.05% AgNO; (0.5% LiFMDFB+0.05%
AgNQO3), LiFSI DME/TFEE (1.3 M; 2/8, v%)+1% LiFMDFB+0.05% AgNO; (1%
LiFMDFB+0.05% AgNOs), and LiFSI DME/TFEE (1.3 M; 2/8, v%)+1.5% LiFMDFB+0.05%
AgNO; (1.5% LiFMDFB+0.05% AgNO;). (d) Cycle performance of Li|LiCoO, full cells

cycled with LiFSI DME/TFEE (1.3 M; 2/8, v%)+1% LiFMDFB+0.02% AgNO; (1%



LiFMDFB+0.02% AgNOs), LiFSI DME/TFEE (1.3 M; 2/8, v%)+1% LiFMDFB+0.05%
AgNO; (1% LiFMDFB+0.05% AgNOs;), and LiFSI DME/TFEE (1.3 M; 2/8, v%)+1%
LiFMDFB+0.1% AgNO; (1% LiFMDFB+0.1% AgNOs) electrolytes. The aforementioned

cells were cycled from 3.0 V to 4.4 V vs. Li/Li* at 25 °C and C/2.
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Fig. S41. Cycle performance of Li|LiCoO, full cells cycled with PWSE+LiFMDFB+LiINO;
and PWSE+LiIFMDFB+AgNOs electrolytes with a charge voltage cut-off of 4.4 V vs. Li/Li*

at 25 °C.
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Fig. S42. Cycle performance of Li|LiCoO, full cells cycled with LCE+LiFMDFB+AgNO; and
PWSE+LiIFMDFB+AgNO; electrolytes with a charge voltage cut-off of 4.4 V vs. Li/Li" at 25

°C.
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Fig. S43. Electrochemical characteristics of Li|LiCoO, full cells cycled with a carbonate-based
electrolyte (LiPF¢ EC/DMC (1.3 M; 3/7, v%)+10% FEC, labeled Carbonate+FEC) and
PWSE+LiIFMDFB+AgNOj;. Cycle performance of Li|LiCoO, full cells from 3.0 Vto 4.4 V vs.

Li/Li* at (a) 25 °C and (b) 45 °C.

300 100

= _
£ g
< 250 g
E © 20 um LilLiC0O,, 3-4.4 V, +tC/2,f 80 8
Z 2001 © 55 °C, E/C ratio : 8.5 mg mAh"’ %5 2
O ¢el L 2
% 150 1 ~© =

(&}
o ] 0
S 100 : 3
3 - 120 S
g 50 {e LCE =
g 0 0 PW$E+LiFMDFB+AgN03' 0 8

0 10 20 30 40 50 60
Cycle number

Fig. S44. Cyclability of Li|LiCoO, full cells with a charge cut-off voltage of 4.4 V vs. Li/Li*

at 55 °C.
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Fig. S45. Electrochemical characteristics of Li|LiCoO, full cells cycled in the LCE, HCE,
LHCE, WSE-1, WSE-2, PWSE, and PWSE+LiFMDFB+AgNOs;. LiFSI DME (1.3 M) is
labeled LCE, LiFSI DME (4 M) is labeled HCE, LiFSI DME/TTE (1.3 M; 2/8, v%) is labeled
LHCE, LiFSI DEE (4 M) is labeled WSE-1, LiFSI DMP (2 M) is labeled WSE-2, LiFSI
DME/TFEE (1.3 M; 2/8, v%) is labeled PWSE, and LiFSI DME/TFEE (1.3 M; 2/8, v9%)+1%
LiIFMDFB+0.05% AgNOs; is labeled PWSE+LiIFMDFB+AgNO;. Cycle performance of the
aforementioned Li|LiCoO, full cells was analyzed from 3.0 V to 4.4 V vs. Li/Li" at (a) 25 °C

and (b) 45 °C.
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Fig. S46. Fast-charging performance of WSE, LHCE, and PWSE in Li|LiCoO, full cells.

Discharge C-rate was fixed at C/3. 4 M LiFSI DEE is labeled as WSE, 1.3 M LiFSI DME/TTE

(2/8, v%) is labeled as LHCE, and 1.3 M LiFSI DME/TFEE (2/8, v%) is labeled as PWSE.
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Fig. S48. Cross-sectional SEM images of lithium-metal anodes cycled with the (a) LCE and

(b) PWSE+LiFMDFB+AgNOs in Li|LiCoO, full cells after 30 cycles at C/2 and 45 °C.
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Fig. S49. Li deposition thickness on cycling Li|Li cells with the LCE, PWSE, and

PWSE+LiIFMDFB+AgNO; (during in-situ OM analysis).
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Fig. S51. Anodic stability of electrolytes with a stainless-steel working electrode. Linear sweep
voltammetry (LSV) measurements were conducted from the OCV to 5.2 V vs. Li/Li" at a scan

rate of 1 mV s! at (a) 25 °C, (b) 45 °C, and (¢) 60 °C.
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Fig. S52. Electrochemical floating test of Li|LiCoO, full cells at (a) 4.4 V vs. Li/Li* and (b)

4.6 V vs. Li/Li", 10 h after precycling at 25 °C.
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Fig. S53. Surface chemistry of LiCoO, cathodes retrieved from Li|LiCoO, full cells cycled
with the LCE, PWSE, and PWSE+LiIFMDFB+AgNOs. (a) C 1s, (b) O 1s, (c) F 1s, and (d) Ag

3d XPS profiles of LiCoO, cathodes after precycling at 25 °C.
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Fig. S54. Schematic illustration of LIFMDFB-derived CEI on the LiCoO, cathode.
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Fig. S55. Surface chemistry of LiCoO, cathodes retrieved from Li|LiCoO, full cells precycled
with the 0.05 wt% AgNO; (1.3 M LiFSI DME/TFEE (2/8, v%)+1% LiFMDFB+0.05%
AgNO3) and 0.5 wt% AgNO; (1.3 M LiFSI DME/TFEE (2/8, v%)+1% LiFMDFB+0.5%

AgNO;) electrolytes. Ag 3d XPS profiles of LiCoO, cathodes after precycling at 25 °C.
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Fig. S56. SEM images and EDAX of LiCoO, cathodes cycled with the (a) LCE and (b)

PWSE+LiIFMDFB+AgNO; after 30 cycles at C/2 and 45 °C.
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Fig. S57. STEM images of LiCoO,; cathodes cycled with PWSE.



(003)

(006)

PWSE
d(003
+LiFMDFB _A =(4_70)A (101)[\012)
+AgNO3 -
d(003)
=4.71A A
PWSE —— B
d(003)
=482A I
LGE e B
M d(003) A
o | =469 A i,
Prlstlne 77777777777 = ——— G e St et Bl Luste o missian doeie
17 18 19 20 21 34 36 38 40 42
2 theta angle (8) 2 theta angle (8)
(104)
PWSE (018)
+LiFMDFB WWJ\‘ (110) (113)
+AgNO; i
PWSE M‘M/LW PRI o W, WS, S
LCE w,——'\//\w-‘ﬂwv——---\m MWM
:"' &
Pris‘tine SR »»\.»Nx'f ‘\_mﬁ,_ka_..\,.\_ PP p— kfiﬁ“uuku«-*wwvﬂ“v“awrm:

43 44 45 46

2 theta angle (8)

47 62 64 66 68 70 72

2 theta angle (6)

Fig. S58. X-ray diffraction patterns (XRD) of a pristine LiCoO, cathode and LiCoO, cathodes
retrieved from Li|LiCoO, full cells after 100™ cycles with the LCE, PWSE, and

PWSE+LiIFMDFB+AgNO; electrolytes at C/2 and 25 °C.
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Fig. S59. XRD patterns of a pristine LiCoO, cathode and LiCoO, cathodes retrieved from

Li|LiCoO; full cells after 30 cycles with the LCE and PWSE+LiFMDFB+AgNO; electrolytes
at C/2 and 45 °C.
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Fig. S60. Concentration of Co- and Al-dissolved in the electrolytes after being kept in contact

with a fully delithiated LiCoO,; cathode for 7 days at 60 °C.
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Fig. S61. Anodic stability of electrolytes with an Al working electrode. LSV measurements

were conducted from the OCV to 5.2 V vs. Li/Li* at a scan rate of 1 mV s’! at 25 °C.
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a 45 b 45 — ¢
S 411 S A [ s T S
(] (0] (]
E 3.7 3 37 g
o o K]
> 331 > 33 >
29 ; ; ; ; T 2.9 R
0 30 60 90 120 150 180 0 30 60 S0 120 150 180 0 30 60 90 120 150 180
Specific capacity (mAh g'1) Specific capacity (mAh g’1) Specific capacity (mAh g’1)
d
Electrolyte LCE PWSE PWSE~+LiFMDFB+AgNO,
(0 °C) 88.2% 94.5% 94.9%
— (-20°C) 57.6% 77.4% 79.3%
— (-30°C) short 64.2% 71.4%

Fig. S63. Electrochemical performance of Li|LiCoO, full cells at low temperatures. Capacity
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Fig. S64. Images of (a) LCE, (b) PWSE, and (¢c) PWSE+LiFMDFB+AgNOj electrolytes after

storage at -20 °C for 1 week.
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Fig. S65. RDF results of DME (oxygen atoms) and FSI anion (oxygen atoms) with respect to

Li*-ions according to the temperature (i.e., -20 °C and 25 °C) in LCE and PWSE conditions.
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Fig. S66. Voltage profiles of Li|LiCoO, full cells with a charge cut-off voltage of 4.4 V vs.

Li/Li" at =20 °C, cycled in the PWSE.
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Fig. S67. Cyclability of Li|LiCoO, full cells with a charge cut-off voltage of 4.4 V vs. Li/Li"

at 0 °C.
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Fig. S68. Cross-sectional SEM images of lithium-metal anodes cycled with (a) LCE and (b)

PWSE+LiIFMDFB+AgNO; in Li|LiCoO, full cells after 30 cycles at C/5 and -20 °C.
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Fig. S69. SEM images and EDAX of LiCoO, cathodes cycled with the (a) LCE and (b)

PWSE+LiIFMDFB+AgNO; after 30 cycles at C/5 and —20 °C.
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Fig. S70. XRD patterns of a pristine LiCoO, cathode and LiCoO, cathodes retrieved from

Li|LiCoO, full cells after 30t cycles with the LCE and PWSE+LiFMDFB+AgNOj electrolytes

at C/5 and —20 °C.
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Fig. S71. Recovery test of Li|LiCoO, full cells with the PWSE and PWSE+LiFMDFB+AgNO;

at 25 °C.
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Fig. S72. Li|LiCoO, full cell storage test (checking the OCV drop from an SOC of 100%) at

80 °C.
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Fig. S73. TOF-SIMS CoF,"-ion maps of Li metal anodes in the fully delithiated state in

Li|LiCoO, full cells with the (a) LCE, (b) PWSE, and (c) PWSE+LiIFMDFB+AgNQO3, after 10
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Fig. S74. (a) Li|LiCoO, full cell storage test at 60 °C for 30 days, analyzing the OCV drop
from a 100% state of charge. (b) Capacity retention of Li|LiCoO, full cells at 25 °C after 30
days storage at 60 °C. After the storage test at 60 °C, the full cells are discharged up to 3 V vs.

Li/Li* at C/10. (c) Recovery test of Li|LiCoO, full cells at 25 °C.
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Fig. S75. Comparison of the cycle performance, operating voltage, current density, areal

capacity, and Li metal thickness of Li|LiCoO, full cells. Square dots indicate electrolytes

containing ether-based solvents, while circle dots indicate the other electrolyte (excluding

ether-based electrolytes). The cycle performance and capacity retention of the LiCoO, full cells

investigated in this study are marked with stars.
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Fig. S76. Comparison of TTE (LHCE) and TFEE (PWSE). (a) Cycle performance of
Li|LiCoO, full cells with a charge cut-off voltage of 4.4 V vs. Li/Li* at 25 °C. (b) TGA of the
solvents (TTE and TFEE) and electrolytes (LHCE and PWSE) from 30 °C to 150 °C. (c¢) LSV
measurements were conducted from the open circuit voltage (OCV) to 5 V vs. Li/Li" at a scan
rate of 1 mV s at 45 °C with a stainless-steel working electrode. (d) Cycle performance of
Li|LiCoO, full cells with a charge cut-off voltage of 4.4 V vs. Li/Li* at 45 °C. (e) Li|LiCoO,
full cell storage test at 60 °C for 30 days. (f) Capacity retention of Li|LiCoO, full cells with the

LHCE and PWSE at 25 °C after 30 days of storage at 60 °C.
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Fig. S77. Li* transference number of the electrolytes used in this study (the (a) LCE, (b) PWSE,

(¢) PWSE+LiFMDFB+AgNO;, and (d) LHCE).
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Fig. S79. Intensity decay profiles from the ’Li NMR diffusion analysis of the LCE, PWSE, and
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