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Experimental Section

Material. Alumina (γ-Al2O3, 10 nm) nanoparticles (3.6 g/cm3) and PMMA (~350 000, 1.16 g/cm3) 

pellets were purchased from Sigma-Aldrich. N, N-dimethyl-formamide (DMF, AR, 99.5%) was 

supplied by Shanghai Aladdin Industrial Inc. All materials were used as received.

Fabrication of single-layer nanocomposite films. The nanocomposite films were prepared via a 

typical solution-casting and hot-pressing method. 1g PMMA pellets were dispersed into 10 ml of 

DMF solvent with stirring for 12 h to obtain a homogeneous solution. The different concentrations 

Al2O3 NPs were added into homogeneous solution A after sonication for 30 min and stirred for 24 h 

to form a uniform and stable mixed suspension. The mixed solution was then cast onto glass plate 

and dried under vacuum at 60 °C for 24 h. After being peeled off from the glass plates, flexible and 

transparent Al2O3 NPs/PMMA nanocomposite films were obtained. Subsequently, the composite 

films were subjected to a hot-pressing process at a temperature of 150 °C and a pressure of 15 MPa 

for 15 min. The average thickness of nanocomposite films is around 10-15 um.

Fabrication of multilayer nanocomposite films. The multilayer nanocomposite films were prepared 

using layer-by-layer casting technique and hot-pressing method. 1g PMMA pellets were dispersed 

into 10 ml of DMF solvent with stirring for 12 h to obtain a homogeneous solution. The different 

concentrations Al2O3 NPs were added into homogeneous solution after sonication for 30 min and 

stirred for 24 h to form a uniform and stable mixed suspension. The mixed solution was then cast 

onto glass plate via layer-by-layer casting technique and dried under vacuum at 60 °C for 24 h. After 

being peeled off from the glass plates, flexible and transparent multilayer nanocomposite films were 

obtained. Subsequently, the composite films were subjected to a hot-pressing process at a 
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temperature of 150 °C and a pressure of 15 MPa for 15 min. The average thickness of nanocomposite 

films is around 10-15 um.

Characterization. The cross-sectional views of the composites were characterized using field 

emission scanning electron microscopy (FE-SEM). TEM images were taken using a Joel JEM-

2100Finstruments. The crystalline structure of the material was obtained by X-ray diffraction (XRD) 

on a D8 Advance X-ray diffractometer. By sputtering a 2 mm diameter gold electrode on the surface 

of the PMMA-based nanocomposites using an automatic fine coater (JFC-1600, JEOL, Ltd.). 

Dielectric performances of composites were measured by means of an LCR meter in the frequency 

range from 102 to 106 Hz. The D-E loops and leakage-electric field (I–V) curves were measured with 

ferroelectric test system (Poly K, United States). Dielectric breakdown strength was measured via the 

electrostatic pull-down method under a DC voltage ramp of 500 V/s. The thermally stimulated 

depolarization current (TSDC) is determined by the Keysight B2985 electrometer. The samples were 

first polarized at 80°C for 40 mins under a 30 MV/m DC electric field, then rapidly cooled to 20°C 

and maintained for 5 minutes. Finally, the samples were heated to 150°C at a heating rate of 2 

°C/min and the current was recorded.

Finite element simulation of time breakdown paths. The time breakdown paths of composite films 

were simulated by MATLAB and COMSOL-Multiphysics. The growth probability p of electric tree 

differentiation is expressed using the fractal medium breakdown model and percolation model,

𝑝(𝑖',𝑗' ‒ 𝑖,𝑗) =
(𝜙

𝑖',𝑗' ‒ 𝜙𝑖,𝑗 ‒ 𝜙𝑃𝑀𝑀𝐴)𝜂

∑(𝜙
𝑖',𝑗' ‒ 𝜙𝑖,𝑗 ‒ 𝜙𝑃𝑀𝑀𝐴)𝜂

+ (𝜙
𝑖',𝑗' ‒ 𝜙

𝑖'',𝑗'' ‒ 𝜙𝑃𝑀𝑀𝐴)𝜂 ‒ 𝑙𝑜𝑠𝑠

where , , , η and  were the threshold electrical potential of PMMA, electrical 𝜙𝑃𝑀𝑀𝐴 𝜙𝑖,𝑗
𝜙

𝑖',𝑗' 
𝜙

𝑖'',𝑗''

potential of discharged point, probable point, fractal dimension and linked point, respectively. The 
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loss represented evolve loss of tip electric tree channels.

Fig. S1 (a), (b) Dielectric loss of PMMA and the PMMA nanocomposites with different contents of 

AO NPs at 1 kHz.
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Fig. S2 Theoretical value of interparticle distance (d) as a function of AO NPs content.

The theoretical interparticle distance (d) in the polymer nanocomposites is determined by filler size 

(D) and filler volume fraction (φ), as given:

𝑑 = 𝐷 × [( 𝜋
6𝜑)1 3 ‒ 1]                  

According to this formula, we can calculate the d values in the AO NPs/PMMA nanocomposites 

with different AO NPs contents, as shown in Fig. R3. It is seen that d decreases a lot from ~70.62 nm 

of the nanocomposites with 0.1 vol% AO NPs to ~53.99 nm and ~45.93 nm of the ones with 0.2 vol% 

and 0.3 vol% AO NPs, respectively. According to Figure 2f, the experiment results of partial 

interparticle distance (d) is less than ~45.93 nm (theoretical value), possibly indicative of the formed 

overlapped interface of two adjacent fillers.
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Fig. S3 Comparison of dielectric enhancement rations of nanocomposite films with this work and 

previous reported.s1-s7
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Fig. S4 Comparison with the variation of the dielectric enhancement ratios of polymer 

nanocomposites (AO NPs/PEI, AO NPs/PI, AO NPs/PEEU, AO NPs/PMMA) as a function of AO 

NPs loading.s8-s10
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Fig. S5 Dielectric constant of AO NPs/PMMA single-layer nanocomposites with different 

concentrations of AO NPs fitted with classic two-component dielectric models (inset is the newly 

developed three-component interphase dielectric model and the illustration of the polymer-filler-

interface components in the nanocomposites).

In this work, the classical two-component mathematical model used to calculate the dielectric 

constant of nanocomposites is as follows:

Wiener bounds model:s11

                                      (S1)                                                          𝜀𝑒𝑓𝑓 = 𝜑𝑓𝜀𝑓 + 𝜑𝑚𝜀𝑚

Modified Rother−Lichtenecker model:s12

                           (S2)
𝐼𝑛𝜀𝑒𝑓𝑓 = 𝐼𝑛𝜀𝑚 + 𝜑𝑓(1 ‒ 𝜂)𝐼𝑛(

𝜀𝑓

𝜀𝑚
)

Sillars model:s13

                                    (S3)
𝜀𝑒𝑓𝑓 = 𝜀𝑚[1 +

3𝜑𝑓(𝜀𝑓 ‒ 𝜀𝑚)

2𝜀𝑚 + 𝜀𝑓
]

Maxwell-Garnett model:s14-s16
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                                 (S4)
𝜀𝑒𝑓𝑓 = 𝜀𝑚[1 +

3𝜑𝑓(𝜀𝑓 ‒ 𝜀𝑚)

𝜑𝑚(𝜀𝑓 ‒ 𝜀𝑚) + 3𝜀𝑚
]

Yamada model:s17,s18

                            (S5)
𝜀𝑒𝑓𝑓 = 𝜀𝑚[1 +

𝜂𝜑𝑓(𝜀𝑓 ‒ 𝜀𝑚)
𝜂𝜀𝑚 + (1 ‒ 𝜑𝑓)(𝜀𝑓 ‒ 𝜀𝑚)]

Bruggeman self-consistent effective medium approximation model:s19

                                     (S6)

𝜀𝑓 ‒ 𝜀𝑒𝑓𝑓

𝜀
1
3

𝑒𝑓𝑓

=
(1 ‒ 𝜑𝑓)(𝜀𝑓 ‒ 𝜀𝑚)

𝜀
1
3
𝑚

Jaysundere-Smith model:s20

                            (S7)

𝜀𝑒𝑓𝑓 =

𝜀𝑚𝜑𝑚 + 𝜀𝑓𝜑𝑓[1 + 3𝜑𝑓

𝜀𝑓 ‒ 𝜀𝑚

2𝜀𝑚 + 𝜀𝑓
]

𝜑𝑚 + 𝜑𝑓

3𝜀𝑚

2𝜀𝑚 + 𝜀𝑓
[1 + 3𝜑𝑓

𝜀𝑓 ‒ 𝜀𝑚

2𝜀𝑚 + 𝜀𝑓
]

where εeff, εf and εm are effective dielectric constant of nanocomposites, filler and polymer matrix, 

respectively; φm and φf are volume fractions of polymer matrix and fillers, η is a shaper factor.

Recently, three-component interphase dielectric model proposed by Wang et al. to calculate the 

dielectric constants of nanocomposites is briefly described as follows:s21-s23

                         (S8)𝐾𝛽
𝑐 = 𝜑1𝐾𝛽

1 + 𝜑2𝐾𝛽
2 + 𝜑3𝐾𝛽

3

where Kc, K1, K2 and K3 are the K values of composite, polymer matrix, filler and interface, 

respectively; φ1, φ2and φ3 are volume fractions of polymer matrix, filler and interface, respectively; β 

is a filler dimension factor, for spherical fillers.

φ3 can be determined from the multi-core model and written as:s24

           (S9)
𝜑3 = 𝜑2[(1 +

2𝑡
𝑑 )3 ‒ 1](1 ‒ 𝑓), 𝑓 = (

6𝜑2

𝜋
)3

where d is the diameter of filler and t is the thickness of interface, f is a general interphase overlap 
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probability function to evaluate the degrees of interface overlapping.

K3 can be written as:

            (S10)𝐾𝛽
3 = 𝐾𝛽

1 + 𝜑𝑓(𝐾𝛽
2 ‒ 𝐾𝛽

1) + 𝐹(𝜑2)𝐾𝛽
1

where F(φ2) represents the degree of extra enhancement of K in interface, and can be written as:

                         (S11)
𝐹(𝜑2) = 1 +

𝑇

𝑝 + (𝜑2 𝜑0)𝑞

Where , φ0 is the filling ratio where maximum Kc is achieved, p and q are 𝑇 = (𝐾2 + 𝑞𝐾1)(𝐾1)
1
2

matrix-determined system factors (for dipolar linear polymer, p=1, q=3).
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Fig. S6 Weibull breakdown strength of pristine PMMA and the PMMA single-layer nanocomposites 

with different contents of AO NPs.
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Fig. S7 Schematic image of breakdown paths for nanocomposites under the applied electrical field 

and the interface state.
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Fig. S8 TSDC spectra of PMMA, AO NPs/PMMA-0.2 and AO NPs/PMMA-2 composite films.
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Fig. S9 (a) Leakage current density as a function of applied electric fields, (b) Weibull breakdown 

strength and leakage current density at 100 MV/m of pristine PMMA and the PMMA 

nanocomposites with different contents of AO NPs.
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Fig. S10 XRD patterns of AO NPs, PMMA, AO/PMMA-0.2, AO/PMMA-2 and 2-0.2-2 composite 

films.
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Fig. S11 (a) and (b) Characteristic breakdown strength and shape parameter of PMMA, 0.2-2, 0.2-2-

0.2, and 2-0.2-2 multilayered composite films.
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Fig. S12 The trap level of PMMA, 0.2-2, 0.2-2-0.2, 2-0.2-2 films.
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Fig. S13 (a) Leakage current density as a function of applied electric fields; (b) Weibull breakdown 

strength and leakage current densities at 100 MV/m of PMMA, 0.2-2, 0.2-2-0.2, and 2-0.2-2 

multilayered composite films.
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Fig. S14 Schematic representation of the metal/dielectric interface for, (a) PMMA, (b) 2-0.2-2, 0.2-2, 

and (c) 0.2-2-0.2 composite films.
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Fig. S15 The electric potential distribution and electrical trees evolution of PMMA, 0.2-2, 0.2-2-0.2 

and 2-0.2-2 nanocomposites.
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Fig. S16 Electric field distribution and electrical tree evolution of (a) PMMA, (b) 0.2-2 

nanocomposite, (c) 0.2-2-0.2 nanocomposite, and (d) 2-0.2-2 nanocomposite at 500 MV/m (above) 

and maximum electric field (below).
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Fig. S17 Dielectric constant and dielectric loss as function of frequency (inset is the K at 1 kHz.) for 

PMMA, 0.2-2, 0.2-2-0.2, and 2-0.2-2 nanocomposites.
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Fig. S18 Dmax－Dr and Dmax of PMMA, 0.2-2, 0.2-2-0.2, and 2-0.2-2 multilayered composite films at 

the breakdown electric field.
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Fig. S19 D−E curves of PMMA, 0.2-2, 0.2-2-0.2, and 2-0.2-2 multilayered composite films.
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Fig. S20 Comparison of Eb, β, η, Ud and εr (at 1 kHz) of PMMA, 0.2-2, 0.2-2-0.2, and 2-0.2-2 

multilayered composite films.
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Fig. S21 Comparisons of the Weibull breakdown strengths and the corresponding maximum 

recoverable energy densities of PMMA-based nanocomposites. s23, s25-s33
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Fig. S22 The cyclic stability at 300MV/m of PMMA and 2-0.2-2 composite films.
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Table S1 Comparison of key dielectric parameters achieved at the maximized Ud in this work and 

those reported in literatures.

Samples Ud max (J/cm3)

η (%) at Eb

Ud, η ≥ 90% 

(J/cm3 )

Stability 

(cyclic 

number)

Ref.

P(VDF-HFP)-AO NPLs 21.6, 83.4, 697 0.2@50MV/m >50,000 s34

P(VDF-HFP)-GLC 37.7, 71.2, 750 3.4@200MV/m >50,000 s35

PVDF-BaTiO3@BN 17.6, 58, 580 2.36@200MV/m - s36

BT@AS-MMT-P(VDF-HFP) 20, 84, 510 0.82@100MV/m - s37

 P(VDF-TrFE-CFE)-BNNS 31.8, 72.7, 780 1.01@150MV/m - s38

PEI/BT-PVDF 8, 84.5, 600 4.4@450MV/m >50,000 s39

PEI/HEnf 7.73, 88.7, 610 3.7@450MV/m >50,000 s40

BZT/PEI-BN 17.9, 80.1, 730 6.2@400MV/m - s41

PEI/PEEU 7.80, 74.5, 710 7.2@650MV/m >20,000 s42

PSBNP-co-PTNI0.02 12.8, 88.7, 840 9.1@700MV/m - s43

2-0.2-2 25.1, 93.8, 800 25.1@800MV/m >14,000 This Work
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