Supporting Information

Grain Boundary Re-crystallization and Sub-nano Regions Leading to High Plateau

Figure of Merit for Bi₂Te₃ Nanoflakes

Wei-Di Liu,^{ab} Liang-Cao Yin,^c Lei Li,^c Qishuo Yang,^d De-Zhuang Wang,^c Meng Li,^b Xiao-Lei Shi,^b Qingfeng Liu,^c Yang Bai,^e Ian Gentle,^f Lianzhou Wang,^{*a} Zhi-Gang Chen*^b

Section S1. Parallel model

The parallel model for electrical performance analysis of a composite material can be expressed as:¹

$$\sigma_c = (1 - x_v) \cdot \sigma_m + x_v \cdot \sigma_v \tag{S1-1}$$

$$S_{c} = \frac{(1 - x_{v}) \cdot \sigma_{m} \cdot S_{m} + x_{v} \cdot \sigma_{v} \cdot S_{v}}{(1 - x_{v}) \cdot \sigma_{m} + x_{v} \cdot \sigma_{v}}$$
(S1-2)

 σ is the electrical conductivity, *S* is the Seebeck coefficient, x_v is the volume fraction of secondary phase (vacuum here), $x_v = r$ (*r* is the relative density), c denotes for composite, m denotes for matrix, and v denotes for vacuum. When $\sigma_v = 0$ S cm⁻¹ and $S_v = 0 \mu V$ K⁻¹ are taken into account, it can be extracted that:

$$\sigma_c = (1 - r) \cdot \sigma_m \tag{S1-3}$$

$$S_c = S_m \tag{S1-4}$$

As can be seen, the porosity r influence only the σ_c through vacuum compositing. S_c is still determined by the S_m of the matrix material.

Fig. S1. High-magnification TEM images of as-sintered Bi_2Te_3 pellets sintered under T_{SPS} of a) 550, b) and c) 593, and d) 623 K, respectively.

Fig. S2. Measured σ of as-prepared Bi₂Te₃ pellets under different T_{SPS} in comparison with the σ_{m} extracted by parallel model.

Fig. S3. Comparison between measured (under different T_{SPS}) μ , extracted μ_{m} and calculated (under different E_{def} and m^*) μ as a function of n_{e} , at 370 K.

Fig. S4. Measured n_e of Bi₂Te₃ pellets sintered under T_{SPS} of 550, 573, 593 and 623 K, respectively.

Fig. S5. SPB model extracted η_f of Bi₂Te₃ pellets sintered under T_{SPS} of 550, 573, 593 and 623 K, respectively.

Fig. S6. Comparison between measured (under different T_{SPS}) $S^2\sigma$, extracted $S^2\sigma_{\text{m}}$ and calculated (under different E_{def} and m^*) $S^2\sigma$ as a function of n_{e} , at 370 K.

Fig. S7. Extracted κ_e of Bi₂Te₃ pellets sintered under T_{SPS} of 550, 573, 593 and 623 K, respectively.

Fig. S8. Extracted L of Bi₂Te₃ pellets sintered under T_{SPS} of 550, 573, 593 and 623 K, respectively.

Fig. S9. Comparison between evaluated κ_1 of Bi₂Te₃ pellets prepared under different T_{SPS} and the gray medium model-evaluted $\kappa_{l,nb}$ of nanobulks without pores.

Fig. S10. Measured R_{in} of the of a single-leg device prepared based on the Bi₂Te₃ pellet sintered under the T_{SPS} of 593 K under different ΔT , comparing with the theoretical values.

Table S1. Comparison of key carrier transport properties evaluated by SPB model of Bi_2Te_3 pellets prepared under different T_{SPS} and those of Bi_2Te_3 matrixes (denoted by m) extracted by parallel model.

$T_{\text{SPS}}(\mathbf{K})$	$n_{\rm e} ({\rm cm}^{-3})$	μ (cm ² V ⁻¹	$\mu_{ m m}(m cm^2$	$m^{*}(m_{0})$	<i>m*_m</i>	E_{def}	$E_{\rm def,m}$
		s ⁻¹)	V ⁻¹ s ⁻¹)		(m ₀)	(eV)	(eV)
550	8.76E+19	24.7	28.1	1.17	1.17	7.68	7.20
573	6.11E+19	51.6	57.6	1.02	1.02	6.51	6.16
593	3.29E+19	99.6	108.4	0.94	0.94	5.44	5.22
623	3.15E+19	91.9	98.0	0.84	0.84	6.58	6.37

References

1. H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun and J. Ouyang, *Macromol. Rapid. Comm.*, 2018, **39**, 1700727.