Supplementary Materials for

Realizing excellent conversion efficiency of 14.5% in Mg₃Sb₂/GeTe-based thermoelectric module for waste heat recovery

Xiaofang Li^a⁺, Chen Chen^b⁺, Li Yin^c⁺, Xinyu Wang^d, Jun Mao^{c, e}, Feng Cao^a^{*}, and Qian Zhang^{c, e*}

^aSchool of Science, Harbin Institute of Technology, Shenzhen 518055, China
^bSchool of Physical Sciences, Great Bay University, Dongguan 523000, China
^cSchool of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen 518055, China
^dInstitute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
^eState Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
[†]These authors contributed equally to this work.
*Corresponding author. Email: ccmldn@gbu.edu.cn; caofeng@hit.edu.cn; zhangqf@hit.edu.cn.

This supplement file includes

Supplementary Tables 1-3 Supplementary Figures 1-15

Nominal composition	Actual composition
$Mg_{3.2}Sb_{1.49}Bi_{0.5}Se_{0.01}$	$Mg_{3.015}Sb_{1.490}Bi_{0.489}Se_{0.008}$
$Mg_{3.2}Sb_{1.24}Bi_{0.75}Se_{0.01}$	$Mg_{3.017}Sb_{1.240}Bi_{0.733}Se_{0.008}$
$Mg_{3.2}Sb_{0.99}BiSe_{0.01}$	$Mg_{3.027}Sb_{0.990}Bi_{0.985}Se_{0.009}$
$Mg_{3.2}Sb_{0.74}Bi_{1.25}Se_{0.01}$	$Mg_{3.013}Sb_{0.740}Bi_{1.234}Se_{0.009}$
$Mg_{3.2}Sb_{0.49}Bi_{1.5}Se_{0.01}$	$Mg_{3.014}Sb_{0.490}Bi_{1.482}Se_{0.008}$
$Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}$	$Mg_{2.982}Co_{0.029}Sb_{1.240}Bi_{0.732}Se_{0.007}$

Table S1 Actual chemical compositions of $Mg_{3.2}Sb_{1.99-x}Bi_xSe_{0.01}$ (x = 0.5, 0.75, 1, 1.25, and 1.5) and $Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}$ determined by EDS.

Content	σ	S	<i>n</i> _H	$\mu_{ m H}$	$E_{ m g}^{*}$
	(10^4 S m^{-1})	(µV K ⁻¹)	$(10^{19} \mathrm{cm}^{-3})$	$(cm^2 V^{-1} s^{-1})$	(eV)
x = 0.5	2.79	-235.2	2.0	83.6	0.43
x = 0.75	3.31	-230.9	2.2	100.8	0.39
x = 1	4.41	-207.0	2.4	116.8	0.36
<i>x</i> = 1.25	6.04	-196.8	2.6	143.5	0.29
<i>x</i> = 1.5	6.58	-190.4	2.7	155.7	0.23

Table S2 Room temperature electrical properties (including electrical conductivity, Seebeck coefficient, Hall carrier concentration, Hall carrier mobility, and band gap) of $Mg_{3,2}Sb_{1.99-x}Bi_xSe_{0.01}$ (x = 0.5, 0.75, 1, 1.25, and 1.5).

*The band gap was estimated by Goldsmid-Sharp formula: $E_g = 2e|S_{max}|T_{max}$.¹

 Table S3 Finite element simulation setting parameters.

Parameter	Value
Total cross-sectional area A_{pn}	2×3.6×3.6 mm ²
Cold-side thermal contact resistance	1.2×10 ⁴ W m ⁻² K ⁻¹
Hot-side thermal contact resistance	2×10 ³ W m ⁻² K ⁻¹
Electrical contact resistivity	$20 \ \mu\Omega \cdot cm^2$
Cold-side temperature	293 K
Hot-side temperature	773 K

Fig. S1 Temperature-dependent heat capacity (C_p) of Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}. The fitting curve is obtained using the equation proposed by Agne *et al.*,² in comparison to the Dulong-Petit law and DSC measurement.

Fig. S2 Schematic of module structure design. The n-type part includes thermoelectric legs, transition layers (304SS mixed with n-type TE materials, with a mass ratio of 1:1), barrier layers (304SS), metalization layer (Ni), solder layers (Ag NPs), electrode layers (Cu), and pre-circuited AlN ceramic plates. The p-type part includes thermoelectric legs, transition layers (SnTe), barrier layers (Fe alloy), metalization layer (Ag), solder layers (Ag NPs), electrode layers (Cu), and pre-circuited AlN ceramic plates.

Fig. S3 Comparison of the average zT from room temperature to test temperature between the optimized sample (Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}) in this work and other typical advanced n-type TE materials.

Fig. S4 XRD patterns of Mg3.2Sb1.99-*x*Bi*x*Se0.01 (x = 0.5, 0.75, 1, 1.25, and 1.5).and Mg3.15Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}. All the diffraction peaks can be indexed by the trigonal α -Mg3Sb2 phase (PDF#71-0404) with a P^3m1 space group, and the peak positions shift to a larger angle with the decrease of Bi content.

Fig. S5 Temperature-dependent (a) Hall carrier concentration, (b) Hall carrier mobility, (c) electrical conductivity, (d) Seebeck coefficient, (e) power factor, (f) total thermal conductivity and lattice thermal conductivity of $Mg_{3.2}Sb_{1.24}Bi_{0.75}Se_{0.01}$ and $Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}$.

Fig. S6 The SEM images of the fracture morphology of the $Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}$ sample.

Fig. S7 Simulated properties of the n-type single-leg device $(Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01})$. Current-dependent (a) output voltage, (b) output power, (c) heat flow, and (d) efficiency for the single-leg device at different temperature differences.

Fig. S8 Measured properties of n-type single-leg device ($Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}$). Current-dependent (a) output voltage, (b) output power, and (c) efficiency for the single-leg device at different temperature difference. (d) Comparison of the maximum efficiency in this work and literature results at different temperature difference.

Fig. S9 Thermal aging test results (90-hour aging at $T_h = 723$ K and a ΔT of 430 K.) for n-type single-leg device (Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}). Showing changes in (a) output voltage and output power, (b) heat flow at maximum efficiency and maximum efficiency as a function of thermal cycle number.

Fig. S10 Resistance scanning results for n-type (left-304SS/right- Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}) junctions, before and after aging test (90-hour aging at $T_{\rm h}$ = 723 K and a ΔT of 430 K.). (a) at cold side; (b) at hot side.

Fig. S11 SEM images and EDS mapping results of the hot side $304SS/Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}$ junctions (a) as-prepared, and (b) aging at $T_h = 723$ K and a ΔT of 430 K for 90 hours. The transition layer is a mixture of n-type TE materials with 304SS, with a mass ratio of 1:1.

Fig. S12 Temperature-dependent (a) electrical conductivity and Seebeck coefficient, (b) power factor, (c) total thermal conductivity and lattice thermal conductivity, and (d) zT values of $(Pb_{0.15}Ge_{0.85}Te)_{0.8}(AgSbTe_{2})_{0.2}$.

Fig. S13 3D plots of (a) unit couple, (c) the maximum output power (*P*), and (d) the maximum power density (*P*_D) based on calculation results for the boundary conditions specified by $T_{\rm h} = 773$ K and $T_{\rm c} = 293$ K. (b) Schematic diagram of the energy conversion efficiency measurement system.

Fig. S14 Simulated properties of the $(Mg_{3.15}Co_{0.05}Sb_{1.24}Bi_{0.75}Se_{0.01}/(Pb_{0.15}Ge_{0.85}Te)_{0.8}(AgSbTe_2)_{0.2})$ module. Current-dependent (a) output voltage, (b) output power, (c) heat flow, and (d) efficiency for the module at different temperature differences.

Fig. S15 Experimental and simulated current-dependent (a) open-circuit voltage (V_{oc}), (b) internal resistance (R_{in}) (c) maximum output heat flow, and (d) conversion efficiency at different temperature differences.

Reference

- 1. Z. M. Gibbs, H.-S. Kim, H. Wang and G. J. Snyder, *Appl. Phys. Lett.*, 2015, **106**, 022112.
- M. T. Agne, K. Imasato, S. Anand, K. Lee, S. K. Bux, A. Zevalkink, A. J. E. Rettie, D. Y. Chung, M. G. Kanatzidis and G. J. Snyder, *Mater. Today Phys.*, 2018, 6, 83-88.