Supporting Information

Reagent-adaptive active site switching on IrO_x/Ni(OH)₂ catalyst

Qian Zheng,[‡]^a Yuandong Yan,[‡]^a Jiaying Zhong,^a Shicheng Yan,^{*a,b} and Zhigang Zou^{a,b}

^{*a*} Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China.

^{b.} Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China

*Correspondence: <u>yscfei@nju.edu.cn</u>

Fig.S1 The TEM images and high-resolution TEM lattice images of $(a_1-a_3) Ni(OH)_2$, $(b_1-b_3) Ni(OH)_2$ -CV, and $(c_1-c_3) IrO_x/Ni(OH)_2$.

Fig. S2 (a) Ni $2p_{3/2}$ and (b) O 1s core-level XPS spectra of Ni(OH)₂. (c) Ni $2p_{3/2}$, (d) Ir 4f, and (e) O 1s XPS core-level spectra of IrO_x/Ni(OH)₂.

Fig. S3 The TEM images of electrodepositing IrO_x on carbon paper by 200 CV scans in 1 M KOH with $Ir^{4*}\!.$

Fig. S4 ICP-AES analysis shows molar percentage of Ni and Ir in Ni(OH)₂ and IrO_x/Ni(OH)₂.

Fig. S5 CV scans for (a) Ni(OH)₂ and (b) IrO_x/Ni(OH)₂ in 1.0 M KOH, and (c) Ni(OH)₂ and (d) IrO_x/Ni(OH)₂ in 1.0 M KOH + 0.33 M urea. The CV scans were performed in a potential region from 0.7 to 0.8 V vs. RHE and the scan rates range from 0.02 to 0.1 V s⁻¹. (e) The linear relationship between the current density and scan rate of the studied electrodes, which is used to calculate the electrochemical active surface area (ECSA). The current density at 0.75 V was used for the calculation of the ECSA. The electrical double-layer capacitance (C_{dl}) was calculated by the equation $C_{dl} = (j_a \cdot j_c)/2v$, where j_a and j_c are the anodic current density and cathodic current density, respectively, and v is the scan rate. Thus, C_{dl} is the slope of the linear relationship between $(j_a \cdot j_c)/2$ and scan rates. The ECSA can be calculated by ECSA = $C_{dl}/C_{dl,Ref}$, where $C_{dl,Ref}$ is the specific capacitance of an ideal flat surface of the catalyst. Here, we use the average value of 0.04 mF cm⁻² for $C_{dl,Ref}$ in alkaline solutions without taking the used material and measurement conditions into account. (f) LSV curves in Fig.2a-b after normalized by ECSA.

Fig. S6 The urea concentration-sensitive i-t curve for $Ni(OH)_2$ electrode at 1.65 V.

The urea-concentration dependent i-t curve of Ni(OH)₂ was recorded at 1.65 V in 1 M KOH + x M urea (0.0033 ≤ x ≤ 0.33), as shown in **Fig. S6**. Obviously, the current density is closely dependent on the presence of urea, that is, the Ni³⁺ oxidizes the urea effectively. This result suggested that the Ni(OH)₂ is an efficient UOR-active catalyst with inefficient water oxidation activity, thus the Ni(OH)₂ electrode without IrO_x does not have the switching characteristic between UOR and OER.

Fig. S7 Active species on $IrO_x/Ni(OH)_2$. (a) In situ Raman spectra of $IrO_x/Ni(OH)_2$ in 1 M KOH + 0.033 M urea. The potential increment is 0.05 V when varying potentials from open-circuit potential to 1.6 V. In situ UV–Vis absorption spectra for (b) Ni(OH)₂ and (c) $IrO_x/Ni(OH)_2$ in 1 M KOH + 0.033 M urea. The potential increment is 0.05 V when varying potentials from open-circuit potential to 1.45 V. (d) In situ Raman spectra of $IrO_x/Ni(OH)_2$ in 1 M KOH + 0.085 M urea. The potential increment is 0.05 V when varying potentials from open-circuit potential increment is 0.05 V when varying potentials from open-circuit potential to 1.45 V. (d) In situ Raman spectra of $IrO_x/Ni(OH)_2$ in 1 M KOH + 0.085 M urea. The potential increment is 0.05 V when varying potentials from open-circuit potential to 1.6 V. In situ UV–Vis absorption spectra for (e) Ni(OH)₂ and (f) $IrO_x/Ni(OH)_2$ in 1 M KOH + 0.085 M urea. The potential increment is 0.05 V when varying potentials from open-circuit potential to 1.6 V. In situ UV–Vis absorption spectra for (e) Ni(OH)₂ and (f) $IrO_x/Ni(OH)_2$ in 1 M KOH + 0.085 M urea. The potential increment is 0.05 V when varying potentials from open-circuit potential to 1.6 V. In situ UV–Vis absorption spectra for (e) Ni(OH)₂ and (f) $IrO_x/Ni(OH)_2$ in 1 M KOH + 0.085 M urea. The potential increment is 0.05 V when varying potentials from open-circuit potential to 1.45 V.

Fig. S8 Potential-dependent EIS Bode plots of Ni(OH)₂ electrode when potentials varied from 1.1 to 1.6 V (a) in 1.0 M KOH and (b) in 1.0 M KOH + 0.33 M urea. Potential-dependent Nyquist plots of Ni(OH)₂ electrode when potentials varied from 1.1 to 1.6 V (c) in 1.0 M KOH and (d) in 1.0 M KOH + 0.33 M urea. Potential-dependent Nyquist plots of $IrO_x/Ni(OH)_2$ electrode when potentials varied from 1.1 to 1.6 V (e) in 1.0 M KOH and (f) in 1.0 M KOH + 0.33 M urea.

Fig. S9 (a) Ni $2p_{3/2}$ XPS spectra for Ni(OH)₂ and IrO_x/Ni(OH)₂. (b) Ni $2p_{3/2}$ XPS spectra for pristine Ni(OH)₂ and Ni(OH)₂ after OER and UOR.

Fig. S10 (a) LSV curves for HER on Ni(OH)₂ and IrO_x/Ni(OH)₂ in 1 M KOH. (b) The cell voltage for Ni(OH)₂ electrolyzer and IrO_x/Ni(OH)₂ electrolyzer in 1 M KOH + 0.33 M urea. (c) The 100 h stability for the IrO_x/Ni(OH)₂ electrolyzer at 10 mA cm⁻² in 1 M KOH + 0.33 M urea.

Electrocatalyst	Anodic reaction	Overpotential at 10 mA cm⁻² (mV)	Electrolyte	References	
lrO _x /Ni(OH)₂	OER	206	1 M KOH	This work	
lr/Ni(OH)₂	OER	224	1 M KOH	1	
IrNiO _x /ATO	OER	340	0.05 M H ₂ SO ₄	2	
Ir-Ni ₃ N	OER	273	1 M KOH	3	
Mn-IrO ₂	OER	267	1 M KOH		
Fe-IrO ₂	OER	300	1 M KOH		
Co-IrO₂	OER	302	1 M KOH	4	
Cr-IrO ₂	OER	279	1 M KOH		
Electrocatalyst	Anodic reaction	Potential at 10 mA cm ⁻² (V vs. RHE)	Electrolyte	References	
IrO _x /Ni(OH)₂	UOR	1.337	1 M KOH+0.33 M urea	This work	
Nilr	UOR	1.341	1 M KOH+0.5 M urea	5	
Ni ₂ P	UOR	1.35	1 M KOH+0.5 M urea	6	
Ni-Mo	UOR	1.36	1 M KOH+0.1 M urea	7	
Ni ₂ P/Fe ₂ P	UOR	1.47	1 M KOH+0.5 M urea	8	
Ni-WO _x	UOR	1.35	1 M KOH+0.33 M urea	9	

 Table S1. The OER and UOR performances on the reported Ni/Ir-based catalysts

	OER (1.55 V)		UOR (1.4 V)			
	Ni(OH)₂	IrO _x /Ni(OH)₂	Ni(OH)₂	IrO _x /Ni(OH) ₂		
R _s	1.401	1.675	1.675	1.31		
^a R ₁	10.5	0.448	0.448	0.35		
^a CPE ₁ -T	0.287	0.552	0.552	1.186		
^a CPE₁-P	0.964	0.391	0.391	0.357		
^b R ₂	2.465	1.111	1.111	0.526		
^b CPE ₂ -T	0.427	0.083	0.083	0.104		
^b CPE ₂ -P	0.643	0.823	0.823	0.897		

Table S2. Fitting parameters of EIS data for Ni(OH)₂ and IrO_x/Ni(OH)₂ using the equivalent circuit proposed in Fig. 4d

Notes: ^a The subscript 1 stands for the electron transfer behavior at catalytic layer/electrolyte interface; ^b The subscript 2 indicates the electron transfer behavior at catalyst/substrate interface.

References

- 1. Zhao G, Li P, Cheng N, Dou SX, Sun W. An Ir/Ni(OH)₂ heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing Iridium(V), and beyond. *Adv. Mater.* **32**, 2000872 (2020).
- 2. Nong HN, et al. Oxide-supported $IrNiO_x$ core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. **54**, 2975-2979 (2015).
- 3. Liu G, Hou F, Wang Y, Wang X, Fang B. Engineering Ir and Ni₃N heterogeneous interfaces for promoted overall water splitting. *Appl. Surf. Sci.* **637**, 157896 (2023).
- 4. Lee H, et al. Comparative study of catalytic activities among transition metal-doped IrO₂ nanoparticles. Sci. Rep. **8**, 16777 (2018).
- 5. Xu Y, et al. Ir-doped Ni-based metal-organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. *Chem. Commun.* **56**, 2151-2154 (2020).
- 6. Liu H, Zhu S, Cui Z, Li Z, Wu S, Liang Y. Ni₂P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. *Nanoscale* **13**, 1759-1769 (2021).
- 7. Zhang JY, *et al.* Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. *Nano Energy* **60**, 894-902 (2019).
- 8. Yan L, et al. Facile in-situ growth of Ni₂P/Fe₂P nanohybrids on Ni foam for highly efficient urea electrolysis. J. Colloid Interface Sci. **541**, 279-286 (2019).
- 9. Wang L, et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem. **60**, 10671-10676 (2021).