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Experimental Section
Synthesis of Pd.Au, (x +y = 100). The PdssAuys alloy was synthesized through a polymerization-
pyrolysis method. In brief, 11.43 mg (0.035 mmol) potassium tetrachloropalladate (K,PdCly,
Sigma-Aldrich, 99.99%), 13.92 mg (0.035 mmol) sodium tetrachloroaurate dihydrate
(NaAuCly-2H,0, Aladdin, Au 48-50%) and 80 mg Trizma® base (C4H;;NO;, Sigma-Aldrich, >
99.9%) were dissolved in 50 ml deionized water to form a uniform solution. Then 200 mg
dopamine hydrochloride (CgH;;NO,-HCI, Alfa Aesar, 99%) was dissolved in another 50 ml
deionized water, which was dropwise added into the above metal-containing solution under
magnetic stirring. After continuous stirring for 24 hours at room temperature, the desired polymer
precursor was collected by centrifugal washing with water several times and freezing drying.
Finally, the moderate precursor was put into a tube furnace, in which the temperature was raised
to 900 °C with a ramping rate of 5 °C min-! and kept for 2 hours under 20 sccm argon (Ar) flow.
When the temperature of the tube cooled down to room temperature, the resulting product was
obtained. Other PdyAu, materials were fabricated analogously except employing distinct Pd/Au
molar ratios including 3:1, 2:1, 1:2 and 1:3 in reactants, while the total metal amount of Pd and Au
was maintained at 0.07 mmol. Pd;q, Augp, and NC were also synthesized in the same schedule
except adding 0.07 mmol K,PdCly, 0.07 mmol NaAuCl,-2H,0O, and no metal ions, respectively.

Synthesis of Pd;-NC. The Pd,-NC single-atom catalyst was synthesized through a one-step
thermolysis method. In brief, 1.97 g (23.99 mmol) 2-Methylimidazole (C4;HgN,, Thermo
Scientific, 97%) was dissolved in 150 ml methanol to form a uniform solution. Then 1.7 g (5.71
mmol) zinc nitrate hexahydrate (Thermo Scientific, 98%) and 3 mg (0.011 mmol) palladium nitrate
dihydrate (Innochem, 99%) were dissolved in another 150 ml methanol, which was added into the
above 2-Methylimidazole solution under magnetic stirring. After continuous stirring for 12 hours
at room temperature, the desired precursor was collected by centrifugal washing with methanol
several times and vacuum drying. Finally, the moderate precursor was put into a tube furnace, in
which the temperature was raised to 1000 °C with a ramping rate of 5 °C min'! and kept for 2 hours
under 20 sccm argon (Ar) flow. When the temperature of the tube cooled down to room
temperature, the resulting product was obtained.

Material Characterization. XRD patterns were collected on a Philips X’ Pert Pro Super
diffractometer equipped with Cu K, radiation (A=1.54178 A). TEM, HRTEM, EDX mapping, and

line scanning images were recorded by using a FEI Talos F200X microscope. XPS results were



obtained on a Thermo ESCALAB 250 spectrometer. Pd K-edge and Au Ls-edge XAS
measurements were conducted at the 14W1 beamline of Shanghai Synchrotron Radiation Facility
(SSRF) and 1WIB beamline of Beijing Synchrotron Radiation Facility (BSRF), China. The
obtained data were analyzed by Athena and Artemis.!

In-situ SR-IRAS analyses were carried out at the infrared spectroscopy and
microspectroscopy beamline (BLO1B) of the Hefei Synchrotron Radiation Facility. A homemade
cell with a ZnSe transmission window (cut-off energy of =625 cm™') was used. The catalyst-
modified glassy carbon electrodes were employed as work electrodes. The electrolyte was O,-
saturated 0.1 M KOH. The spectra were recorded on a Bruker Hyperion 2000 infrared microscope
and Bruker 70v/s FTIR spectrometer with a KBr beam splitter and liquid nitrogen-cooled mercury
cadmium telluride detector. Each infrared absorption spectrum was acquired by 64 scans at a
resolution of 4 cm!. The background spectrum was collected before each test to correct the data.

Electrochemical Measurements. All electrochemical measurements were carried out on a CHI
760E workstation with a typical three-electrode system. A graphite rod and Hg/HgO electrode
were employed as the counter electrode and reference electrode, respectively. A polished 5 mm
glassy carbon electrode with 7.5 pL electrocatalyst ink loading was used as the work electrode,
which was mounted on a rotator (Pine Instruments). The ink was prepared by mixing 4 mg
corresponding catalyst powder with 550 puL deionized water, 250 pL isopropanol and 200 pL 0.5
wt% Nafion solution, which was contiguously sonicated for 1 hour. The electrolyte was O,-
saturated 0.1 M KOH. All potentials in this study were calibrated by a hydrogen electrode (PHY -
RHE) and corrected for resistance compensation. After the pre-reduction with CA tests of 50
seconds at 0.3 Vgryg, LSV curves in anodic and cathodic scanning were recorded at the rotating
rate of 1600 rpm.

The electron transfer numbers and kinetic current densities were calculated by K-L
equations.? Then Kinetic current densities were further normalized against the Pd loading amounts
and electrochemical active surface area (ECSA) to obtain mass activity and specific activity.
ECSA was determined from charges associated with underpotentially deposited H (H,q) stripping
and oxide reduction.3* For commercial 20 wt% Pt/C, the CV curve was recorded at 20 mV s'! in
Ar-saturated 0.5 M H,SO,, and the desorption peak area of H,,q was employed to access ECSA
assuming the charge density of one monolayer hydrogen coverage was 210 pC cm™. For Pd,Au,,

CV curves were recorded in Ar-saturated 0.1 M KOH, and Pd oxide reduction peaks were adapted



assuming the charge density for reducing one monolayer PdO was 424 uC cm2. ADTs were carried
out by cycling between 0.6 and 1.0 Vg at 100 mV s,

ZABs were assembled with the polished Zn plate as anode and catalyst ink-coated carbon
paper/hydrophobic layer/Ni foam composite as air cathode. For primary ZAB tests, the electrolyte
was 6.0 M KOH and the loading amount of both PdssAuys and commercial 20 wt% Pt/C was 1 mg
cm2. For rechargeable tests, 6.0 M KOH with 0.2 M zinc acetate was used as the electrolyte.
PdssAuys and commercial RuO, or Pt/C and RuO, with a mass ratio of 1:1 was dispersed as the
ink. The total loading amount on carbon paper was 2 mg cm2. The galvanostatic discharge/charge
cycling measurements were carried out at 5 mA cm™ on a LAND system with a cycling interval
of 40 minutes (20 minutes for discharging and 20 minutes for charging) under the ambient
condition.

DFT calculations. DFT calculations were conducted on the Vienna Ab-initio Simulation
Package (VASP) within the projector augmented wave (PAW) method.>® Perdew-Burke-
Ernzerhof (PBE) was used as the exchange and correlation functional.” The plane-wave cutoff
energy and vacuum layer were set to 450 eV on the 3x2x1 k-point mesh and 20 A, respectively.
Structural optimizations for 4x4 metallic (111) unite cells were performed by minimizing the
forces on all atoms to below 0.02 eV A-! and the energy to below 10-6 V. The Gibbs free energies
were calculated at 300 K using the computational hydrogen electrode (CHE) model of AG = AEpgr
+ AEzpg - TAS, where AEpgr was the difference of electronic energy calculated with VASP, AEpg

was the difference of zero-point energy (ZPE) and TAS was the entropy contribution.?
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Fig. S1 The morphology of PdssAuys precursor. (a) The TEM image. (b) The particle size
distribution plot.
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Fig. S2 The XRD pattern of PdssAuys precursor.
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Fig. S5 The morphology and composition of Pd;;Au,;. (a) TEM and (b) HRTEM images. (¢) The

EDX mapping pictures and (d) spectrum. (e) The particle size distribution plot. (f) The EDX line

scanning profile of a single nanoalloy particle, the insert is scanning direction.
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scanning profile of a single nanoalloy particle, the insert is scanning direction.
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Fig. S7 The morphology and composition of PdssAuys. (a) The TEM image. (b) The EDX mapping

pictures and (c) spectrum.
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Fig. S8 The morphology and composition of Pd;;Augs. (a) TEM and (b) HRTEM images. (¢) The

EDX mapping pictures and (d) spectrum. (e) The particle size distribution plot. (f) The EDX line

scanning profile of a single nanoalloy particle, the insert is scanning direction.

12



—h

Intensity (a.u.)

PdygAus,
Pd

60
d | PdeAuz, e 1 PdagAu,
pg
[Au 50
c 6.60 +0.05 nm
el — 40
s g
3 E 30
2 5
Cu w204
0 Au 104
WLALCU e v 0
0 2 4 6 8 10 12 14 16 18 20 2
Energy (keV)

Particle size (nm)

0

5 10 15 20 25 30 35 40
Distance (nm)

Fig. S9 The morphology and composition of Pd,sAuz4. (a) TEM and (b) HRTEM images. (¢) The

EDX mapping pictures and (d) spectrum. (e) The particle size distribution plot. (f) The EDX line

scanning profile of a single nanoalloy particle, the insert is scanning direction.
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Fig. S10 The morphology and composition of Pd;g. (a) TEM and (b) HRTEM images. (c) The

EDX mapping pictures and (d) spectrum. (e) The particle size distribution plot.
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According to the Bragg equation, the lattice distances of (111) planes (marked as d;;;) were

calculated based on the corresponding diffraction angles in experimental and DFT-exported XRD

spectra. Given that d;; and lattice parameters (marked as a,) followed the relation of a,=1.73 x

di1; for face-centered cubic phases, a, of Pd,Au, could be obtained. Thus, the lattice expansion

degrees of Pd (opg) were evaluated by the equation of opg=(a,-ap) X 100%// a,,, where a,, referred to

the lattice parameter of bulk Pd (0.389 nm, JCPDS No. 46-1043).3 Moreover, lattice parameters

of binary Pd-Au systems could also be estimated by the Vegard’s law, which was a, =a, X x; + a.

x (1 - xp), where x, represented the molar percentages of Pd and a. was the lattice parameter of

bulk Au (0.408 nm, JCPDS No. 04-0784).° Hence opg was calculated based on the Vegard equation

as well.
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Fig. S29 Digital photo of the ZABs.

33



he]
=}

=
w

16

-
'S

Voltage (V vs. Zn)

i
[

-
o
o

20 40 60 80
Time (h

100 120 140 160

Fig. S30 Galvanostatic discharge/charge curves of rechargeable ZABs with Pt/C + RuO, cathode.
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Fig. S31 Line scanning profiles of PdssAuys after the cyclic stability test.
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Table S1. Average particle sizes of Pd,Au,.

Sample Average particle size (nm)
Pdiqo 103.59 +£2.05
Pd77AU23 9.79 £0.52
Pd66AU34 10.52 £0.28
PdssAuys 9.15+0.21
Pd;Augg 8.73+0.33
szﬁAU74 6.60 = 0.05
Auygo 4.86 +0.07

PdssAuys precursor 8.30+£0.17




Table S2. Mass concentrations and atomic ratios of Pd,Au,.

) ) EDX
Sample Atomic ratio of
Pd/Au in reactants ~ Mass concentration =~ Mass concentration of  Atomic ratio
of Pd (wt%) Au (Wt%) of Pd/Au
Pdiqo 100/0 12.84% — 100/0
Pd;;Auy; 75/25 12.41% 6.92% 77/23
PdgsAuszy 67/33 13.20% 12.43% 66/34
PdssAuys 50/50 6.92% 10.67% 55/45
PdsAucg 33/67 4.81% 19.18% 32/68
PdysAuyy 25/75 3.37% 17.92% 26/74
Auygo 0/100 — 12.97% 0/100
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Table S3. Slab energy values of Pd,Au,.

Slab energy
No.

Pd;;Au,; PdssAusg PdssAugs Pd3;Augs PdysAuyy
1 -293.65 -283.43 -262.17 -242.54 -227.77
2 -293.68 -284.60 -263.75 -242.04 -228.60
3 -293.59 -283.19 -261.99 -241.99 -228.56
4 -292.63 -282.75 -263.85 -241.49 -226.74
5 -293.18 -284.60 -264.21 -241.03 -229.37
6 -294.06 -284.17 -260.97 -241.16 -228.99
7 -292.97 -283.78 -263.43 -241.24 -226.95
8 -292.97 -284.04 -263.58 -241.03 -227.32
9 -293.84 -283.84 -262.45 -240.94 -227.52
10 -294.63 -285.10 -264.37 -243.06 -229.48
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Table S4. The fitting results of Pd K-edge FT-EXAFS spectra.

Sample  R-factor*!  Path®? CN.# R (A)" AE, (eV)* o2 (103 A2y

Pd foil 0.0034 Pd-Pd 12.0%* 2.73+£0.01 -6.2+0.6 48+0.5
Pd, o 0.0089 Pd-Pd 11.3+£1.2 2.73+£0.01 -5.7+£0.7 5.1+£0.6
Pd-Pd 52+1.4 2.75+£0.04 -64=+1.6 40+1.0

Pd77Au23 0.0085
Pd-Au 20=+1.1 2.74 +£0.04 -9.8+£2.1 22+0.7
Pd-Pd 49+1.1 2.75+0.03 S1+1.4 55+1.1

Pd65AL134 0.0027
Pd-Au 47+1.0 2.74 £0.03 -7.8+1.6 6.0+1.1
Pd-Pd 34+0.9 2.79 £0.04 3.1+14 4.6+09

Pd55AU45 0.0064
Pd-Au 5714 2.79+0.04 -1.7+£1.2 50+1.1
Pd-Pd 1.4+09 2.79 +0.04 32+1.2 32+0.8

Pd32ALl6g 0.0044
Pd-Au 8.1+£1.2 2.79 £0.03 45+13 6.0£1.2
Pd-Pd 1.2+1.0 2.77+£0.04 -7.9+1.6 2.1+£0.7

Pd26AU74 0.0096
Pd-Au 83+1.5 2.79+0.04 -49+13 53+1.1

#Degree of curve coincidence

#Scattering path

#3Coordination number

#“Bond length

#Energy shift

#Debye-Waller factor

*Fixed coordination number according to the standard crystal structure
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Table S5. The fitting results of Au L;-edge FT-EXAFS spectra.

Sample  R-factor*!  Path®? CN.# R (A)" AE, (eV)* o2 (103 A2y

Au foil 0.0026 Au-Au 12.0%* 2.86 +0.01 51+04 82+0.3
Au-Au 45+1.0 2.77 +£0.03 3.0+1.6 62+1.0

Pd77AU23 0.0041
Au-Pd 6.5+1.1 2.77+0.02 5.0+2.0 47+£0.8
Au-Au 53+0.9 2.76 £0.03 1.3+2.0 72+1.3

Pd@éAu34 0.0049
Au-Pd 6.0+1.1 2.78 +£0.02 5.1+22 48+09
Au-Au 6.5+ 1.0 2.79+£0.03 27+1.4 6.5+0.9

Pd55AU45 0.0025
Au-Pd 47+0.8 2.79+0.02 59+1.5 53+0.8
Au-Au 83+14 2.81+0.02 45+1.3 73+1.1

Pd32Au68 0.0025
Au-Pd 3.0+09 2.80+0.02 53+14 5.6+0.9
Au-Au 94+1.8 2.82 +0.03 42+19 8.8+14

Pd26ALI74 0.0032
Au-Pd 2.5+0.9 2.80 +0.03 3.8+1.7 64+1.2
Auigo 0.0032 Au-Au 11.5+£0.6 2.86 £0.01 28+04 83+04

#Degree of curve coincidence

#Scattering path

#3Coordination number

#“Bond length

#Energy shift

#Debye-Waller factor

*Fixed coordination number according to the standard crystal structure
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Table S6. Comparison of ORR performances for Pd-based electrocatalysts.

Half-wave Mass activity Tafel slope  Scannin
Catalyst potential (V vs.  at 0.9 Vyyg (mV decﬁ ) directio f Reference
RHE) (A g Pd/Pt)
PdssAuys 0.93 962.6 14.5 Anodic This work
. Adv. Mater., 2022, 34
_ 10 s b 9
Pd-Sb RHs/C 0.93 710.0 51.7 Anodic 2206528,
. Energy Environ. Sci.
_PFll o ,
PdNiMnO-PF 0.84 67.8 64.4 # 2022.15, 15731584,
Adv. Energy Mater.
12 ’
Pd/FeCo 0.84 91.0 57.5 —# 2021, 11, 2002204,
. J. Am. Chem. Soc., 2022
13 s 5
Pty ,Pd; 3Ge 0.95 322.0 41.3 Anodic 144, 11859-11869
Agp 1Pdgo' 0.91 46.2 51.2 N C"’""é%" 2021, 12,
Angew. Chem. Int. Ed.
15 5
Pds 0.90 3400 63:5 —i 2022, 61, €202208751.
Pd;Pb . Angew. Chem. Int. Ed.,
UPINs/CI6 091 5900 556 Anodic 071, 60, 10942-10949.
. Adv. Funct. Mater., 2022
} 17 ) )
O-PdFe@C,, 0.89 69.6 36.4 Anodic 32, 2203921,
Pd;Se;s Nano Lett., 2021, 21,
NPs/CI8 0.89 460.0 57.8 —H# 3805-3812.

#: not mentioned
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Table S7. Comparison of Zn-air battery performances for Pd and Pt-based electrocatalysts.

Peak power Specific capacity Cycling
Catalyst density mW em?)  (mAh g stability Reference
PdssAugs 237.7 821.4 2000 h (3000 This work
cycles)
PdMo bimetallene/C3 154.2 798.0 ~H7h 350 Nature, 2019, 574, 81-
cycles) 85.
240 h (120 Energy Environ. Sci.
i 19 ,
SA-PCoF 1250 808.0 cycles) 2020, 13, 884-895.
300 h (450 Angew. Chem. Int. Ed.
_ 20 )
Pt-FeO,/CN 192.3 804.6 cycles) 2022, 61, 202213366,
200 h (400 Adv. Energy Mater.
12 s
Pd/FeCo 17.0 821.0 cycles) 2021, 11, 2002204,
80 h (240 Adv. Energy Mater.
; _1021 ’
Pt-SCFP/C-12 122.0 790.4 cycles) 2020, 10, 1903271,
o 200 h (600 Energy Storage Mater.
-C22 >
PAN/NI@N-C 108.5 7192 cycles) 2021, 42, 118-128.
. 230 h (700 J. Mater. Chem. A
B, 23 ,
Ni $As-Pd@NC 1342 719.2 cycles) 2022, 10, 6086-6095,
60 h (60 ACS Appl. Mater.
Lao'7Sr0_3C00,9Pd0,0302.3524 52.0 740.0 1 ) Interfaces, 2020, 12,
Khas 40355-40363.
. 220 h (660 J. Mater. Chem. A
25 s
Pd45Pt44N111 SpNSS/C 206.0 701.8 cycles) 2022’ 10, 3808-3817.
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