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I. Economic constants and assumptions

HBAT’s algorithm has many layers of calculations operating in parallel to produce results. Most of the
specific calculations can be seen by downloading the newest version of HBAT and checking the cell
equations. Equations 1 through 39 are shown in the main text, but supplementary equations and constants
are shown in the following section. Unless otherwise noted, fluid properties were calculated using default
user parameters at the equivalent rate of 50,000 kg H./day.

Table S1.

Constant Value Units Equation
Aq 0.2016 - 1
Ay 1.9608 - 1
As 10000 hr kg 1
Ay 0.961 - 1
As 19.916 - 1
B -1.3028 x 102 K3 psi? 3
B: 1.4x 107" K3 3
B; 1.6873 x 10°° K2 psi? 3
B4 -1x107° K2 3
Bs -8.1388 x 10”7 K psit 3
Bs 4x10% K1 3
B 1.732 x 10* psit 3
Bs 1.0001 - 3
C: 63027 uUsD 4
C 0.0697 int 4
Cs 251.737 USD in? 4
Cs 60848.1 USD int 4
Cs 303657 usb 4
Pin 1000 psi 1,3
Pout 700 psi 1,3
Prel 0.06897 - 1
T 298.15 K 1,3

Rencoon 53375 - 6

Rechson 56103 - 6

Renws 168623 - 6

Rencoochs 176294 - 6

€ 4.6 x 10° m 6
Xmat 0.75 - 7
%R 100 % 24
%R 5 % 24, 27
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Supplemental equations:

M-R-T y

=

(s1) . P \Ny
Weompressor = Zim * 36My, € y— 1 ’ (P_0> -1
(s2) Wiiquefier = 19.4312+- M*9 - NO1
GWP-M
(s3) Break Even Emissions Recovery Time (tjoqx in hrS) = tjoqr " ——
Chpet
(s4) Break Even Leak Rate = ————— - 100%
GWP-M 41
Chpet
I1. Supply chain specification table
Table S2.
Supply
Chain # Production Storage Transport End Use
1 Biomass Gasification Gas H2 Pipeline Fertilizer
2 Biomass Gasification Gas H2 Pipeline Fca\im/r?;'de
3 Biomass Gasification Gas H2 Railcar Fertilizer
. . . FCEV vehicle
4 Biomass Gasification Gas H2 Railcar filling
5 Biomass Gasification Formic Acid  Pipeline Fertilizer
6 Biomass Gasification Formic Acid  Pipeline Fci\iﬁ;’ﬁ;'de
7 Biomass Gasification Formic Acid Railcar Fertilizer
8 Biomass Gasification Formic Acid Railcar Fci\ifl;/r?;'c'e
9 Biomass Gasification Liquid H2 Truck Fertilizer
10 Biomass Gasification Liquid H2 Truck Fci\im/r?;'c'e
11 Biomass Gasification Liquid H2 Railcar Fertilizer
12 Biomass Gasification Liquid H2 Railcar Fci}fl;fglde
13 CO2 Electrolysis PV Methyl Pipeline Fertilizer
Coupled Formate
14 CO2 Electrolysis PV Methy!l Pineline FCEV vehicle
Coupled Formate P filling
15 CO2 Electrolysis PV Methyl Railcar Fertilizer
Coupled Formate
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[11. Supplemental Analysis - Feedstock Price Perturbation

The default scenarios, 1 through 64, utilise commodity price data found in government databases,
techno-economic analyses, and market data hubs. Similarly, as discussed in the previous section,
the changes in the price of the feedstocks can significantly alter the economic viability of a business
case. This section analyses the effect of increasing, and occasionally decreasing, the purchase price
of these commodities to visualise how future market fluctuations can potentially disturb the
hydrogen business.

Figure SAL shows key parameters of the 25-year NPV functions for all non-electrolyser supply
chains. These NPV functions are derived from at least four feedstock price points (scenarios 1-12,
41-64, 129-132, 161-196, and 225-248), starting at zero then low, medium, and high. When
segregated by production technology and end-use, there is an interesting linear trend that appears
when the maximum NPV is plotted against the break-even feedstock price. This trend correlates
supply chains with different storage mediums and transportation methods, indicating that the rate
of NPV appreciation depends only on the production method and end-use. The storage medium and
transportation method seem to only affect the maximum achievable NPV and does not change the
relationship between NPV and feedstock price. This is a peculiar result since there appears to be no
obvious connection between those supply chains. Nevertheless, the result makes determining break-
even feedstock prices very predictable, as any new supply chain may be classified into any of the
six groups in Figure SA1 and the break-even feedstock price can be determined from the NPV of
the zero-cost business.

Similarly, the BEHP can also be grouped into the same six groups. Figure SA2 shows the minimum
achievable BEHP for each supply chain. Using the feedstock price correlation shown in Figure S6,
one can determine the price necessary to reach a BEHP of 2.00 USD kg can be determined by the
X-intercept. This equivalent feedstock price is plotted on the vertical axis of Figure SA2 to show
the linear relationship for each class of supply chains. In plots A, D, and E, most supply chains are
not able to reach the desired BEHP. Despite this, they still correlate with the other data to create a
strong regression line. The Y-intercept of this line shows the maximum feedstock price for each
class that can still break-even selling hydrogen at the aforementioned price. The Y-intercepts
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Figure SA1 25-year net present value functions, separated by feedstock type and end-use. A feedstock price of zero provides the maximum achievable NPV, plotted
against the break-even feedstock price to achieve a positive NPV. Each point is labelled with the respective supply chain. (A) Wood BG-Fertiliser Manufacturing (B)
Wood BG-FCEV Filling (C) SMR-Fertiliser Manufacturing (D) SMR-FCEV Filling (E) CO Purchase-Fertiliser Manufacturing (F) CO Purchase-FCEV Filling. Supply chain 6 is
not shown on the B plot because its maximum NPV is negative.
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Figure SA2 Break-even hydrogen price functions, separated by feedstock type and end-use. A feedstock price of zero provides the minimum achievable BEHP, plotted
against the minimum feedstock price needed to achieve a BEHP of 2.00 USD kg™. Each point is labelled with the respective supply chain. (A) Wood BG-Fertiliser
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Points not shown on the plot have negative equivalent feedstock prices.
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indicate that the change in end-use does not have a significant effect; only plot 21A and 21D display
a major difference. Furthermore, the latter’s weaker regression (R? = 0.9743) is significantly more
variable than the next sparse regression (R = 0.9996), so the difference should be questioned. This
is mainly due to an outlier, supply chain 4 at point (5.34, -103.38), which has a high leverage and
pulls the Y-intercept of the regression down. Excluding this outlier, the Y -intercept and regression
coefficient become 94.84 USD tonne and 0.9864 respectively, approaching the regression of plot
21A. Despite the results from a two-sample t-test indicating that only 21C and 21F are statistically
identical using 95% confidence, the effect of varying the end-use is negligible in each case.

I11. Supplemental Figures
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Figure S1. NPV achieved for various scaling strategies, plotted against the respective initial profit margin.
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Figure S6. Example of linear regression of BEHP vs. price for SMR supply chains.
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Figure S9. UniSim Design process flow diagram for a CO; electrolysis to formic acid supply chain. Electricity generation and transportation

equipment not shown. Inlet streams include carbon dioxide, electrolyser analyte, methanol, and water. Outlet streams include aqueous waste,
oxygen, methyl formate-rich gas, methanol recycle, and formic acid.
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Figure S9. UniSim Design process flow diagram for a CO; electrolysis to formic acid supply chain. Electricity generation and transportation
equipment not shown. Inlet streams include carbon dioxide, electrolyser analyte, methanol, and water. Outlet streams include agueous waste,
oxygen, methyl formate-rich gas, methanol recycle, and formic acid.
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Figure S10. Simplified process flow diagram of supply chain 16. All equipment items and processes costed
in HBAT are listed with exceptions. For simplicity, heat exchangers, storage tanks, and recycle streams are
not shown but are also accounted for. Production: PV-coupled CO; electrolysis; storage: methyl formate;
transportation: railcar; end-use: FCEV filling.

Table S3. Example equipment list for supply chain 16.

Identifier # Equipment Item Bare Module Cost (x10° USD)
1 PV Solar Arrays 53,000
2 CO;, Electrolyser 43,000
3 Flash Vessel 50
4 Flash Vessel 50
5 Generic Compressor 1,703
6 Sweet/Sour Amine Seps. 57,000
7 Positive Displacement Pump 173
8 Plug-Flow Methanol Carbonylation Reactor 4,415
9 Distillation Column 433
10 Distillation Column 433
11 Distillation Column 433
12 Positive Displacement Pump 173
13 Methyl Formate Railcars 280
14 Positive Displacement Pump 173
15 Methyl Formate Dehydrogenation Reactor 107,000
16 Reflux Condenser 253
17 Pressure-Swing Adsorption Seps. 9,962
18 Five-Stage FCEV H, Compressors 4,617
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Table S4. ASCR optimization results. Red highlight indicates negative NPV scenario.

Supply Chain #

Max R&D Annual Benefit per Point

Optimal ASCR (%) Total Annual Benefit
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