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I. Economic constants and assumptions 

HBAT’s algorithm has many layers of calculations operating in parallel to produce results. Most of the 

specific calculations can be seen by downloading the newest version of HBAT and checking the cell 

equations. Equations 1 through 39 are shown in the main text, but supplementary equations and constants 

are shown in the following section. Unless otherwise noted, fluid properties were calculated using default 

user parameters at the equivalent rate of 50,000 kg H2/day. 

Table S1.  

Constant Value Units Equation 

A1 0.2016 - 1 

A2 1.9608 - 1 

A3 10000 hr kg-1 1 

A4 0.961 - 1 

A5 19.916 - 1 

B1 -1.3028 x 10-12 K-3 psi-1 3 

B2 1.4 x 10-13 K-3 3 

B3 1.6873 x 10-9 K-2 psi-1 3 

B4 -1 x 10-10 K-2 3 

B5 -8.1388 x 10-7 K-1 psi-1 3 

B6 4 x 10-8 K-1 3 

B7 1.732 x 10-4 psi-1 3 

B8 1.0001 - 3 

C1 63027 USD 4 

C2 0.0697 in-1 4 

C3 251.737 USD in-2 4 

C4 60848.1 USD in-1 4 

C5 303657 USD 4 

Pin 1000 psi 1, 3 

Pout 700 psi 1, 3 

ρrel 0.06897 - 1 

T 298.15 K 1, 3 

ReHCOOH 53375 - 6 

ReCH3OH 56103 - 6 

ReNH3 168623 - 6 

ReHCOOCH3 176294 - 6 

ε 4.6 x 10-5 m 6 

xmat 0.75 - 7 

%R1 100 % 24 

%R2 5 % 24, 27 
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Supplemental equations: 

𝑊̇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 = 𝑍𝐿𝑀 ∙
𝑀̇ ∙ 𝑅 ∙ 𝑇

36𝑀𝑊 ∙ 𝜖
∙

𝛾

𝛾 − 1
∙ [(

𝑃𝑖𝑛

𝑃0
)

𝛾−1
𝑁∙𝛾

− 1] 

𝑊̇𝑙𝑖𝑞𝑢𝑒𝑓𝑖𝑒𝑟 = 19.4312 ∙ 𝑀̇0.9 ∙ 𝑁0.1 

𝐵𝑟𝑒𝑎𝑘 𝐸𝑣𝑒𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑇𝑖𝑚𝑒 (𝑡𝑙𝑒𝑎𝑘 𝑖𝑛 ℎ𝑟𝑠) = 𝑡𝑙𝑒𝑎𝑘 ∙
𝐺𝑊𝑃 ∙ 𝑀̇

𝐶𝐹̇𝑛𝑒𝑡

 

𝐵𝑟𝑒𝑎𝑘 𝐸𝑣𝑒𝑛 𝐿𝑒𝑎𝑘 𝑅𝑎𝑡𝑒 =  
1

𝐺𝑊𝑃 ∙ 𝑀̇

𝐶𝐹̇𝑛𝑒𝑡
+ 1

∙ 100% 

 

II. Supply chain specification table 

 

Table S2.  

Supply 

Chain # Production Storage Transport End Use 

1 Biomass Gasification Gas H2 Pipeline Fertilizer 

2 Biomass Gasification Gas H2 Pipeline 
FCEV vehicle 

filling 

3 Biomass Gasification Gas H2 Railcar Fertilizer 

4 Biomass Gasification Gas H2 Railcar 
FCEV vehicle 

filling 

5 Biomass Gasification Formic Acid Pipeline Fertilizer 

6 Biomass Gasification Formic Acid Pipeline 
FCEV vehicle 

filling 

7 Biomass Gasification Formic Acid Railcar Fertilizer 

8 Biomass Gasification Formic Acid Railcar 
FCEV vehicle 

filling 

9 Biomass Gasification Liquid H2 Truck Fertilizer 

10 Biomass Gasification Liquid H2 Truck 
FCEV vehicle 

filling 

11 Biomass Gasification Liquid H2 Railcar Fertilizer 

12 Biomass Gasification Liquid H2 Railcar 
FCEV vehicle 

filling 

13 
CO2 Electrolysis PV 

Coupled 

Methyl 

Formate 
Pipeline Fertilizer 

14 
CO2 Electrolysis PV 

Coupled 

Methyl 

Formate 
Pipeline 

FCEV vehicle 

filling 

15 
CO2 Electrolysis PV 

Coupled 

Methyl 

Formate 
Railcar Fertilizer 

(S1) 

(S2) 

(S3) 

(S4) 
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16 
CO2 Electrolysis PV 

Coupled 

Methyl 

Formate 
Railcar 

FCEV vehicle 

filling 

17 
CO2 Electrolysis PV 

Coupled 
Formic Acid Pipeline Fertilizer 

18 
CO2 Electrolysis PV 

Coupled 
Formic Acid Pipeline 

FCEV vehicle 

filling 

19 
CO2 Electrolysis PV 

Coupled 
Formic Acid Railcar Fertilizer 

20 
CO2 Electrolysis PV 

Coupled 
Formic Acid Railcar 

FCEV vehicle 

filling 

21 
CO2 Electrolysis PV 

Coupled 
Methanol Pipeline Fertilizer 

22 
CO2 Electrolysis PV 

Coupled 
Methanol Pipeline 

FCEV vehicle 

filling 

23 
CO2 Electrolysis PV 

Coupled 
Methanol Railcar Fertilizer 

24 
CO2 Electrolysis PV 

Coupled 
Methanol Railcar 

FCEV vehicle 

filling 

25 
N2 Electrolysis PV 

Coupled 
Ammonia Pipeline Fertilizer 

26 
N2 Electrolysis PV 

Coupled 
Ammonia Pipeline 

FCEV vehicle 

filling 

27 
N2 Electrolysis PV 

Coupled 
Ammonia Railcar Fertilizer 

28 
N2 Electrolysis PV 

Coupled 
Ammonia Railcar 

FCEV vehicle 

filling 

29 
H2O electrolysis PV 

Coupled 
Gas H2 Pipeline Fertilizer 

30 
H2O electrolysis PV 

Coupled 
Gas H2 Pipeline 

FCEV vehicle 

filling 

31 
H2O electrolysis PV 

Coupled 
Gas H2 Railcar Fertilizer 

32 
H2O electrolysis PV 

Coupled 
Gas H2 Railcar 

FCEV vehicle 

filling 

33 
H2O electrolysis PV 

Coupled 
Formic Acid Pipeline Fertilizer 

34 
H2O electrolysis PV 

Coupled 
Formic Acid Pipeline 

FCEV vehicle 

filling 

35 
H2O electrolysis PV 

Coupled 
Formic Acid Railcar Fertilizer 

36 
H2O electrolysis PV 

Coupled 
Formic Acid Railcar 

FCEV vehicle 

filling 

37 
H2O electrolysis PV 

Coupled 
Liquid H2 Truck Fertilizer 

38 
H2O electrolysis PV 

Coupled 
Liquid H2 Truck 

FCEV vehicle 

filling 

39 
H2O electrolysis PV 

Coupled 
Liquid H2 Railcar Fertilizer 

40 
H2O electrolysis PV 

Coupled 
Liquid H2 Railcar 

FCEV vehicle 

filling 

41 SMR Gas H2 Pipeline Fertilizer 
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42 SMR Gas H2 Pipeline 
FCEV vehicle 

filling 

43 SMR Gas H2 Railcar Fertilizer 

44 SMR Gas H2 Railcar 
FCEV vehicle 

filling 

45 SMR Formic Acid Pipeline Fertilizer 

46 SMR Formic Acid Pipeline 
FCEV vehicle 

filling 

47 SMR Formic Acid Railcar Fertilizer 

48 SMR Formic Acid Railcar 
FCEV vehicle 

filling 

49 SMR Liquid H2 Truck Fertilizer 

50 SMR Liquid H2 Truck 
FCEV vehicle 

filling 

51 SMR Liquid H2 Railcar Fertilizer 

52 SMR Liquid H2 Railcar 
FCEV vehicle 

filling 

53 CO Purchase 
Methyl 

Formate 
Pipeline Fertilizer 

54 CO Purchase 
Methyl 

Formate 
Pipeline 

FCEV vehicle 

filling 

55 CO Purchase 
Methyl 

Formate 
Railcar Fertilizer 

56 CO Purchase 
Methyl 

Formate 
Railcar 

FCEV vehicle 

filling 

57 CO Purchase Formic Acid Pipeline Fertilizer 

58 CO Purchase Formic Acid Pipeline 
FCEV vehicle 

filling 

59 CO Purchase Formic Acid Railcar Fertilizer 

60 CO Purchase Formic Acid Railcar 
FCEV vehicle 

filling 

61 CO Purchase Methanol Pipeline Fertilizer 

62 CO Purchase Methanol Pipeline 
FCEV vehicle 

filling 

63 CO Purchase Methanol Railcar Fertilizer 

64 CO Purchase Methanol Railcar 
FCEV vehicle 

filling 

 

  



pg. 6 
 

III. Supplemental Analysis - Feedstock Price Perturbation 

The default scenarios, 1 through 64, utilise commodity price data found in government databases, 
techno-economic analyses, and market data hubs. Similarly, as discussed in the previous section, 
the changes in the price of the feedstocks can significantly alter the economic viability of a business 
case. This section analyses the effect of increasing, and occasionally decreasing, the purchase price 
of these commodities to visualise how future market fluctuations can potentially disturb the 
hydrogen business.  

Figure SA1 shows key parameters of the 25-year NPV functions for all non-electrolyser supply 
chains. These NPV functions are derived from at least four feedstock price points (scenarios 1-12, 
41-64, 129-132, 161-196, and 225-248), starting at zero then low, medium, and high. When 
segregated by production technology and end-use, there is an interesting linear trend that appears 
when the maximum NPV is plotted against the break-even feedstock price. This trend correlates 
supply chains with different storage mediums and transportation methods, indicating that the rate 
of NPV appreciation depends only on the production method and end-use. The storage medium and 
transportation method seem to only affect the maximum achievable NPV and does not change the 
relationship between NPV and feedstock price. This is a peculiar result since there appears to be no 
obvious connection between those supply chains. Nevertheless, the result makes determining break-
even feedstock prices very predictable, as any new supply chain may be classified into any of the 
six groups in Figure SA1 and the break-even feedstock price can be determined from the NPV of 
the zero-cost business. 

Similarly, the BEHP can also be grouped into the same six groups. Figure SA2 shows the minimum 
achievable BEHP for each supply chain. Using the feedstock price correlation shown in Figure S6, 
one can determine the price necessary to reach a BEHP of 2.00 USD kg-1 can be determined by the 
X-intercept. This equivalent feedstock price is plotted on the vertical axis of Figure SA2 to show 
the linear relationship for each class of supply chains. In plots A, D, and E, most supply chains are 
not able to reach the desired BEHP. Despite this, they still correlate with the other data to create a 
strong regression line. The Y-intercept of this line shows the maximum feedstock price for each 
class that can still break-even selling hydrogen at the aforementioned price. The Y-intercepts 
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Figure SA1 25-year net present value functions, separated by feedstock type and end-use. A feedstock price of zero provides the maximum achievable NPV, plotted 

against the break-even feedstock price to achieve a positive NPV. Each point is labelled with the respective supply chain. (A) Wood BG-Fertiliser Manufacturing (B) 

Wood BG-FCEV Filling (C) SMR-Fertiliser Manufacturing (D) SMR-FCEV Filling (E) CO Purchase-Fertiliser Manufacturing (F) CO Purchase-FCEV Filling. Supply chain 6 is 

not shown on the B plot because its maximum NPV is negative. 



pg. 7 
 

indicate that the change in end-use does not have a significant effect; only plot 21A and 21D display 
a major difference. Furthermore, the latter’s weaker regression (R2 = 0.9743) is significantly more 
variable than the next sparse regression (R2 = 0.9996), so the difference should be questioned. This 
is mainly due to an outlier, supply chain 4 at point (5.34, -103.38), which has a high leverage and 
pulls the Y-intercept of the regression down. Excluding this outlier, the Y-intercept and regression 
coefficient become 94.84 USD tonne-1 and 0.9864 respectively, approaching the regression of plot 
21A. Despite the results from a two-sample t-test indicating that only 21C and 21F are statistically 
identical using 95% confidence, the effect of varying the end-use is negligible in each case.  

 

III. Supplemental Figures 

 

Figure S1. NPV achieved for various scaling strategies, plotted against the respective initial profit margin. 
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Figure SA2 Break-even hydrogen price functions, separated by feedstock type and end-use. A feedstock price of zero provides the minimum achievable BEHP, plotted 

against the minimum feedstock price needed to achieve a BEHP of 2.00 USD kg-1. Each point is labelled with the respective supply chain. (A) Wood BG-Fertiliser 

Manufacturing (B) Wood BG-FCEV Filling (C) SMR-Fertiliser Manufacturing (D) SMR-FCEV Filling (E) CO Purchase-Fertiliser Manufacturing (F) CO Purchase-FCEV Filling. 

Points not shown on the plot have negative equivalent feedstock prices. 
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Figure S2. Slope of NPV as a function of Initial Profit Margin (IPM). Shown with regression confidence 

intervals and split into experimental groups. [end-use, initial daily production, reinvestment rate]: FCEV, 

50k, 40% (olive); FCEV, 100k, 20% (green); FCEV, 50k, 20% (grey); FCEV, 25k, 20% (light green); 

Fert., 25k, 20% (cyan); Fert., 50k, 20% (pale blue); Fert., 50k, 40% (black); Fert., 100k, 20% (dark blue). 

 

 

Figure S3. Reduction in total overnight cost for each electrolyser supply chain. Fertiliser supply chains are 

shown in pale blue and FCEV filling supply chains are shown in grey. 
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Figure S4. Business properties of supply chain 20 as a function of electricity price during 23-hour operation 

strategy: A. Break-even hydrogen price; B. Total overnight cost (MM USD); C. Net present value (MM 

USD); D. Initial profit margin; E. Max profit margin; F. Payback period; G. Minimum profitable production 

scale (x 103 kg/day); H. Monthly EBITDA at year 25 (MM USD). 

 

Figure S5. Payback period comparison between the default electrolyser scenarios (bars) and the 0.04 

USD/kWh electricity purchasing scenario using the 23-hour strategy. Supply chains that do not achieve a 

payback period less than 25 years with either strategy are not shown. *PBP for supply chain 24 is greater 

than 25 years. 

y = 32.34146x + 
1.71683

R² = 0.99997

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$0.00 $0.02 $0.04 $0.06

y = 4.748E+07x + 
5.886E+08

R² = 1.000E+00

 $589

 $589

 $589

 $589

 $589

 $590

 $590

 $590

 $590

 $590

 $591

$0.00 $0.02 $0.04 $0.06

y = -3.361E+10x + 
3.655E+09

R² = 1.000E+00

 $-

 $500

 $1,000

 $1,500

 $2,000

 $2,500

 $3,000

 $3,500

 $4,000

$0.00 $0.02 $0.04 $0.06

y = -329.76829x + 
33.88713

R² = 1.00000

0%

5%

10%

15%

20%

25%

30%

35%

$0.00 $0.02 $0.04 $0.06

y = -4.01585x + 
0.64193

R² = 0.99811

0%

10%

20%

30%

40%

50%

60%

70%

$0.00 $0.02 $0.04 $0.06

y = 3.815e14.242x

R² = 1.000

0

1

2

3

4

5

6

7

8

$0.00 $0.02 $0.04 $0.06

y = 1.433E+06x + 
1.559E+05

R² = 9.654E-01

0

50

100

150

200

250

$0.00 $0.02 $0.04 $0.06

y = -1.041E+09x + 
1.840E+08

R² = 1.000E+00 $-

 $20

 $40

 $60

 $80

 $100

 $120

 $140

 $160

 $180

 $200

$0.00 $0.02 $0.04 $0.06

0

5

10

15

20

25

1
3,

 1
4

1
5,

 1
6

1
7,

 1
8

1
9,

 2
0

2
1,

 2
2

2
3,

 2
4

2
5,

 2
6

2
7,

 2
8

2
9,

 3
0

3
1,

 3
2

3
3,

 3
4

3
5,

 3
6

3
7,

 3
8

3
9,

 4
0

P
ay

b
ac

k 
P

er
io

d
 (

ye
ar

s)

Supply Chain Number

B A C D 

E F G H 

* 



pg. 10 
 

 

Figure S6. Example of linear regression of BEHP vs. price for SMR supply chains. 

  

Figure S7. Net present value scaling functions for all 32 fertiliser manufacturing 

supply chains. Data were collected at ASCR rates of 0%, 2%, 4%, 5%, 6%, 8%, and 

10%. List on the right indicates the colour designation of each supply chain and the 

value of the 10% ASCR rate NPV. 
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Figure S8. Correlation between profitability index and the supply chain’s payback period. The parity 

between payback period exponents indicates the sensitivity of the payback period to the business case’s PI, 

where fertiliser manufacturing is more sensitive to changes in PI. 
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Figure S10. Simplified process flow diagram of supply chain 16. All equipment items and processes costed 

in HBAT are listed with exceptions. For simplicity, heat exchangers, storage tanks, and recycle streams are 

not shown but are also accounted for. Production: PV-coupled CO2 electrolysis; storage: methyl formate; 

transportation: railcar; end-use: FCEV filling. 

Table S3. Example equipment list for supply chain 16. 

Identifier # Equipment Item Bare Module Cost (x103 USD) 

1 PV Solar Arrays 53,000 

2 CO2 Electrolyser 43,000 

3 Flash Vessel 50 

4 Flash Vessel 50 

5 Generic Compressor 1,703 

6 Sweet/Sour Amine Seps. 57,000 

7 Positive Displacement Pump 173 

8 Plug-Flow Methanol Carbonylation Reactor 4,415 

9 Distillation Column 433 

10 Distillation Column 433 

11 Distillation Column 433 

12 Positive Displacement Pump 173 

13 Methyl Formate Railcars 280 

14 Positive Displacement Pump 173 

15 Methyl Formate Dehydrogenation Reactor 107,000 

16 Reflux Condenser 253 

17 Pressure-Swing Adsorption Seps. 9,962 

18 Five-Stage FCEV H2 Compressors 4,617 
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Table S4. ASCR optimization results. Red highlight indicates negative NPV scenario. 

Supply Chain # Max R&D Annual Benefit per Point Optimal ASCR (%) Total Annual Benefit 

1 $         10,719,677 2 $           21,439,355 

2 $         49,069,586 10 $         490,695,858 

3 $            9,333,618 2 $           18,667,236 

4 $         25,481,437 2 $           50,962,875 

5 $         53,171,108 10 $         531,711,077 

6 $         22,361,748 2 $           44,723,496 

7 $       194,359,253 2 $         388,718,506 

8 $         32,061,843 2 $           64,123,687 

9 $         53,774,221 10 $         537,742,211 

10 $         32,052,356 2 $           64,104,712 

11 $         57,066,772 10 $         570,667,720 

12 $         17,446,766 2 $           34,893,532 

13 $         82,955,333 10 $         829,553,328 

14 $         14,455,823 2 $           28,911,647 

15 $       116,283,667 2 $         232,567,334 

16 $         33,665,922 4 $         134,663,689 

17 $       137,717,553 10 $      1,377,175,530 

18 $         37,634,931 2 $           75,269,862 

19 $       313,592,845 2 $         627,185,691 

20 $         61,190,095 2 $         122,380,191 

21 $         72,118,458 10 $         721,184,579 

22 $         60,544,701 2 $         121,089,401 

23 $         99,827,371 10 $         998,273,707 

24 $         16,635,518 2 $           33,271,037 

25 $         44,651,137 10 $         446,511,375 

26 $         13,831,835 2 $           27,663,670 

27 $       283,922,177 2 $         567,844,353 

28 $         21,839,227 2 $           43,678,454 

29 $       125,206,062 10 $      1,252,060,624 

30 $         20,397,915 2 $           40,795,829 

31 $         45,425,268 10 $         454,252,679 

32 $         16,512,862 10 $         165,128,620 

33 $         86,858,150 10 $         868,581,499 

34 $         29,120,184 4 $         116,480,737 

35 $       275,801,069 2 $         551,602,139 

36 $         48,230,851 2 $           96,461,703 

37 $       132,536,830 10 $      1,325,368,301 

38 $         48,075,372 2 $           96,150,744 

39 $       135,913,639 10 $      1,359,136,387 

40 $            2,860,030 2 $              5,720,061 

41 $       267,564,565 2 $         535,129,130 

42 $            1,944,547 2 $              3,889,094 
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43 $         74,174,346 2 $         148,348,692 

44 $         10,590,074 2 $           21,180,148 

45 $       108,054,420 10 $      1,080,544,203 

46 $            8,197,257 2 $           16,394,513 

47 $         69,692,405 2 $         139,384,810 

48 $         23,145,056 2 $           46,290,112 

49 $       197,959,188 2 $         395,918,376 

50 $         22,949,684 2 $           45,899,368 

51 $       194,812,158 2 $         389,624,316 

52 $         11,579,222 2 $           23,158,444 

53    
54 $            4,456,026 10 $           44,560,256 

55 $         22,960,153 10 $         229,601,528 

56 $            8,724,343 2 $           17,448,686 

57    
58 $            5,802,588 2 $           11,605,175 

59 $         50,207,512 2 $         100,415,024 

60 $         17,437,648 6 $         104,625,889 

61    
62 $         20,920,996 4 $           83,683,983 

63 $         52,064,201 10 $         520,642,009 

64 $         10,719,677 2 $           21,439,355 
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