Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Role of Fe Decoration on the Oxygen Evolving State of Co₃O₄ Nanocatalysts

Felix T. Haase¹, Eduardo Ortega¹, Sascha Saddeler², Franz-Philipp Schmidt³, Daniel Cruz³,
Fabian Scholten², Martina Rüscher¹, Andrea Martini¹, Hyo Sang Jeon¹, Antonia Herzog¹, Uta Hejral¹, Earl M. Davis¹, Janis Timoshenko¹, Axel Knop-Gericke³, Thomas Lunkenbein³,
Stephan Schulz², Arno Bergmann^{1,*}, and Beatriz Roldan Cuenya^{1*}

¹Department of Interface Science, Fritz Haber Institute of the Max Planck Society, Berlin, Germany

²Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen [CENIDE], University of Duisburg-Essen, Essen, Germany

³Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany

e-mail: abergmann@fhi-berlin.mpg.de, roldan@fhi-berlin.mpg.de;

Supplementary Figure 1. X-ray photoelectron spectroscopy of (a) O 1s and (b) C 1s regions of Co_3O_4 nanocatalysts on glassy carbon substrate. The O 1s and C 1s show the absence of organic residues from the synthesis.

Supplementary Figure 2. STEM images of as prepared Co_3O_4 catalyst at different magnifications (a) to showcase the difference between the highly cubic and the round-shaped particles and (b) their corresponding size-distributions.

Supplementary Table 1: Results from Rietveld refinement of powder XRD data with an added CeO_2 reference (NIST SRM674b). The Rietveld refinement showed two differently sized CeO_2 phases, as well as one Co_3O_4 spinel phase.

	CeO ₂ phase 1	CeO ₂ phase 2	Co ₃ O ₄ phase	
Space group	Fm-3m	Fm-3m	Fd-3mZ	
Fraction (wt%)	19.9	33.9	46.2	
Crystallite size	0 95+0 06	314+2	32.8±1.0	
(nm)	0.0020100			
Lattice	5 413+0 009	5 4116510	8 08733 + 0 00011	
parameter (Å)	0.1.020.000		0.000 00 1 0.000 11	

Supplementary Figure 3. Co 2p XPS spectra recorded with different excitation energies to collect photoelectrons with kinetic energies of ~550 and ~200 eV for depth-profiling. Spectra of Co₃O₄ samples in their as-prepared state with (a) ~550 eV and (b) ~200 eV photoelectron energy.^{1, 2} The calculated mean free path for ~550 eV kinetic energy is 10.4 Å and 5.6 Å for ~200 eV. Multiplet fitting of Co 2p according to literature.^{1, 2}

Supplementary Note 1: XPS fitting Co 2p

All fits for Co 2p are based upon multiplet splitting of Co_3O_4 spinels according to literature.^{1, 2} A clear differentiation between Co^{2+} and Co^{3+} in the main peak at 779-782 eV has proven to be challenging due to the strong overlap. However, the satellite features at 786 and 790 eV for Co^{2+} and Co^{3+} , respectively, are clearly assigned based on Co^{2+} references in the literature compared to the Co_3O_4 spinel.¹⁻⁴ Thus, the satellite at 786 eV can clearly show Co^{2+} surface enrichment.

Supplementary Table 2: Co 2p XPS parameters of different fitted species as-prepared (Supplementary Figure 3). Provided are binding energies, full-width half maximum (FWHM) and percentage of total peak are for each species.

	Co	<u>2p E_{kin} = 550</u>	eV	<u>Co 2p E_{kin} = 200 eV</u>			
Species	Position (eV)	FWHM (eV)	Area (%)	Position (eV)	FWHM (eV)	Area (%)	
<u>Co 2p_{3/2}</u>							
Co ³⁺	779.4	1.6	12.4	779.2	1.3	8.3	
Co ³⁺	780.6	2.1	15.1	780.2	2.3	21.3	
Co ²⁺	781.9	4.0	21.0	781.8	4.0	18.5	
sat. Co ²⁺	786.2	3.9	7.6	786.1	4.5	10.6	
sat. Co ³⁺	790.1	5.0	10.5	790.0	4.9	9.2	
<u>Co 2p_{1/2}</u>							
Co ³⁺	794.6	1.7	5.8	794.4	1.4	3.9	
Co ³⁺	795.8	2.4	6.8	795.4	2.5	8.5	
Co ²⁺	797.1	3.8	9.9	797.0	3.6	8.7	
sat. Co ²⁺	802.2	4.0	5.5	802.1	4.5	6.3	
sat. Co ³⁺	805.3	4.0	5.3	805.2	5.5	4.6	

Supplementary Figure 4. Anodic conditioning at 1.45 V_{RHE} in Fe-free and 3 ppm Fe-containing 0.1 M KOH.

Supplementary Figure 5. Cyclic voltammograms with 100 mV/s scan rate in Fe-free 0.1 M KOH after conditioning.

Supplementary Figure 6. STEM-HAADF and corresponding EDX O, Fe and Co-K_{α} color maps of cubic (low index facets) Co₃O₄ catalysts after conditioning for 1 h at 1.45 V_{RHE} in 0.1 M KOH with different Fe contents. The highlighted regions were used to calculate the atomic percentage values shown in Supplementary Table 2. Scale bar is 20 nm.

Supplementary Figure 7. STEM-HAADF and corresponding EDX O, Fe and Co-K_{α} color maps of irregular shape (rounded) Co₃O₄ catalysts after conditioning for 1 h at 1.45 V_{RHE} in 0.1 M KOH with different Fe contents. The highlighted regions were used to calculate the atomic percentage values shown in Supplementary Table 2. Scale bar is 20 nm.

Supplementary Figure 8. STEM-HAADF and corresponding EDX O, Fe and Co-K_{α} color maps of cubic (low index facets) Co₃O₄ catalysts after potential step experiments. The samples were previously conditioned in a 0.1 M KOH solution with different Fe contents and catalytically propped with potential steps for OER in Fe-free 0.1 M KOH. The highlighted regions were used to calculate the atomic percentage values shown in Supplementary Table 3. Scale bar is 20 nm.

Supplementary Figure 9. STEM-HAADF and corresponding EDX O, Fe and Co-K_{α} color maps of irregular shape (rounded) Co₃O₄ catalysts after potential step experiments. The samples were previously conditioned in a 0.1 M KOH solution with different Fe contents and catalytically propped with potential steps for OER in Fe-free 0.1 M KOH. The highlighted regions were used to calculate the atomic percentage values shown in Supplementary Table 3. Scale bar is 20 nm.

Supplementary Figure 10. High-resolution (HR-) TEM images of Co_3O_4 NPs after conditioning for 1 h at 1.45 V_{RHE} in Fe-free 0.1 M KOH.

Supplementary Figure 11. High-resolution (HR-) TEM images of Co_3O_4 NPs after conditioning for 1 h at 1.45 V_{RHE} in 5 ppm Fe containing 0.1 M KOH.

Supplementary Figure 12. STEM-EDX on single cubic Co_3O_4 NPs to locate Fe on faces and edges after conditioning. (a) Leveled and (b) tilted dark-field image of 2 separated nanoparticles. (c) Magnified dark-field image with (d) corresponding STEM-EDX mapping and line scan 1 and 2. Fe counts of line scan 1 (e) and line scan 2 (f) from faces to edges.

Supplementary Figure 13. STEM-HAADF and corresponding EDX Fe-Atomic fraction (Fe/(Fe+Co) ratio) scan lines from different Co_3O_4 catalysts after conditioning in 0.1 M KOH with 1.0 ppm Fe. The lines represent the regions plotted on the right. (a) The scan line goes through a distinctive cubic structure with (100) and (110) facets (red and blue respectively). (b) A non-cubic nanoparticle has exposed higher order facets with a different Fe-doping profile.

Supplementary Table 3: Fe:Co ratio from background corrected semi-quantitative EDX from X-ray K-lines and XPS measurements after the conditioning in different Fe concentrations both in at.%.

Cond	litioning	0 ppm	0.1 ppm	0.5 ppm	1.0 ppm	3.0 ppm	5.0 ppm
	(100)	0.6 ± 0.1	3.1 ± 0.5	6.4 ± 0.9	12.3±1.3	16 ± 2	9.3 ± 1.3
(at.%)	Bulk	0.5 ± 0.1	0.6 ± 0.1	1.5 ± 0.2	1.6 ± 0.2	1.9 ± 0.3	1.5 ± 0.2
Non-	Edge	0.5 ± 0.1	2.0 ± 0.5	1.7 ± 0.3	2.6 ± 0.6	8.3 ± 1.2	7.3 ± 1.0
cubic NPs (at.%)	Bulk	0.5 ± 0.1	0.7 ± 0.1	0.9 ± 0.1	1.4 ± 0.1	2.0 ± 0.3	1.7 ± 0.3
XPS	6 (at.%)	0	9.5	12.2	14.7	21.9	21.3

Supplementary Table 4: Fe:Co ratio from background corrected semi-quantitative EDX from X-ray K-lines and XPS measurements after potential step measurements in Fe-free 0.1 M KOH both in at.%.

Cond	litioning	0 ppm	0.1 ppm	0.5 ppm	1.0 ppm	3.0 ppm	5.0 ppm
	(100)	0.8 ± 0.2	4.5 ± 0.6	4.4 ± 0.6	7.3 ± 0.8	11.6±1.5	8.7 ± 0.9
(at.%)	Bulk	0.6 ± 0.1	0.7 ± 0.1	0.8 ± 0.1	1.3 ± 0.2	2.9 ± 0.4	1.1 ± 0.2
Non-	Edge	0.7 ± 0.1	2.8 ± 1.0	4.6 ± 0.7	4.2 ± 0.7	3.9 ± 0.7	4.2 ± 0.8
cubic NPs (at.%)	Bulk	0.5 ± 0.1	1.6 ± 0.3	1.8 ± 0.3	1.6 ± 0.2	2.4 ± 0.4	1.1 ± 0.2
XPS	6 (at.%)	0	8.7	11.8	12.6	20.7	23.4

Supplementary Figure 14. Co and Fe 2p XPS spectra recorded with different excitation energies to collect photoelectrons with kinetic energies of 550 and 200 eV for depth-profiling for samples after conditioning in 5.0 ppm Fe containing 0.1 M KOH. The calculated mean free path for 550 eV kinetic energy is 10.4 Å and 5.6 Å for 200 eV. Multiplet fitting of Co 2p according to literature.^{1,2} The Fe 2p XPS clearly show the absence of Fe²⁺ at 709 eV as shown by Diebold et al.^{5, 6}, thus, suggesting the presence of Fe³⁺ oxide species.

Supplementary Table 5: Co 2p XPS parameters of different fitted species after conditioning (Supplementary Figure 14). Provided are binding energies, FWHM and percentage of total peak are for each species.

	<u>Co</u>	2p E _{kin} = 550	eV	<u>Co 2p E_{kin} = 200 eV</u>			
Species	Position (eV)	FWHM	area.%	Position (eV)	FWHM	area.%	
<u>Co 2p_{3/2}</u>							
Co ³⁺	779.3	1.8	17.4	779.2	1.5	9.8	
Co ³⁺	780.5	2.2	13.2	780.2	2.1	11.8	
Co ²⁺	781.3	4.0	20.4	781.1	3.8	22.6	
sat. Co²+	785.7	4.0	6.6	785.4	4.3	9.8	
sat. Co³+	789.5	5.0	10.2	789.6	5.2	12.7	
<u>Co 2p_{1/2}</u>							
Co ³⁺	794.5	1.9	8.2	794.3	1.6	4.9	
Co ³⁺	795.7	2.5	6.0	795.3	2.4	5.9	
Co ²⁺	796.5	3.9	9.6	796.6	3.8	11.2	
sat. Co²+	801.7	3.8	3.4	801.4	4.5	5.1	
sat. Co³+	804.7	4.0	5.1	804.7	5.5	6.3	

Supplementary Figure 15. Co and Fe 2p XPS spectra recorded with different excitation energies to collect photoelectrons with kinetic energies of 550 and 200 eV for depth-profiling for samples conditioned in 5 ppm Fe after OER steps in Fe-free 0.1 M KOH. The calculated mean free path for 550 eV kinetic energy is 10.4 Å and 5.6 Å for 200 eV. Multiplet fitting of Co 2p according to literature.^{1, 2}

Supplementary Table 6: Co 2p XPS parameters of different fitted species after conditioning (Supplementary Figure 15). Provided are binding energies, FWHM and percentage of total peak are for each species.

	Co	2p E _{kin} = 550	eV	<u>Co 2p E_{kin} = 200 eV</u>			
Species	Position (eV)	FWHM	area.%	Position (eV)	FWHM	area.%	
<u>Co 2p_{3/2}</u>							
Co ³⁺	779.4	1.8	21.7	779.0	1.2	7.4	
Co ³⁺	780.7	2.2	14.2	779.9	2.1	18.8	
Co ²⁺	781.4	4.0	18.7	781.3	3.6	19.2	
sat. Co²+	786.0	4.0	6.9	785.7	4.5	10.4	
sat. Co³+	789.8	4.1	8.4	789.9	4.5	11.3	
<u>Co 2p_{1/2}</u>							
Co ³⁺	794.5	1.8	10.8	794.1	1.4	3.7	
Co ³⁺	795.8	2.1	7.1	795.0	2.4	9.4	
Co ²⁺	797.1	2.6	5.6	796.8	3.6	9.5	
sat. Co ²⁺	802.0	4.0	2.4	801.7	4.5	5.6	
sat. Co ³⁺	804.9	4.0	4.2	805.0	4.3	4.7	

Supplementary Figure 16. Operando high-energy X-ray diffraction pattern excerpts recorded at 67 keV during Fe-free and Fe-conditioned Co_3O_4 with highlighted Bragg reflections of a spinel structure. The electrode potentials are annotated and the sequence of measurements labeled with an arrow.

Supplementary Figure 17. (a) Co K-edge XANES after conditioning at 1.45 V_{RHE} in Fe-free 0.1 M KOH. (b) Co K-edge XANES after conditioning at 1.45 V_{RHE} in 5 ppm Fe and subsequent measurements in Fe-free 0.1 M KOH. (c) Comparison of Fe-free and Fe-conditioned XANES during OER at 1.6 V_{RHE} . (d) Co K-edge XANES reference spectra.

Supplementary Figure 18. (a) Fe K-edge XANES reference spectra and (b) linear calibration for calculation of oxidation states from absorption edge positions of Fe reference materials, displayed in blue.^{7, 8}

Supplementary Figure 19. Fe K-edge XANES edge step intensity at 1 V_{RHE} in 5 ppm Fe before conditioning, during conditioning at 1.45 V_{RHE} in 5 ppm Fe, during OER at 1.6 V_{RHE} after switching to Fe-free electrolyte and at 1 V_{RHE} after OER in Fe-free 0.1 M KOH.

Supplementary Figure 20. Co K-edge FT-EXAFS in R-space with (a) Fe-free and (b), (c) Fe conditioning with 5 ppm Fe in 0.1 M KOH. conditioning.

Supplementary Figure 21. (a) Co-O coordination number and (b) Co-O bond distance of the first coordination shell.

Supplementary Figure 22. Co K-edge FT-EXAFS in k-space with (a) Fe-free and (b), (c) Fe conditioning with 5 ppm Fe in 0.1 M KOH.

Supplementary Note 2: EXAFS fitting

Coordination numbers *N*, interatomic distances *R*, disorder factors σ^2 and energy shifts ΔE_0 were extracted from EXAFS fitting. At the Co K-edge, the first three coordination shells were fitted and attributed to Co-O, octahedrally oriented Co-M_{Oh} and tetrahedrally oriented Co-M_{Td} paths. Fits at the Fe K-edge include the first coordination shell (Fe-O contribution). All depicted error bars reflect the standard errors calculated from the EXAFS fitting results. At Co K-edge, the coordination numbers for the first 3 paths were calculated using a single variable "x" based on a published routine.^{9, 10} The variable x is the fraction of Co in tetrahedral sites from the total number of Co in a spinel phase. The amplitude reduction factors S₀² of 0.81 for Co K-edge and 0.7 for Fe K-edge were obtained by fitting EXAFS profiles of Co₃O₄ and α -Fe₂O₃ reference materials with fixed coordination numbers. EXAFS fitting was carried out in R-space in the R-range 1.0-3.8 Å (Co K-edge) or 1.0-2.0 Å (Fe K-edge). At the Co K-edge the k-range used for Fourier transformation was set to 3-10 Å⁻¹. For the Fe K-edge, the k-range was set to 3-8 Å⁻¹.

Supplementary Table 7: EXAFS fitting parameters with Fe-free 0.1 M KOH conditioned at the Co K-edge.

Fe-free	Co- Path	N	x _{co}	σ² (Ų)	∆E₀ (eV)	R (Å)	Fit R- factor (%)
	O ₁	5.3 ± 0.2		0.0038 ± 0.0007		1.909 ± 0.007	
Air	M ₁	3.9 ± 0.6	0.3 ± 0.1	0.003 ± 0.001	3.2 ± 0.7	2.861 ± 0.007	2.1
	M ₂	9.3 ± 1.0		0.0073 ± 0.0009		3.367 ± 0.008	
	O ₁	5.3 ± 0.2		0.0037 ± 0.0009		1.920 ± 0.008	
1 V _{RHE}	M ₁	4.2 ± 0.7	0.3 ± 0.1	0.002 ± 0.001	4.1 ± 0.8	2.866 ± 0.008	2.7
	M ₂	9 ± 1		0.007 ± 0.001		3.38 ± 0.01	
	O ₁	5.3 ± 0.2	0.3 ± 0.1	0.0033 ± 0.0008	3.3 ± 0.7	1.909 ± 0.007	2.2
1.45 V _{RHE} conditioning	M ₁	4.0 ± 0.6		0.003 ± 0.001		2.860 ± 0.008	
	M ₂	9 ± 1		0.0066 ± 0.0009		3.367 ± 0.008	
	O ₁	5.4 ± 0.2		0.0045 ± 0.0007		1.910 ± 0.006	
1.6 V _{RHE}	M ₁	4.4 ± 0.6	0.26 ± 0.09	0.004 ± 0.001	3.5 ± 0.7	2.863 ± 0.007	1.8
	M ₂	8.5 ± 0.9		0.0070 ± 0.0009		3.370 ± 0.008	
1 V _{RHE} after OER	O ₁	5.3 ± 0.2		0.0038 ± 0.0007		1.909 ± 0.006	1.9
	M ₁	4.1 ± 0.6	0.31 ± 0.09	0.003 ± 0.001	3.3 ± 0.7	2.861 ± 0.007	
	M ₂	9.0 ± 0.9		0.0070 ± 0.0008		3.369 ± 0.008	

Supplementary Table 8: EXAFS fitting parameters with 5 ppm Fe in 0.1 M KOH conditioned at the Co K-edge.

5 ppm Fe	Co- Path	N	x _{co}	σ² (Ų)	∆E₀ (eV)	R (Å)	Fit R- factor (%)
	O ₁	5.3 ± 0.2		0.0045 ± 0.0008		1.908 ± 0.007	
Air	M ₁	4.1 ± 0.6	0.3 ± 0.1	0.003 ± 0.001	3.1 ± 0.7	2.856 ± 0.008	2.2
	M ₂	9 ± 1		0.0067 ± 0.0009		3.369 ± 0.009	
	O ₁	5.3 ± 0.2		0.0036 ± 0.0009		1.912 ± 0.008	
1 V _{RHE}	M ₁	4.1 ± 0.6	0.3 ± 0.1	0.004 ± 0.001	3.2 ± 0.8	2.861 ± 0.009	3.1
	M ₂	9 ± 1		0.007 ± 0.001		3.36 ± 0.01	
	O ₁	5.2 ± 0.2		0.0035 ± 0.0008	3.5 ± 0.8	1.912 ± 0.007	2.7
1.45 V _{RHE} conditioning	M ₁	3.9 ± 0.6	0.3 ± 0.1	0.002 ± 0.001		2.859 ± 0.008	
	M_2	9 ± 1		0.0078 ± 0.0009		3.372 ± 0.009	
	O ₁	5.3 ± 0.2		0.0041 ± 0.0008		1.909 ± 0.007	
1.6 V _{RHE}	M ₁	4.1 ± 0.6	0.3 ± 0.1	0.003 ± 0.001	3.3 ± 0.8	2.859 ± 0.008	2.5
	M ₂	9 ± 1		0.007 ± 0.001		3.369 ± 0.009	
1 V _{RHE} after OER	O ₁	5.1 ± 0.2		0.0029 ± 0.0008		1.903 ± 0.007	2.8
	M ₁	3.5 ± 0.6	0.4 ± 0.1	0.003 ± 0.001	2.7 ± 0.8	2.858 ± 0.008	
	M ₂	10 ± 1		0.009 ± 0.001		3.36 ± 0.01	

Supplementary Table 9: EXAFS fitting parameters with 5 ppm Fe in 0.1 M KOH conditioned at the Fe K-edge.

5 ppm Fe	Fe-Path	N	σ² (Ų)	ΔE_0 (eV)	R (Å)	Fit R- factor (%)
1.45 V_{RHE} conditioning	O ₁	4.4 ± 0.2	0.001 ± 0.001	4.2 ± 0.5	1.990 ± 0.005	0.5
1.6 V _{RHE}	O ₁	4.5 ± 0.3	0.002 ± 0.001	4.8 ± 0.7	1.984 ± 0.007	0.8
1 V _{RHE} after OER	O ₁	5.6 ± 0.3	0.004 ± 0.001	3.8 ± 0.6	1.994 ± 0.006	0.6

References

- 1. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson and R. S. C. Smart, *Appl. Surf. Sci.*, 2011, **257**, 2717-2730.
- 2. R. P. Gupta and S. K. Sen, *Phys. Rev. B*, 1975, **12**, 15-19.
- 3. F. T. Haase, A. Bergmann, T. E. Jones, J. Timoshenko, A. Herzog, H. S. Jeon, C. Rettenmaier and B. Roldan Cuenya, *Nat. Energy*, 2022, **7**, 765-773.
- 4. J. Yang, H. Liu, W. N. Martens and R. L. Frost, *J. Phys. Chem. C*, 2010, **114**, 111-119.
- 5. D. Grumelli, T. Wiegmann, S. Barja, F. Reikowski, F. Maroun, P. Allongue, J. Balajka, G. S. Parkinson, U. Diebold and K. Kern, *Angew. Chem. Int. Ed.*, 2020, **59**, 21904-21908.
- 6. M. Müllner, M. Riva, F. Kraushofer, M. Schmid, G. S. Parkinson, S. F. Mertens and U. Diebold, *J. Phys. Chem. C*, 2018, **123**, 8304-8311.
- 7. J. Dittmer, L. luzzolino, W. Dörner, H.-F. Nolting, W. Meyer-Klaucke and H. Dau, *Photosynthesis: Mechanisms and Effects*, 1998, **2**, 1339-1342.
- 8. H. Dau, P. Liebisch and M. Haumann, Anal. Bioanal. Chem., 2003, 376, 562-583.
- 9. S. Saddeler, G. Bendt, S. Salamon, F. T. Haase, J. Landers, J. Timoshenko, C. Rettenmaier, H. S. Jeon, A. Bergmann, H. Wende, B. Roldan Cuenya and S. Schulz, *J. Mater. Chem. A*, 2021, **9**, 25381-25390.
- 10. F. T. Haase, A. Rabe, F.-P. Schmidt, A. Herzog, H. S. Jeon, W. Frandsen, P. V. Narangoda, I. Spanos, K. Friedel Ortega, J. Timoshenko, T. Lunkenbein, M. Behrens, A. Bergmann, R. Schlögl and B. Roldan Cuenya, *J. Am. Chem. Soc.*, 2022, **144**, 12007-12019.