Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Balancing Dynamic Evolution of Active Sites for Urea Oxidation in Practical Scenarios

Jichao Zhang^{a#}, Jiexin Zhu^{a,b#}, Liqun Kang^{c#}, Qing Zhang^{d#}, Longxiang Liu^a, Fei Guo^a, Kaiqi Li^a, Lixue Xia^e, Lei Lv^b, Wei Zong^a, Paul R. Shearing^f, Dan J. L. Brett^f, Ivan P. Parkin^a*, Xuedan Song^d*, Liqiang Mai^b*, Jianrui Feng^a and Guanjie He^{a, f}*

a Christopher Ingold Laboratory, Department of Chemistry, University College London (UCL), 20 Gordon Street, London WC1H 0AJ, UK.

b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan Hubei 430070, China.

c. Department of Inorganic Spectroscopy, Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.

d State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.

e State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China.

f Electrochemical Innovation Lab (EIL), Department of Chemical Engineering, University College London (UCL), London WC1E 7JE, UK.

[#] J. C. Z, J. X. Z, L. Q. K, and Q. Z. contributed equally to this work.

* Corresponding authors: Guanjie He(<u>g.he@ucl.ac.uk</u>), Liqiang Mai (<u>mlq518@whut.edu.cn</u>), Xuedan Song (<u>song@dlut.edu.cn</u>), and Ivan P. Parkin (<u>i.p.parkin@ucl.ac.uk</u>).

Supplementary Fig. 1. (a) XRD patterns of $Ni(OH)_2$ and Ru_1 - $Ni(OH)_2$ catalysts with diverse feed amounts of Ru, including 5, 10, and 15 mg RuCl₃ H₂O. (b) the loading mass of Ru species quantified by MP-AES.

Supplementary Fig. 2. Morphologies of Ni(OH)₂ and Ru₁-Ni(OH)₂ with different feed amounts of Ru source, including 5, 10, and 15 mg RuCl₃ H₂O, labeled as Ru-5, Ru-10 and Ru-15, respectively.

Supplementary Fig. 3. EDS mapping of the Ru₁-Ni(OH)₂ catalyst, including elements of Ni, O, and Ru.

Supplementary Fig. 4. Ru K-edge and Ni-K EXAFS fitting results of Ru₁-Ni(OH)₂: (a) k^2 -weighted k-space EXAFS. (b) k^2 -weighted R-space (magnitude) EXAFS. The experimental data is plotted in black circle scatters, while the fitted spectrum is plotted in red curve. Ni-K EXAFS fitting results of Ru₁-Ni(OH)₂: (c) k^2 -weighted k-space EXAFS. (d) k^2 -weighted R-space (magnitude) EXAFS. The experimental data is plotted in black circle scatters, while the fitted spectrum is plotted in red curve.

Supplementary Fig. 5. *In-situ* EIS for OER and UOR in different potentials. (a) bode plots and (b) Nyquist plots of Ni(OH)₂-CP for OER. (c) bode plots and (d) Nyquist plots of Ru₁-Ni(OH)₂-CP for OER. (e) bode plots and (f) Nyquist plots of Ni(OH)₂-CP for UOR. (g) bode plots and (h) Nyquist plots of Ru₁-Ni(OH)₂-CP for UOR.

High frequency interface: surface oxidation

Low frequency interface: OER

High frequency interface - - - - -

Supplementary Fig. 6. The schematic illustrations of the relationship among surface species, interfaces, and reactions during the OER (a), and UOR (b) as reported by Wang's group¹.

Supplementary Fig. 7. The adsorption energy of OH^- on $Ni(OH)_2$ and Ru_1 -Ni(OH)_2 model.

Supplementary Fig. 8. (a) Tafel slopes. (b) LSV curves of Ru_1 -Ni(OH)₂ catalysts during UOR and OER. (c) LSV curves of Ru_1 -Ni(OH)₂ with different feed amounts of Ru source. (d) The ratios between current and loading mass of different feed amounts of Ru source.

Supplementary Fig. 9. The investigation of the dynamic Ni³⁺ active site generation ability. (a-b) integrated Ni²⁺ to Ni³⁺ oxidation peak of Ru₁-Ni(OH)₂-NF and Ni(OH)₂-NF, respectively. Q is the faradaic charge transfer of Ni²⁺ to Ni³⁺ and the value can be calculated by the equation: Q=S/v, where S represents the integrated mathematical area (yellow shadow), v is the scan rate (5 mV/s). (c) CV curve of Ru₁-Ni(OH)₂ and Ni(OH)₂ catalysts on nickel foam in the electrolyte of 1M KOH +0.33M urea. (d-e) CV scanning curves at different scan rates in the non-Faradaic potential region. (f) Capacity current density at 0.07 V vs. Ag/AgCl as functional of scan rate (data obtained from d and e).

Supplementary Fig. 10. LSV curves and chronopotentiometry test of (a)-(b) MOR and (c)-(d) EOR.

Supplementary Fig. 11. (a) Schematic illustration of *In-situ* attenuated total reflection surface-enhanced IR absorption spectroscopy (ATR-SEIRAS) measurement. (b) FTIR spectra during one-hour urea electrolysis at 1.37 V vs. RHE.

Supplementary Fig. 12. (a) Schematic illustration of *In-situ* Raman spectra measurement. (b)-(d) Raman spectra of Ru₁-Ni(OH)₂, Ni(OH)₂, and pristine nickel foam during the UOR at different applied potentials.

Supplementary Fig. 13. (a) Raman spectra during the OER. (b) Raman spectra during the half-hour urea electrolysis at 1.37 V *vs* RHE.

Supplementary Fig. 14. (a) Raman spectra during the UOR with a high concentration of urea (2M). (b) Raman spectra

of intermittent UOR test.

Supplementary Fig. 15. Raman spectra of MOR and EOR in different concentrations.

Supplementary Fig. 16. (a) LSV curves during the UOR in low and high urea concentrations. (b) CV curve of Ru_1 -Ni(OH)₂ and Ni(OH)₂ catalysts on nickel foam in the electrolyte of 1M KOH + 2M urea.

Supplementary Fig. 17. The investigation of the Ru sites after reaction. (a) CV curves after 20 cycles. (b) XPS spectra of Ru 3p3/2.

Supplementary Fig. 18. The morphology after 20 cycles of CV test during (a) OER and (b) UOR.

 $\label{eq:supplementary Fig.19.} Bader charges and charge density difference for Ru_1-Ni(OH)_2 from DFT calculations.$

Supplementary Fig. 20. Charging curves of the Zn-battery, Zn-urea-air battery before and after 100 h test.

Supplementary Fig. 21. (a) The XRD pattern of as-synthesized heterogeneous Ni phosphides. (b) HR-TEM image.

Supplementary Fig. 22. HER performance of the heterogeneous catalysts of Ni phosphides catalysts. (a) LSV curves.
(b) LSV curves after 2000th cycling. (c) Stability test over 45 hours.

Supplementary Fig. 23. (a) Polarization curves of two-electrode for HER-UOR and HER-OER. (b) Polarization curves of two-electrode for comparison with the benchmark. (c) Stability test under 0.2 A cm⁻² over 100 h (adding fresh electrolyte every 20 h).

Supplementary Fig. 24. LSV curves of alkaline urine electrolysis.

Supplementary Fig. 25. LSV curves in the MEA system

Sample	Absorption Edge	Scattering Path	C.N.	$\sigma^2(\dot{A}^2)$	R(Å)	$\Delta E_0 (eV)$	
Ru ₁ -Ni(OH) ₂	Ni K-edge -	Ni-O	6.0±0.3	0.0060 ± 0.0005	2.05±0.01	4.8±0.5	
		Ni-Ni	6.0±0.3	0.0072±0.0004	3.10±0.01		
	Ru K-edge -	Ru-O	4.1±0.3	0.0024±0.0009	2.05±0.01	– 1.7±1.2	
		Ru-Ni	3.0±0.5	0.0120±0.0006	2.70±0.02		

Supplementary Table 1. Fitting results of Ni and Ru K-edge EXAFS for Ru₁-Ni(OH)₂.

 $C.N. = coordination number; R = interatomic distance; R_{ref} = interatomic distances of reference materials; \sigma^2 = Debye-Waller factor. \Delta E_0 = energy shift refers to the E_0 position in the EXAFS fitting model.$

Catalyst	Potential at 100	Electrolyte	Reference
	mA cm ⁻² (V vs.		
	RHE)		
Ru ₁ -Ni(OH) ₂	1.37	0.33M urea	This work
FeCoSe/FeCo LDH	1.38	0.5M urea	Adv. Funct. Mater. 2023 2212811
W-Ni(OH) ₂	1.381	0.33M urea	Chem. Eng. J. 2022 134497
Ni-Mo-S	1.385	0.33M urea	J. Alloys Compd. 2022 163346
Ni-MnO ₂	1.39	0.33M urea	Inorg. Chem. 2023 5023-5031
V-Ni ₃ N	1.395	0.33M urea	J. Mater. Chem. A, 2021 4159
Cu ₃ P@CuO _x	1.40	0.33M urea	Appl. Surf. Sci. 2023 156925
Cu-Ni(OH) ₂	1.405	0.33M urea	J. Mater. Chem. A 2019 13577
NiMoP	1.41	0.5 M urea	Small 2022 2205547
Hcp-CoNi-N/C	1.42	0.33M urea	Chem. Eng. J. 2023 142570
Fc-NiCo-BDC	1.44	0.33M urea	Chem. Eng. J. 2022 132733
Mn-Co LDH	1.45	0.33M urea	Chem. Eur. J. 2020 9382 – 9388
VS_2	1.46	0.33M urea	Int J Energy Res. 2022 1–11
Ov-V-Ni(OH)2	1.47	0.33M urea	Adv. Funct. Mater. 2022 2209698
CoNiOP/NF	1.48	0.33M urea	J. Colloid Interface Sci. 2022 546-555
CoMoO@Co/GF	1.51	0.5M urea	J. Colloid Interface Sci. 2022 413-423
Ni _{1.5} Co _{1.5} -O/CC	1.52	0.33M urea	J. Alloys Compd. 2021 161790
Ni MOF	1.53	0.33M urea	Chem. Commun. 2017 10906
Co, V-NiS ₂	1.54	0.33M urea	ACS Catal. 2022 569-579
NiFeCoSx@FeNi ₃	1.56	0.33M urea	J. Mater. Chem. A 2022 5442
NiF ₃ /Ni ₂ P@CC	1.57	0.33M urea	Chem. Eur. J. 2022 130865
F-P-Co ₃ O ₄ /NF	1.62	0.5M urea	Dalton Trans. 2022 4909-4918

Supplementary Table 2. Comparison of UOR, MOR, and EOR performance for recently reported electrocatalysts in alkaline media.

Co_3S_4	1.67	0.33M urea	Mater. Sci. Eng. B. 2022 115654	
Ru ₁ -Ni(OH) ₂	1.43	0.5M methanol	This work	
h-NiSe/CNTs	1.43	1M methanol	Adv. Funct. Mater. 2021, 2008812	
Cu ₂ Se/Co ₃ Se ₄	1.46	1M methanol	Appl. Catal. B. 2021, 119800	
Mo-Co ₄ N	1.49	3M methanol	J. Mater. Chem. A 2021 21094	
Ru&Fe-WOx	1.5	3M methanol	Appl. Catal. B. 2021, 120359	
Ni ₁ - _x Fe _x Se ₂	1.58	1M methanol	Small 2021 , 2006623	
Ru ₁ -Ni(OH) ₂	1.38	0.5M ethanol	This work	
Co(OH)2@Ni(OH)2	1.39	1M ethanol	Energy Environ. Sci., 2022 , 5300	
Ni-Fe-P	1.4	1M ethanol	Appl. Surf. Sci. 2021 150080	
CuCo ₂ S ₄ /CC	1.49	1M ethanol	J. Colloid Interface Sci. 2022 325-333	
CO-S-P	1.53	1M ethanol	Inorg. Chem. Front., 2020 4498	
Co ₃ S ₄	1.72	0.5M ethanol	J. Mater. Chem. A 2020 16902	

Reference for the Support information

1. Chen W, *et al.* Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. *Chem* **6**, 2974-2993(2020).