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Fig. S1. (a) Imprinting contoured template onto a Li6PS5Cl disc. (b) Schematic of three-electrode cell with 
contoured Li6PS5Cl disc (WE: working electrode; CE: counter electrode; RE: reference electrode). 

Fig. S2. The local current density is almost unaffected by whether or not the dependence of interfacial charge-
transfer resistance on interfacial pressure is included in the modelling. Comparison of local current density 
calculated in two ways for an egg-box contoured surface with peak height (H) of 25 µm and peak separation (S) 
of 150 µm and 1 mA cm−2 geometrical current density: (orange dashed line) calculation with a kinetic rate law 
coupled to the local momentum balance, which includes pressure feedback in electrical boundary condition S5 

through equation S16; and (teal solid line) calculation without pressure feedback, i.e., with  constant at 𝜌𝑘(𝑝)

in the rate law for charge-transfer kinetics, boundary condition S5. The inset figure illustrates the 10 Ω ∙ 𝑐𝑚2 
path over which local current density was taken along the diagonal direction of the egg-box surface.
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Fig. S3. Various simulation output for an egg-box contoured surface with peak height of 25 µm and peak 
separation of 150 µm subjected to a 1 mA cm−2 geometrical current density. (a) Local current density distribution 

at the Li/electrolyte interface without including reaction kinetics, i.e., assuming  so that both sides of 𝜌𝑘(𝑝) = 0

the interface are isopotential surfaces. (b) Current density distribution including kinetics (nonzero interfacial 

resistance of ) at the Li/electrolyte interface. (c) Pressure distribution calculated from current 10 Ω ∙ 𝑐𝑚2

distribution including kinetics at the Li/electrolyte interface for 1 mA cm−2 geometrical current density.

Fig. S4. (a) Determination of the critical current for dendrites by plating at increasing current densities with slow 
(0.2 mA cm−2) stripping on each cycle. The critical current for dendrites is determined by a 2 mV drop, in this 
figure 2.5 mA cm−2 is the critical current for dendrite growth. The voltage response was measured using three-
electrode cells, wherein any changes in polarisation can be attributed to the working electrode. A drop in the 
voltage during plating is widely recognised as signature of dendrite growth1–4. As the dendrite crack grows and 
lithium fills it, the contact area between the Li electrode and solid electrolyte increases, resulting in reduced 
polarisation. (b) Ex-situ X-ray computed tomography virtual cross-sectional image after the 2 mV drop showing 
presence of dendrite crack, which justifies that voltage drop is related to the dendrite growth.
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Supplementary Text S1. Defining the 3D-printed templates 

Egg-box 

The egg-box surface was created by sweeping a cosine wave along the path of another identical but 
perpendicular cosine wave. Egg-box surfaces were generally described by the function

 ℎ(𝑥,𝑦) = 𝐻cos (𝜔𝑥) + 𝐻cos (𝜔𝑦) (S1)

𝜔 =
2𝜋
𝑆

(S2)

where  is the peak height (amplitude),  is the wavenumber and  is the peak separation 𝐻 𝜔 𝑆

(wavelength). Peak height and peak separation are used instead of amplitude and wavelength. For 
instance, H25S150 is the abbreviation used for a contoured egg-box surface with peak height of 25 
µm and peak separation of 150 µm. The specific dimensions for one period of a cosine wave are shown 
in Fig. S5a below.

The 3D-printed templates were fabricated with one contoured side, and the opposing side flat. The 
diameter of 3D-printed templates was 5 mm with both x and y ranging from -2.5 mm to 2.5 mm. The 
total thickness of the 3D-printed templates varied because of the different peak heights. An additional 
300 µm thick and 5 mm diameter solid cylinder was added as a support in all cases.

All the print job files (STL format) of the templates were drawn in AutoCad (AUTODESK) and Netfabb 
(AUTODESK). DeSribe software (Nanoscribe) was used to convert the STL files into the GWL files, which 
were loaded into NanoWrite (Nanoscribe) for printing. In this conversion process, a 1 µm slicing 
distance for a layer-by-layer approach with block size of 300 µm  300 µm was selected to generate ×

the printing trajectories. 

Square pyramids

The square pyramid surface was created by the same methodology for generating the egg-box surface. 
The specific dimensions for one period of a triangle wave are shown in Fig. S5b.

Frustum of square pyramids

The same methodology was used to create the frustum of square pyramids surface. The specific 
dimensions for the trapezoidal wave are shown in Fig. S5c.
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Fig. S5. (a-c) 2D waves for (a) Egg-box surfaces (cosine waves) (b) Square pyramidal surfaces (triangle waves) (c) 
Frustums of square pyramids surfaces (trapezoidal waves).
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Supplementary Text S2. Modelling of Contoured surfaces

Simulations were taken to be periodic in the  and  directions, and interfaces were modelled using 𝑥 𝑦

the topographies described in Fig. S5. Edge effects were neglected on the basis that the total electrode 
size is larger than the wavelength  in both the  and  directions. As illustrated in Fig. S6, the 2𝜋/𝜔 𝑥 𝑦

simulation ranged from , with the interface extending semi-infinitely away from the 0 ≤ 𝑥,𝑦 ≤ 𝑆

interface in both directions along the z axis (In most cases, 10H was deemed to be sufficiently far from 

the interface). 

Fig. S6. (a-b) Li/electrolyte interface showing one period of egg-box surface with peak height (H) and peak 
separation (S) (a) 3D view and (b) 2D z-x plane cross-sectional view.

Model description 

The 3D model comprises a steady-state electrical simulation to determine the current distribution at 
the interface and a mechanical simulation to determine the pressure at the interface. These two 
models are generally coupled through an electro-kinetic boundary condition that includes the effect 
of surface normal stress (i.e., interfacial pressure) on the electrochemical reaction kinetics. Model 
calculations were performed using COMSOL Multiphysics 6.1 software.

 Key model assumptions 

1. The electrical and mechanical responses are in quasi-steady states. 
2. The ionic conductivity of the electrolyte and electronic conductivity of the solid are constant. 
3. The interface is conformal and electrical contact is uniform.
4. The lithium-plating-driven plastic flow velocity normal to the interface is directly proportional to 

the normal component of local current density at the surface, through the molar volume  of lithium �̅�𝐿𝑖

metal. This implies that no current goes to SEI growth, interfacial space charging, or side reactions.
5. Plastic creep of Li metal is a power-law viscous flow. No elastic response of Li metal is considered, 
i.e., the yield stress is assumed to be very low.
6. Lithium metal is incompressible in the pressure range of interest.
7. The solid electrolyte’s elastic modulus is sufficiently high that it remains undeformed at all times.
8. Interfacial kinetics is linear with respect to overpotential and the interfacial resistance is pressure-
independent (see below for justification).
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9. The critical current density along a contoured surface varies with local pressure in the same way 
that the critical current density at a flat surface varies with global pressure.

 Current distribution

To model the steady-state current distribution, the lithium metal was taken to be an isopotential 
surface at voltage , on the basis that its electronic conductivity is very large compared to the ionic 𝑉𝑟𝑒𝑓

conductivity of the solid electrolyte. Thus, only the distributions of current density  and voltage �⃗�(𝑥,𝑦 𝑧)

 in the solid electrolyte were considered within the simulation domain  and 𝑉(𝑥,𝑦,𝑧) 0 ≤ 𝑥,𝑦 ≤ 𝑆

. The steady-state problem was modelled by combining Kirchhoff’s law of the node ‒ ∞ ≤ 𝑧 ≤ ℎ(𝑥,𝑦)

(charge continuity) with Ohm’s law (in terms of the ionic conductivity of Li6PS5Cl, ) 5–7.𝜅

∇ ⋅ �⃗� = 0 (S3)
�⃗� =‒ 𝜅∇𝑉. (S4)

Kinetics of Li deposition at the Li/electrolyte interface was modelled with a Butler–Volmer equation. 
Fig. S7 shows that for an interfacial resistance  of the order of 10 Ω cm2,2,8,9 the Butler–Volmer 𝜌𝑘

expression is approximated well by linear kinetics if the interfacial current density is within the ±3 mA 
cm−2 range. Thus, a linear kinetic rate law was used:

,
�(�⃗� ⋅ �⃗� )|ℎ(𝑥,𝑦) = 𝑖 = 𝑖0(𝑝)(𝑒

𝑎𝑎𝐹(𝑉(𝑥,𝑦,ℎ) ‒ 𝑉𝑟𝑒𝑓)
𝑅𝑇 ‒ 𝑒

𝑎𝑐𝐹(𝑉(𝑥,𝑦,ℎ) ‒ 𝑉𝑟𝑒𝑓)
𝑅𝑇 ) ≈

1
𝜌𝑘(𝑝)

[𝑉(𝑥,𝑦,ℎ) ‒ 𝑉𝑟𝑒𝑓]
(S5)

where the surface normal vector  points into the lithium,  is the local current density,  is the �⃗�(𝑥,𝑦) 𝑖 𝑖0

exchange current density,  is the cathodic transfer coefficient and  is the anodic transfer 𝑎𝑎 𝑎𝑐

coefficient. The linear rate law in equation S5 emphasizes that exchange current density – and 
consequently interfacial resistance  – generally depends on pressure, , as detailed in the 𝜌𝑘 𝜌𝑘(𝑝)

‘Pressure effect on kinetics’ section below. This dependence was accounted for to generate the data 
in Fig. S2, which shows that the influence of interfacial pressure on interfacial current density in this 
circumstance is negligibly small (a correction of ~1% or less). Unless stated otherwise, interfacial 
resistance was therefore assumed to be constant when generating output based on equation S5.

As  tends to –∞, the current density in the electrolyte was taken to be evenly distributed in the  and 𝑧 𝑥

directions, such that 𝑦 

(�⃗� ∙ �⃗�𝑧 ) �|𝑧 =‒ ∞ = 𝑖𝑧 = 𝐼     𝑎𝑛𝑑    𝑖𝑥�|𝑧 =‒ ∞ = 𝑖𝑦�|𝑧 =‒ ∞ = 0, (S6)
where  is the geometrical current density. Voltage in the electrolyte was taken to satisfy periodic 𝐼

boundary conditions of the form

𝑉(0,𝑦,𝑧) = 𝑉(𝑆,𝑦,𝑧)   𝑎𝑛𝑑   �∂𝑉
∂𝑥|𝑥 = 0 = �∂𝑉

∂𝑥|𝑥 = 𝑆
(S7)

𝑉(𝑥,0,𝑧) = 𝑉(𝑥,𝑆,𝑧)   𝑎𝑛𝑑   �∂𝑉
∂𝑦|𝑦 = 0 = �∂𝑉

∂𝑦|𝑦 = 𝑆
(S8)

on the level surfaces normal to  and  at the edges of the simulation volume.𝑥 𝑦
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The interfacial current-density distribution determined by solving Laplace’s equation (equations S3 
and S4) in the limit as , i.e., with , is shown in Fig. S3a, and the current 𝜌𝑘→0 𝑉(𝑥,𝑦,ℎ(𝑥,𝑦)) = 𝑉𝑟𝑒𝑓

distribution including Li deposition kinetics is shown in Fig. S3b for 1 mA cm−2 geometrical current 
density. The field enhancement effect makes the local current density highest at the points that 
protrude deepest into the solid electrolyte toward the counter electrode (points  and ,  𝑥 = 0 𝑆 𝑦 = 0

and  at  in Fig. S6); the extremity of the enhancement is lowered by interfacial resistance.𝑆 ℎ(𝑥,𝑦)

Fig.S7. Comparing the currents calculated from Butler-Volmer equation and its linearized form   

 Interfacial pressure

The local pressure at the interface is determined both by the stack pressure externally applied to the 
cell (7 MPa in this work) and the dynamical pressure associated with the lithium flow away from the 
interface induced by the Li deposition there. The solid electrolyte was assumed to be undeformed 
because of its relatively high elastic modulus10,11 compared to Li metal12. Thus, only the distributions 
of pressure  in the lithium metal were considered – the simulation domain is   and 𝑝(𝑥,𝑦,𝑧) 0 ≤ 𝑥,𝑦 ≤ 𝑆

. The lithium plating plastic flow velocity  can be calculated directly from the local ℎ(𝑥,𝑦) ≤ 𝑧 ≤ ∞ 𝑣𝑝𝑙𝑎𝑡𝑖𝑛𝑔

current density based on the molar volume  of lithium metal. �̅�𝐿𝑖

,
�(�⃗� ⋅ �⃗� )|ℎ(𝑥,𝑦) = 𝑣𝑝𝑙𝑎𝑡𝑖𝑛𝑔 =

𝑖 �̅�𝐿𝑖

𝐹

(S9)

where  is Faraday’s constant. The lithium was assumed incompressible, so that the flow velocity  𝐹 �⃗�

within the metal is divergence-free. The steady-state mechanical problem was modelled by combining 
this incompressibility condition with the Cauchy momentum equation,

𝜌𝐿𝑖(�⃗� ⋅ ∇)�⃗� = ∇ ⋅ [𝑝�⃗� + �⃗�] (S10)
𝜌𝐿𝑖∇ ⋅ �⃗� = 0, (S11)

where  is the identity matrix. The viscous stress tensor  was determined by lithium’s apparent �⃗� �⃗�

viscosity –taken to be a function of its shear rate –through𝜇(𝛾) 𝛾

.�⃗� = 𝜇(𝛾) (∇�⃗� + (∇�⃗�)𝑇) (S12)

The relationship between the viscosity  and the applied shear rate  was described by a power-𝜇(𝛾) 𝛾

law creep model
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𝜇(𝛾) =  𝑚(max (𝛾, 𝛾𝑙𝑜𝑤,𝑙𝑖𝑚)
𝛾𝑟𝑒𝑓 )𝑛 ‒ 1,

(S13)

where  and  are the consistency coefficient and flow behaviour index, respectively. Values of 𝑚 𝑛

 and  were used in this work, commensurate with the range of values 𝑚 = 0.5 × 1012 𝑃𝑎 ⋅ 𝑠 𝑛 = 0.11

reported in the literature ( , )12–15. A 0.47 × 1012𝑃𝑎 ⋅ 𝑠 < 𝑚 < 0.68 × 1012 𝑃𝑎 ⋅ 𝑠 0.101 < 𝑛 < 0.159

reference shear rate  of 2.82810-7 s-1 and a lower cut-off shear rate limit of 10-8 s-1 was used10,12.𝛾𝑟𝑒𝑓

 Pressure effect on kinetics

Electrochemical kinetics and interfacial kinetics interact through a pressure dependence of the 

electrochemical potential of electrons in the lithium, . Assuming that the partial molar volume of 
𝜇

𝑒 ‒

lithium ions in the electrolyte is small, Monroe and Newman’s analysis16 shows that the change in 
electronic electrochemical potential induced by a pressure at the interface is

Δ𝜇
𝑒 ‒ =

�̅�𝐿𝑖

𝑧 +
Δ𝑝,

(S14)

where is the valency of lithium ions and  is the pressure in the deformed lithium metal relative 𝑧 + Δ𝑝

to an undeformed reference state. This change in electron energetics rationalises a change in the 
exchange current density and thus the interfacial resistance , quantified as𝑖0(𝑝) 𝜌𝑘(𝑝)

𝑖0(𝑝) = 𝑖0e

(𝛼𝑚 ‒ 𝛼𝑐)𝑧 + Δ𝜇
𝑒 ‒

𝑅𝑇  

(S15)

𝜌𝑘(𝑝) = 𝜌0
𝑘/e

(𝛼𝑚 ‒ 𝛼𝑐)�̅�𝐿𝑖Δ𝑝

𝑅𝑇  .

(S16)

The mechanical transfer coefficient  and the cathodic transfer coefficient were taken to be 1 and 𝛼𝑚 𝛼𝑐 

0.5, respectively16,17. Local interfacial current densities with and without pressure coupling from the 
fluid flow model are shown in Fig. S2. The difference is less than 1%, and therefore the pressure effect 
on interfacial kinetics was neglected for this work. 

 Critical current dependency on pressure

A linear relationship between the logarithm of the current density required for a dendrite to propagate 
through a solid electrolyte ( ) and the stack pressure was recently reported10. The dendrite grows 𝑖𝑔

when the J-integral at the crack tip exceeds the fracture toughness of the solid electrolyte. For flat 
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interfaces, the current density at which this occurs, , is a function of stack pressure. Fig. S8 shows𝑖𝑔

Fig. S8. Variation of the J-integral with current density at a partially-Li-filled crack tip under different pressures.
how the J-integral varies with pressure and current for input parameters typical of a partially-filled 
crack (Table S2; symbol definitions listed in Table S3). 

At a given geometrical current density, the maximum local current density including kinetics and 
maximum pressure are calculated. The maximum local pressure is used to calculate  from the 𝑖𝑔

dendrite growth model. If the maximum local current density is lower than , dendrites do not 𝑖𝑔

propagate. The geometrical current density is increased until the maximum local current density is 
equal to . This geometrical current density – at which the maximum local current density and 𝑖𝑔

pressure become just enough to propagate a dendrite – is the calculated geometrical current density 
for dendrite growth. 

As the  ratio increases, maximum local current density decreases, meaning that with the same 𝐻/𝑆

limit for  from the dendrite growth model, it is possible to apply a higher geometrical current density. 𝑖𝑔

However, the maximum local pressure rises as  ratio becomes larger. This increased pressure 𝐻/𝑆

reduces , and thus the geometrical current density for dendrite growth. The impact from the 𝑖𝑔

increased maximum local pressure gradually outweighs the benefit of decreasing maximum local 
current density, leading to an increasing and then decreasing trend for calculated geometrical current 
densities for dendrite growth. 
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Table S1. i) ii) Ratio of surface area at the interface over geometrical area (cross-sectional area of the cell), i.e. 
surface roughness, for different combinations of peak heights (H) and peak separations (S).

Table S2. Material properties

Parameters Value
𝑎 2 𝜇𝑚
𝐸 28 𝐺𝑃𝑎
𝐹 96485 𝐶/𝑚𝑜𝑙
𝑙𝑐 287 𝜇𝑚
𝑙𝑑 𝑙𝑐/2
𝑀𝐿𝑖 6.94 𝑔/𝑚𝑜𝑙
𝑚 0.5 × 1012 𝑃𝑎 ∙ 𝑠 
𝑛 0.11 
𝑃𝑠𝑡𝑎𝑐𝑘 7 𝑀𝑃𝑎
𝑅 8.314 𝐽/𝑚𝑜𝑙 ∙ 𝐾
𝑇 293.15 𝐾
�̅�𝐿𝑖 1.3 × 10 ‒ 5 𝑚3/𝑚𝑜𝑙 
𝜐 0.37
𝛼𝑚 1
𝛼𝑎 0.5
𝛼𝑐 0.5
𝑖0 2.5 𝑚𝐴/𝑐𝑚2

𝜌𝑘 10 Ω ∙ 𝑐𝑚2

𝜌𝐿𝑖 534 𝑘𝑔/𝑚3

𝜅 3 𝑚𝑆/𝑐𝑚
𝛾𝑙𝑜𝑤,𝑙𝑖𝑚  1 × 10 ‒ 8  1/𝑠
𝛾𝑟𝑒𝑓 2.828 × 10 ‒ 7 1/𝑠

Table S3. List of symbols

𝑎 Crack width, 𝜇𝑚
𝐸 Young’s modulus, 𝑃𝑎
𝐹 Faraday constant, 𝐶/𝑚𝑜𝑙
𝑙𝑐 Crack length, 𝜇𝑚
𝑙𝑑 Lithium dendrite length, 𝜇𝑚
𝐻 Peak height, 𝜇𝑚
𝐼 Geometrical current density, 𝑚𝐴/𝑐𝑚2

�⃗� Identity matrix, unitless
�⃗� Current density vector, 𝑚𝐴/𝑐𝑚2

𝑖 Local current density, 𝑚𝐴/𝑐𝑚2

𝑖𝑔 Current density required for a dendrite to grow through a solid electrolyte, 
𝑚𝐴/𝑐𝑚2
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𝑖0 Exchange current density, 𝑚𝐴/𝑐𝑚2

𝐽 J-integral, 𝑁/𝑚
�⃗� Viscous stress tensor, 𝑁/𝑚2

𝑀𝐿𝑖 Molar mass of lithium metal, 𝑔/𝑚𝑜𝑙
𝑚 Fluid consistency coefficient, 𝑃𝑎 ∙ 𝑠 

𝑛 Flow behaviour index, unitless
�⃗� Normal vector, unitless
𝑝 Pressure, 𝑃𝑎
𝑃𝑠𝑡𝑎𝑐𝑘 Stack pressure, 𝑃𝑎
𝑅 Gas constant, 𝐽/𝑚𝑜𝑙 ∙ 𝐾
𝑆 Peak separation, 𝜇𝑚
𝑇 Temperature, 𝐾
�⃗� Velocity vector, m/𝑠
𝑉 Voltage, 𝑉
�̅�𝐿𝑖 Partial volume of Li in lithium metal, 𝑚

3/𝑚𝑜𝑙 
𝜐 Poisson’s ratio, unitless
𝑧 + Valency of lithium ion
𝛼𝑚 Mechanical transfer coefficient, unitless
𝛼𝑎 Anodic transfer coefficient, unitless
𝛼𝑐 Cathodic transfer coefficient, unitless
𝜌𝑘 Interfacial resistance, Ω ∙ 𝑐𝑚2

𝜌𝐿𝑖 Density of lithium metal, 𝑘𝑔/𝑚3

𝜅 Electrolyte conductivity, 𝑚𝑆/𝑐𝑚
Γ Integration path for J-integral
𝛾𝑙𝑜𝑤,𝑙𝑖𝑚 Lower shear rate limit, 1/𝑠
𝛾𝑟𝑒𝑓 Reference shear rate, 1/𝑠
𝛾 Shear rate, 1/𝑠
𝜇

𝑒 ‒ Electrochemical potential of electrons, 𝐽/𝑚𝑜𝑙
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