Electronic Supplementary Information

Heterostructured metal oxides realized by quenching-induced

structural transformation

Changchun Ye,¹ Zhenghui Pan,^{2, *} Qinghua Zhang,³ Fang Yin,⁴ Yanan Wang,^{3,5} Yifei Li, ¹ Guangxu Chen,¹ Jia Li,^{4, *} Yongcai Qiu,^{1, *} Geoffrey I. N. Waterhouse,⁶ Lin Gu^{3, *} Zhang Lin,⁷ Lin Guo^{8, *}

1 School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China

2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

3 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China

4 Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

5 Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808 P. R. China

6 School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand

7 School of Metallurgy and Environment, Central South University, Changsha 410083, PR China

8 School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

Experimental Section

Catalyst Characterization

The structure and crystallinity of the as-prepared samples were characterized by powder X-ray diffraction (XRD). The size and morphology of the samples were analyzed by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) data was collected on an ESCALAB MK II X-ray photoelectron spectrometer equipped with a Mg K α excitation source. Raman spectroscopic analyses used a Horiba Jobin-YVON co-focal laser Raman system with a He-Ne 632 nm laser as the excitation source. Soft X-ray absorption spectroscopy (XAS) data was collected at Beamlines MCD-A and MCD-B (Soochow Beamline for Energy Materials) at NSRL. Electron paramagnetic resonance (EPR) spectroscopy was collected on Bruker A300-10/12. Specific surface area was measured using a JW-BK200C Surface Area and Pore size Analyzer (Beijing JWGBSci. & Tech. Co., Ltd.). The elemental composition of samples was determined using an inductively coupled plasma atomic emission spectrometer (ICP, SPECTRO ARCOS MV).

Electrochemical measurements

Catalyst inks were prepared by dispersing 5 mg of catalyst and 3 mg of conductive carbon black in 1 mL of a mixed solution containing 750 uL of deionized water, 200 uL of ethanol and 50 uL of a 5 wt.% Nafion solution. The inks were ultrasonicated for 1 h before use to achieve a homogeneous catalyst dispersion. All the electrochemical measurements were conducted on a CHI 760E electrochemical workstation (Chenhua, Shanghai). A three-electrode system was used, comprising a rotating disk glassy carbon electrode (5 mm in diameter) as the working electrode, a platinum foil as the counter electrode, and a Hg/HgO electrode as the reference electrode. To prepare the working electrode, 10 uL of catalyst ink was pipetted onto the surface of the glassy carbon electrode and dried at room temperature. The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) performance of the catalysts were evaluated by linear sweep voltammetry (LSV) in a 1 M KOH aqueous solution. Before each test, cyclic voltammetry (CV) was performed in the potential range of 1.0-1.7 V vs RHE to activate the catalysts. The LSV curves for OER were obtained in the potential range of 1.0-1.8 V vs. RHE using a scan rate of 5 mV s⁻¹. Electrochemical impedance spectroscopy (EIS)

measurements were performed at 1.60 V vs. RHE over a frequency range from 100 kHz to 0.1 Hz with a 5 mV AC dither. Stability tests used chronoamperometry (CA) at specified potential, with LSV curves also collected before and after the CA tests.

All potentials were converted to the reversible hydrogen electrode (RHE) using the following equation, which included an IR-drop potential correction due to the resistance of the electrolyte.

$$E (vs. RHE) = E (vs. Hg/HgO) + 0.098 + 0.059 \times pH \dots (1)$$

Tafel slopes were derived from the polarisation curves and overpotentials calculated according to the following Tafel equation,

where η , a, b and j correspond to the overpotential, Tafel constant, Tafel slope and the current density, respectively. For OER, the overpotential (η) was calculated by subtracting 1.23 V (standard potential for water oxidation) from the measured potential using the following equation,

$$\eta = E (vs. RHE) - 1.23 \dots (3)$$

For the electrochemically active area studies, cyclic voltammograms were collected at various scan rates (10, 20, 40, 60, 80, 100 mV s⁻¹) over the potential range 1.1-1.2 V vs. RHE (i.e., in a non-Faradaic region). The double-layer current (ic) is equal to the product of the scan rate (v) and the electrochemical double-layer capacitance (C_{DL}), as described by the equation,

$$ic = vC_{DL}$$
(4)

The slope of the linear ic-v plot is equal to C_{DL}. The ECSA values were acquired by calculation according to equation,

$$ECSA = C_{DL}/C_s....(5)$$

where C_s is the specific capacitance (we used 40 μ F cm⁻² here which is typical for metal oxides).

Assembly and testing of aqueous zinc-air batteries

For the construction of aqueous zinc-air batteries (ZABs), the catalysts were loaded onto hydrophilic side of a carbon cloth to form an air cathode (mass loading about 1.0 mg cm⁻²). A polished Zn foil served as the anode, and a mixed solution containing 6 M KOH and 0.2 M Zn(CH₃COO)₂ was used as the electrolyte. The charge and discharge polarization curves were recorded at 5 mV s⁻¹ at room temperature. Cycling tests were conducted using charge-discharge cycles of 10 min discharge followed by 10 min charge at constant current density of 5 mA cm⁻². The full discharge tests were performed

by recording the change in voltage at a current density of 5 mA cm⁻², whilst the specific capacity was calculated accordingly to the mass of Zn consumed at the anode in the assembled batteries. Electrochemical impedance spectroscopy (EIS) measurements were carried out from 10⁶ Hz to 0.1 Hz.

Assembly and testing of the solid-state flexible zinc-air batteries

The flexible solid-state Zn-air battery was fabricated using a Zn foil as anode, a polyvinyl alcohol (PVA) gel polymer as the solid electrolyte, and a carbon cloth loaded with NiMoO₄-Fe-5th catalyst as the air electrode (mass loading about 1.0 mg cm⁻²). To prepare the PVA solid electrolyte, 1.6 g of PVA was dissolved in 16 mL of water and the resulting solution stirred at 90 °C for 15 min. After the solution became clear, 2 mL of an aqueous solution containing 2 g KOH and 8.8 mg Zn(CH₃COO)₂ was added dropwise into the PVA solution and the stirring continued for 20 min. The charge and discharge polarization curves were recorded at 5 mV s⁻¹ at room temperature. The cycling tests involved charge-discharge cycles of 10 min discharge followed by 10 min charge at a current density of 2 mA cm⁻².

Computational method

We performed plane-wave pseudopotential DFT calculations using the "Vienna ab initio Simulation Package" (VASP) code.^{1, 2} The Perdew-Burke-Ernzerhof (PBE) functional with generalized gradient approximation (GGA) was employed for the exchange-correlation potentials, with the projector-augmented wave method used to describe the electron-ion interactions.^{3, 4}

In the section on searching the best intermediate structure of NiMo_xFe_{2(1-x)} O₄, crystal structure predictions were carried out by using USPEX 10.5.0 code.⁵⁻⁷ All calculations within the USPEX simulations were performed using the VASP code. A Hubbard correction of U = 5.5 eV and 3.0 eV was applied to Ni and Fe ions to correctly reproduce the magnetic order in NiMo_xFe_yO₄ system. In order to find the ground structure with proper magnetic order of this system, the probabilities of generating non-magnetic, low-spin ferromagnetic, high-spin ferromagnetic, low-spin antiferromagnetic, high-spin ferromagnetic, low-spin antiferromagnetic, high-spin antiferromagnetic structures are all 20%. For the final optimization and subsequent self-consistent static calculations among the USPEX run, the used energy cutoff is 500 eV and density of k-points in

the first Brillouin zone is $0.03 \times 2\pi$ Å⁻¹ and $0.02 \times 2\pi$ Å⁻¹ for all studied structures. In the section on calculating OER pathway, the atomic structures are relaxed until the maximum

force on each atom is less than $0.02 \text{ eV} \text{ Å}^{-1}$, and an energy cutoff of 500 eV is used. A vacuum space

of ~20 Å along the z-direction is used to separate the interaction between the neighboring slabs. The bulk α -phase NiMoO₄ belongs to the space group C2/m with the following DFT calculated unit cell parameters: a = 9.5498 Å, b = 8.7215 Å, c = 7.6793 Å, β = 114.142°. The atomic structure of NiMoO₄-NC was modelled by the (110) surface of α -phase NiMoO₄, and the Brillouin zone is sampled by using a Monkhorst-Pack mesh of 3×2×1. The NiMoO₄-Fe-5th model was constructed by replacing one Mo atom on the NiMoO₄ (110) surface with two Fe atom, and the Brillouin zone was also sampled by using a Monkhorst-Pack mesh of 3×2×1. The bulk NiFe₂O₄ belongs to the in space group Fd**B**n with

the following DFT calculated unit cell parameters: a = b = c = 8.0485 Å and $\alpha = \beta = \gamma = 90^{\circ}$. The (100) surface of NiFe₂O₄ was chosen to study the four-electron process, and the Brillouin zone was sampled by using a Monkhorst-Pack mesh of $3 \times 3 \times 1$.

The OER involves the following steps:

$$* + OH^{-} \rightarrow * OH + e^{-} \tag{1}$$

 $* 0H + 0H^{-} \rightarrow * 0 + H_2 0 + e^{-}$ (2)

$$* 0 + 0H^{-} \rightarrow * 00H + e^{-}$$
(3)

* $00H + 0H^- \rightarrow * + 0_2(g) + H_20 + e^-$ (4) where * represents the prefered adsorption site for intermediates. For each step of OER, the reaction free energy ΔG is defined as the difference in free energy of the initial and final states as calculated by the following equation:

$$\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_U + \Delta G_{pH}$$
(5)
where ΔE is the total energy difference between reactants and products of the reactions. ΔZPE is the zero-point energy correction, ΔS is the vibrational entropy change at finite temperature T , $\Delta G_U = 0$, where energy the elementary charge U is the potential difference from the standard electrode potential (U=1.23V), ΔG_{PH} represents the effect of PH value on the free energy.

The overpotential η of OER can be evaluated from the ΔG of each step as: $\begin{array}{c}
max\{\Delta G_1, \Delta G_2, \Delta G_3, \\
\hline & \Delta G_4\} \\
e \\
=
\end{array}$ (6)

where $\Delta G_1, \Delta G_2, \Delta G_3$, and ΔG_4 are the free energy reactions (1) to (4).

Figure S1. The structure with the lowest formation energy predicted by USPEX in the NiMo_xFe_yO₄ system. (a) Three-dimensional crystal structure of Ni₃MoFe₄O₁₂ unit cell with a = 5.48 Å, b = 5.61 Å, c_{110} , c_{001} , c_{110} ,

Figure S2. AIMD energy profile of Ni₃MoFe₄O₁₂ calculated by VASP code.

Figure S3. (a) XRD patterns for NiMoO₄-NC and NiMoO₄ catalysts multiple quenched in Fe(NO₃)₃ solution. (b) Full width at half maximum and crystallite size of different crystal faces obtained from XRD date. (c) XRD patterns for NiMoO₄-NC and NiMoO₄-NC-5th (Repeat calcining five times under natural cooling).

Figure S4. SEM images of NiMoO₄ catalysts multiple quenched in Fe(NO₃)₃ solution, compared with NiMoO₄-NC obtained by natural cooling (NC).

Figure S5. Digital photographs of NiMoO₄ catalysts multiple quenched in (**a**) H_2O , (**b**) 1 M Cr(NO₃)₃ or (**c**) 1 M Co(NO₃)₂ solutions. The NiMoO₄ catalyst prepared by natural cooling (NC) is also shown.

Figure S6. SEM images of NiMoO₄ catalysts multiple quenched in H_2O , $Co(NO_3)_2$ or $Cr(NO_3)_3$ solution.

Figure S7. XRD patterns for NiMoO₄ catalysts multiple quenched in (a) H_2O , (b) $Co(NO_3)_2$ and (c) $Cr(NO_3)_3$ solution.

Figure S8. (a) XRD patterns and (b) SEM images for the Fe doped NiMoO₄-Fe-NC catalyst (natural cooling).

Figure S9. Digital photographs of (**a**) NiMoO₄ catalysts pre-quenched in water for 2 or 4 times and then quenched in 1 M Fe(NO₃)₃ solution. (**b**) NiMoO₄ catalysts pre-quenched successively in 1 M Co(NO₃)₂, 1 M Cr(NO₃)₃ solution, and finally quenched in 1 M Fe(NO₃)₃ solution. (**c**) NiMoO₄ catalysts quenched once in mixed solution of 1 M Co(NO₃)₂, 1 M Cr(NO₃)₃ and 1 M Fe(NO₃)₃. NiMoO₄ prepared by natural cooling (NC) is also shown for comparison.

Figure S10. (a) XRD patterns for NiMoO₄ catalysts pre-quenched in water and then quenched in $Fe(NO_3)_3$ solution; (b) XRD patterns for NiMoO₄ catalysts pre-quenched successively in Co(NO₃)₂ solution and Cr(NO₃)₃ solution, and finally quenched in Fe(NO₃)₃ solution; (c) XRD patterns for NiMoO₄ catalysts quenched once in a mixed solution of Co(NO₃)₂, Cr(NO₃)₃ and Fe(NO₃)₃, compared with NiMoO₄ prepared by natural cooling.

Figure S11. HAADF-STEM images of large particles (a) NiMoO₄-NC, (b) NiMoO₄-Fe-NC, (c) NiMoO₄-Fe-1st, (d) NiMoO₄-Fe-3rd, and (e) NiMoO₄-Fe-5th.

Figure S12. HAADF-STEM images of large particles (**a and b**) NiMoO₄-Fe-NC, and (**c and d**) NiMoO₄-Fe-5th. The scale bar is 5 nm. Images are viewed down the [001] zone axis.

Figure S13. The metal contents in the $Fe(NO_3)_3$ quenching solution after different quenching cycles determined by ICP-MS. After NiMoO₄ was quenched in $Fe(NO_3)_3$ solution, the suspension was filtered to remove NiMoO₄ particles, and the obtained $Fe(NO_3)_3$ solution was taken for ICP analysis.

Figure S14. EDX elemental maps for (**a**) NiMoO₄-NC, (**b**) NiMoO₄-Fe-1st, (**c**) NiMoO₄-Fe-3rd and (**d**₁ **and d**₂) NiMoO₄-Fe-5th. Tables shows particle sizes for NiMoO₄-Fe-5th. The in-situ transition from NiMoO₄ to NiFe₂O₄ was mainly seen in small particles of size less than 27 nm.

Figure S15. EELS linear scans for NiMoO₄-Fe-1st and NiMoO₄-Fe-3rd.

Figure S16. HAADF-STEM images of NiMoO4-Fe-3rd.

Figure S17. (a) Digital photographs of CoMoO₄-NC and CoMoO₄-Fe-5th catalysts; (b) SEM images for the CoMoO₄-NC catalyst; (c) XRD patterns for CoMoO₄-NC and CoMoO₄-Fe-5th catalysts; TEM and EDX elemental map images of (d and f) CoMoO₄-NC and (e and g) CoMoO₄-Fe-5th catalysts.

To verify the universality of multiple quenching-induced structural transformations to synthesize heterostructured catalyst, we synthesized purple CoMoO₄ nanoparticles with particle sizes of around 10-60 nm (Figure S17b), and also subjected them to multiple quenching in 1 M Fe(NO₃)₃ solution. The results show that the color of CoMoO₄ changes from purple to brown after five quenching (Figure S17a). Although the main structure of CoMoO₄ is still maintained, it contains a small amount of CoFe₂O₄ characteristic peaks for CoMoO₄-Fe-5th catalysts (Figure S17c). High-resolution TEM shows that CoMoO₄-NC (naturally cooling) has an intact lattice surface (Figure S17d) and a uniform element distribution (Figure S17f). On the contrary, the surface of CoMoO₄-Fe-5th has a lattice twisted structure and is exposed as the stepped surface, indicating that multiple quenching also has a strong regulatory effect on CoMoO₄. It is worth noting that the EDS element maps shows that quenching-induced Fe

doping also accumulates in the small particles accompanied by the loss of Mo for CoMoO₄-Fe-5th catalysts, indicating that CoMoO₄ transforms into CoFe oxide after five quenching. Based on the XRD spectrum, it can be concluded that multiple quenching also induces the structural transformation of CoMoO₄, forming a CoMoO₄/CoFe₂O₄ heterostructured catalyst, which is consistent with the results of NiMoO₄.

Figure S18. Raman spectra for NiMoO4-Fe-NC and NiMoO4-NC.

Figure S19. Raman spectra for NiMoO₄ catalysts multiple quenched in (**a**) H₂O, (**b**) Co(NO₃)₂ and (**c**) Cr(NO₃)₃ solutions, respectively.

Figure S20. Raman spectra for NiMoO₄ catalysts quenched once in a mixed solution of $Co(NO_3)_2$, $Cr(NO_3)_3$ and $Fe(NO_3)_3$, compared with NiMoO₄ prepared by natural cooling.

Figure S21. (a) O 1s XPS spectra for NiMoO₄-NC and selected NiMoO₄-Fe-X nanocatalysts; (b) EPR spectra of NiMoO₄-NC, NiMoO₄-Fe-1st and NiMoO₄-Fe-5th.

Figure S22. XPS spectra for the NiMoO₄-Fe-NC nanocatalyst: (a) Ni 2p, (b) Mo 3d, (c) Fe 2p and (d) O1s.

Figure S23. (a) XRD patterns and (b) SEM image for the NiFe₂O₄ catalyst. (c and d) High-resolution TEM images, and (e) EDX elemental maps for the NiFe₂O₄ catalyst. The scale bar is 50 nm for (c), and 10 nm for (d).

Figure S24. (a) Raman spectrum for the NiFe₂O₄ catalyst. XPS spectra for the NiFe₂O₄ catalyst: (b) Ni 2p, (c) Fe 2p and (d) O1s. The Fe 2p spectrum contains contributions from NiFe₂O₄ as the dominant species and surface Fe(Ni)OOH.

Figure S25. XAS spectra at the (a) Ni L-edge and (b) Fe L-edge spectra for the NiFe₂O₄ catalyst.

Figure S26. OER polarization curves in 1 M KOH solution for (**a**) NiMoO₄-Fe-NC compared with NiMoO₄-NC, and (**b**) NiFe₂O₄ compared with NiMoO₄-NC and NiMoO₄-5th.

Figure S27. Cyclic voltammogram for (**a**) NiMoO₄-NC, (**b**) NiMoO₄-Fe-1st, (**c**) NiMoO₄-Fe-3rd and (**d**) NiMoO₄-Fe-5th. All voltammograms were collected in 1 M KOH. (**e**) Fitting results for the electrochemical double layer capacitance (C_{DL}) data and (**f**) normalized polarization curves for NiMoO₄-NC, NiMoO₄-Fe-1st, NiMoO₄-Fe-3rd and NiMoO₄-Fe-5th.

The electrochemical double-layer capacitance (Figure S27e) derived from cyclic voltammetry shows that multiple quenching increases the electrochemically active surface area (ECSA) due to the rough surface. By normalizing the polarization curves against the ECSA, NiMoO₄-Fe-5th possesses the best intrinsic OER activity (Figure S27f).

Figure S28. OER polarization curves in 1 M KOH solution for NiMoO₄ catalyst quenched in Fe(NO₃)₃ solution for seven times.

Figure S29. OER polarization curves in 1 M KOH solution for NiMoO₄ catalysts multiple quenched in (a) H₂O, (b) Co(NO₃)₂ and (c) Cr(NO₃)₃ solutions, respectively.

Figure S30. OER polarization curves in 1 M KOH solution for NiMoO₄ catalysts quenched once in a mixed solution containing $Co(NO_3)_2$, $Cr(NO_3)_3$ and $Fe(NO_3)_3$, compared with catalysts quenched in single salt solution and natural cooling.

Figure S31. OER polarization curves for NiMoO₄-NC and NiMoO₄-Fe-5th catalysts in (**a**) 0.5 M H_2SO_4 and (**b**) 0.1 M PBS (KH₂PO₄-K₂HPO₄ phosphate buffer solution) solution.

Figure S32. OER polarization curves in 1 M KOH solution for CoMoO₄-NC and CoMoO₄-Fe-5th catalysts.

Figure S33. (a) ORR polarization curves in 1 M KOH solution recorded at different rotating speeds for NiMoO₄-Fe-5th, and (b) the corresponding Koutechky-Levich (K-L) plots.

Figure S34. Bifunctional OER/ORR curves for the as-prepared catalysts in 1 M KOH solution.

Figure S35. XPS spectra for NiMoO₄-Fe-5th catalysts before and after CV test: (**a**) Ni 2p, (**b**) Mo 3d, (**c**) Fe 2p and (**d**) O 1s.

In order to analyze the surface composition of NiMoO₄-Fe-5th catalyst after CV testing and identify the real active sites, we conducted ex-situ XPS and TEM characterizations. The XPS results show that the Ni 2p and Fe 2p characteristic peaks of NiMoO₄-Fe-5th significantly change after OER testing, with more Ni³⁺and Fe³⁺, which may be attributed to the formation of NiOOH and FeOOH during the OER process. On the contrary, there is no significant change in the Mo 3d spectra. These changes indicate that both Ni and Fe may be the real active sites for OER. The O 1s spectra further demonstrate that oxyhydroxides are generated on the surface with more oxygen defects during OER.⁸

Figure S36. High-resolution TEM images and EDX elemental maps of (**a and c**) NiMoO₄-NC and (**b and d**) NiMoO₄-Fe-5th catalysts after CV test.

TEM images show that NiMoO₄-NC and NiMoO₄-Fe-5th catalysts undergo surface reconstruction during OER, forming highly active disordered species. Among them, NiMoO₄-Fe-5th has a thicker disordered layer, reaching about 10 nm. The EDX element maps show that catalysts still maintain the initial elemental distribution after OER testing, and Fe elements still aggregate in the small particles with significant Mo loss. Based on the above discussion, it is found that the quenching-induced surface interface structure can promote the surface reconstruction of NiMoO₄ and form more active sites. In addition, quenching-induced Fe doping further increases the active sites, which will be confirmed by the following theoretical calculations.

Figure S37. 4e-mechanism for the oxygen evolution reaction over (**a**) NiMoO₄-NC, (**b**) NiFe₂O₄ and (**c**) NiMoO₄-Fe-5th.

Figure S38. (a) Gibbs free energy diagram for the four electron OER transfer steps, and (b) density of states (DOS) of different catalysts.

To understand the effect of the quenching-induced heterostructure on catalytic activity, density functional theory (DFT) calculations were performed to understand the four-electron OER process. We simulated the NiMoO₄/NiFe₂O₄ heterointerface by inserting two Fe atoms on the surface of NiMoO₄ and calculated the conventional four-step OER mechanism (Figure S37), involving the stepwise oxidation of intermediates via *OH, *O, *OOH and O₂ (* is the active site). The free energy curves show that the potential determining step for all catalysts is the formation of *OOH (the third step) possessing the largest Gibbs free energy (Figure S38a). NiMoO₄-Fe-5th has a lower value (0.51 eV) than NiMoO₄-NC (1.35 eV) and NiFe₂O₄ (0.85 eV). In other words, NiMoO₄-Fe-5th needs a lower overpotential to drive water oxidation, suggesting that quenching-induced heterostructure enhances the intrinsic activity of the active site. To further understand the quenching-induced heterogeneous effect, the electronic structure of the catalysts was evaluated by DFT method. Compared with the large bandgap between the valence and conduction bands of NiMoO₄-NC, NiMoO₄-Fe-5th has a narrower bandgap with a significant change in the conduction band structure (Figure S38b), explaining the improved the conductivity of the catalyst.

Figure S39. (a) Open-circuit voltage curves, (b) charge and discharge polarization curves, (c) power density plots and (d) electrochemical impedance spectroscopy for different aqueous zinc-air batteries using $Pt/C+IrO_2$ or NiMoO₄-Fe-5th as the air-electrode catalysts.

Figure S40. (a) Cyclic stability of different aqueous Zn-air battery at 5 mA cm⁻²; (b) galvanostatic discharge curve of the aqueous ZAB battery based on NiMoO₄-Fe-5th at 5 mA cm⁻², and the specific capacity is normalized by the mass of Zn consumed at the anode; (c) demonstration of two aqueous ZABs connected in series to power a fan.

Figure S41. Performance of flexible solid-state zinc-air battery based on NiMoO₄-Fe-5th: (**a**) opencircuit voltage curves, (**b**) charge and discharge polarization curves, (**c**) power density plots and (**d**) electrochemical impedance spectroscopy

Figure S42. (a) Galvanostatic charge and discharge profiles for quasi-solid-state Zn-air battery containing NiMoO₄-Fe-5th at 2 mA cm⁻² and different bending angles; (b) Photograph of a flexible Zn-air battery powering LED lights.

Samples	Content of Mo	Content of Ni	Content of Fe
NiMoO4-NC	26.9%	24.9%	
NiMoO4-Fe-1 st	25.0%	24.1%	0.6%
NiMoO4-Fe-2 nd	23.9%	24.9%	1.0%
NiMoO4-Fe-3 rd	22.7%	24.7%	1.2%
NiMoO ₄ -Fe-4 th	22.6%	24.8%	1.5%
NiMoO4-Fe-5 th	22.1%	24.3%	1.7%

Table S1: The metal contents in different catalysts determined by ICP-MS.

Table S2: Near surface region chemical composition of catalysts determined from XPS data.

Samples	O defect (O1s)	Ni ³⁺ /Ni ²⁺ (Ni 2p)	Fe ³⁺ /Fe ²⁺ (Fe 2p)
NiMoO ₄ -NC	12%	0.39	
NiMoO4-Fe-NC	19%	0.51	1.36
NiMoO4-Fe-1st	22%	0.66	1.13
NiMoO ₄ -Fe-3 rd	28%	0.79	1.02
NiMoO ₄ -Fe-5 th	33%	0.86	0.95

Catalysts	OER Overpotential (mV) at 10 mA/cm ²	ORR half- wave potential (V)	OER/ORR Overpotential gap (V)	Loading (mg cm ⁻²)	Reference
NiMoO4-Fe-5 th	227	0.822	0.635	0.255	This work
CoO/hi-Mn ₃ O ₄	378	0.800	0.808	0.250	Angew. Chem. Int. Ed. 2017, 56, 8539–8543
CoSA/NCs	303	0.870	0.663	0.210	Appl. Catal. B, 2022, 316, 121674.
NiFe/B, N-CNFs	290	0.840	0.680	0.240	Adv. Sci. 2022, 9, 2200753
MS-CoSA-N-C- 800°C	310	0.860	0.680	0.255	ACS Nano 2022, 16, 8, 11944– 11956
m-Fe/N-C@CNT	338	0.854	0.714	0.500	Appl. Catal. B, 2023, 327, 122443
PADN	290	0.76	0.76	0.106	Adv. Energy Mater. 2021, 11, 2102235
RRMM	260	0.830	0.66	0.416	Chem. Eng. J., 2023, 143760
V-Co ₃ O ₄	351	0.821	0.760	0.250	ACS Catal. 2021, 11, 8097-8103
Co ₂ FeO ₄ /NCNTs	420	0.800	0.850	0.200	Angew. Chem. Int. Ed. 2019, 58, 1- 7
MnO/Co/PGC	370	0.780	0.820	0.500	Adv. Mater. 2019, 31, 1902339
Ni(S0.51Se0.49)2@NC	320	0.830	0.720	0.260	Adv. Funct. Mater. 2022, 32, 2201944
Nioh-Co ₃ O ₄	380	0.840	0.77	0.354	ACS Energy Lett. 2023, 8, 1, 159–
B-CoSe ₂ @CoNi LDH	250	0.810	0.670		Adv. Sci. 2022, 9, 2104522
RuCoO _x	275	0.855	0.650	0.400	Nano Lett. 2021, 21, 9633–9641

Table S3. Comparison of the OER and ORR activities of the NiMoO₄-Fe-5th catalyst with other recently reported electrocatalysts in aqueous alkaline solution.

	recently reported created units as						
Catalysts	Open circuit potential (V)	Power density (mW cm ⁻²)	Specific capacity (mA h gzn ⁻¹)	Energy density (Wh kgzn ⁻¹)	Cycle (h), Current density, (mA cm ⁻²)	References	
NiMoO4-Fe-5 th	1.56	123	745	916	442, 5	This work	
Fe0.5Co0.5Ox	1.44	86	709	806	120, 10	Adv. Mater. 2017, 29, 1701410	
CuCo2O4/N-CNT	1.36	84	817	654	40, 20	Adv. Funct. Mater. 2017, 27, 1701833	
CoZn-NC-700	1.42	152	578	694	64, 10	Adv. Funct. Mater. 2017, 27, 1700795	
3DOM P-Co ₃ O ₄ -δ	1.45	70	761	890	250, 10	Energy Storage Mater. 41 (2021) 427–435	
P-CoO@PWC-2	1.48	113	N.A.	N.A.	232, 10	Adv. Sci. 2021, 8, 2101314	
ODAC-CoO-30	1.45	128	705	N.A.	150, 5	Adv. Funct. Mater. 2021, 31, 2101239	
Gd ₂ O ₃ -Co/NG	N.A.	114.3	734.6	893	160, 10	Adv. Energy Mater. 2020, 10, 1903833	
N-CoS2 YSSs	1.41	81	744	922	165, 10	Adv. Sci. 2020, 7, 2001178	
Ca-LaCoO3	1.44	106	793	793	220, 2	Energy Storage Mater. 42 (2021) 470–476	
C-MOF-C2-900	1.46	105	741	N.A.	120, 2	30, 1705431	
MCN	1.53	103	801	866	155, 2	Adv.Mater.2021, 33, 2007525	
Co/N CCPC-3	1.48	87	707	N.A.	42 ,5	Nano Energy 2020, 79, 105487	
NiFe2O4/FeNi2S4 HNSs	1.22	44.4	N.A.	N.A.	150, 0.5	J. Am. Chem. Soc. 2018, 140, 17624–17631	
NiFe2O4/Ni3S4	1.28	129	437	N.A.	70, 10	Asian J. Chem., 2020, 15.21: 3568- 3574	
NiO/CoN PINWs	1.46	80	648	836	9, 50/1	ACS Nano 2017, 11, 2275–2283	

Table S4. Comparison of the Zn-air battery performance of the NiMoO₄-Fe-5th catalyst with other recently reported electrocatalysts.

References

- 1. G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251-14269.
- 2. G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, **48**, 13115-13118.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 4. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 5. A. O. Lyakhov, A. R. Oganov, H. T. Stokes and Q. Zhu, *Comput. Phys. Commun.*, 2013, **184**, 1172-1182.
- 6. C. W. Glass, A. R. Oganov and N. Hansen, Comput. Phys. Commun., 2006, 175, 713-720.
- 7. A. R. Oganov, A. O. Lyakhov and M. Valle, Acc. Chem. Res., 2011, 44, 227-237.
- 8. C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan and C. Yang, *Energy Environ. Sci.*, 2020, **13**, 86-95.