Electronic Supplementary Information for

A cyano cobalt "electron transfer bridge" boosting the two-electron reaction of a MnO₂ cathode with long lifespan in aqueous zinc batteries

Yaozhi Liu,^{a,b} Lu Lin,^a Tengsheng Zhang,^b Zhiqing Xue,^a Jie Liu,^{d,e} Dongliang Chao*^b and Xiaoqi Sun*^{a,c}

^a Department of Chemistry, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China.

^b Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative

Materials, and School of Chemistry and Materials, Fudan University, Shanghai 200433, China.

^c National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China.

^d School of Resources and Civil Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, China.

^e National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang, 110819, China.

* E-mail: chaod@fudan.edu.cn; sunxiaoqi@mail.neu.edu.cn

Figure S1. Mn 3s XPS of the MnCoO-CN material.

Figure S2. a) The N_2 adsorption-desorption isotherm and b) pore size distribution of the MnCoO-CN material.

Figure S3. SEM image and STEM-EDS elemental mapping of the MnCo-PBA starting material.

Figure S4. The oxidation process of the 3 M ZnSO₄ electrolyte with a graphite foil electrode.

Figure S5. N 1s XPS of the MnCo-PBA starting material.

Figure S6. a) Charge-discharge curves and b) cycling performance of the MnCoO-CN cathode in 3 M ZnSO₄ at 0.1 A g^{-1} with the top voltage cut-off of 1.8 V.

Figure S7. a) Charge-discharge curves and b) cycling performance of α -MnO₂ cathode in 3 M ZnSO₄ at 0.1 A g⁻¹.

Figure S8. a,d) CV curves at different scan rates, b,e) the log(i) vs. log(v) plots of the three peaks and c,f) the non-diffusion and diffusion-controlled contributions at different scan rates of a-c) MnO₂/CoO_x-CN and d-f) MnO₂.

Figure S9. Mn 2p XPS of the MnO₂/CoO_x-CN cathode at different states.

Figure S10. SEM image of the discharged MnO₂/CoO_x-CN cathode.

Figure S11. The in-situ ATR-FTIR setup.

Table S1 The weight percentages of Mn and Co in the MnCoO-CN composite by ICP-OES.

Element	wt%
Mn	50.9
Со	1.8

Estimation of capacity based on MnO₂ mass according to the results in Table S1:

According to ICP analysis, 50.9 wt% weight in the MnCoO-CN composite material is from Mn element. When all Mn transforms to MnO₂ after conditioning, the weight portion of MnO₂ with respect to the initial overall weight is 50.9 wt% \div $M_{Mn} \times M_{MnO_2}$ = 50.9 wt% \div 54.94 g mol⁻¹ × 86.94 g mol⁻¹ = 80.5%. The cathode delivers 425 mAh g⁻¹ capacity after conditioning based on the initial composite mass, which corresponds to the capacity of 425 mAh g⁻¹ \div 80.5% = 527 mAh g⁻¹ based on the mass of MnO₂. Table S2 Calculation of two-electron transfer contribution in MnO₂.

Cathode	MnO ₂	MnO ₂ /CoO _x -CN	
Mn concentration in electrolyte at the charged state (mM)	36.1	57.3	
Mn concentration in electrolyte at the discharged state (mM)	95.7	183.6	
Two-electron transfer mass (mg)	0.211	0.050	
= conc[diff] (mM) × 60 (μL) × 86.94 (g mol ⁻¹)	0.311	0.059	
Overall MnO ₂ mass (mg)	1.25	0.822	
Two-electron transfer %	25.0/	800/	
= two-electron transfer mass \div overall MnO ₂ mass \times 100%	23%	80%	

Discussion of Table S2:

To measure the Mn concentrations in the electrolyte at different states, the electrolyte in cycled cells is extracted from separators. The Mn/Zn ratios are measured by ICP, and the Zn concentration of 3 M is used as a reference to calculate Mn concentrations. The fluctuation of Zn concentration during charge/discharge is only a minority of the overall Zn content in the 3 M ZnSO₄ electrolyte. To be more specific, 60 μ L electrolyte in the cell contains 60 μ L × 3 M = 0.18 mmol of Zn. The MnO₂/CoO_x-CN cathode reaches the highest capacity around 0.433 mAh. This is the same as the Zn deposition capacity at the anode, which corresponds to 0.433 mAh ÷ 820 mAh g⁻¹ ÷ 65.4 g mol⁻¹ = 0.008 mmol of Zn. The concentration in the cathode reaction. This change is small, and the utilization of Zn concentration as the reference to calculate Mn concentration is thus feasible.

During the two electron reaction of MnO_2 , Mn^{2+} is formed during discharge, and its dissolution in the electrolyte causes Mn concentration increase. Upon charge, Mn^{2+} is oxidized and deposited back to the cathode as MnO_2 , and Mn concentration in the electrolyte decreases. Therefore, the Mn concentration difference between the charged and discharged states is the active material undergoing reversible two-electron transfer of MnO_2/Mn^{2+} based on the dissolution/deposition reaction. The corresponding mass of MnO_2 is calculated based on the following equation:

$$m_{two-electron} = (c_{dis.} - c_{ch.}) \times V_{electrolyte} \times M_{MnO_2}$$
 equation (1)

The mass contribution of two-electron transfer in the total MnO₂ is calculated based on the following equation:

$$\omega_{two-electron} = \frac{m_{two-electron}}{m_{MnO_2}} \times 100\%$$
 equation (2)

In the above equations, $c_{dis.}$ and $c_{ch.}$ represent the Mn concentrations in electrolyte at the discharged and charged states, respectively; $V_{electrolyte}$ corresponds to the volume of electrolyte; M_{MnO_2} is the molecular weight of MnO₂; m_{MnO_2} is the MnO₂ mass. **Table S3** Capacity comparison of the MnO_2/CoO_x -CN cathode in the Mn^{2+} free electrolyte of 3 M ZnSO₄ with previously reported manganese oxide cathodes using electrolytes containing pre-added Mn^{2+} salts in aqueous zinc batteries.

Cathode material	Electrolyte	Current density/rate	Capacity	Ref.
Od-Mn₃O₄	2 M ZnSO ₄ + 0.2 M MnSO ₄	0.2 A g ⁻¹	396 mAh g ⁻¹	1
MO-ZMO	2 M Zn(CF ₃ SO ₃) ₂ + 0.1 M MnSO ₄	0.1 A g ⁻¹	247 mAh g ⁻¹	2
Mg _{0.9} Mn ₃ O ₇ ·2.7H ₂ O	3 M ZnSO ₄ + 0.1 M MnSO ₄	0.2 A g ⁻¹	312 mAh g ⁻¹	3
BMO-6	2 M ZnSO ₄ + 0.25 M MnSO ₄	0.1 A g ⁻¹	363 mAh g ⁻¹	4
Cu-MnO ₂	2 M ZnSO ₄ + 0.3 M MnSO ₄	0.1 A g ⁻¹	443 mAh g ⁻¹	5
PODA/MnO ₂	2 M ZnSO ₄ + 0.1 M MnSO ₄	0.1 A g ⁻¹	321 mAh g ⁻¹	6
MnO ₂ /CoO _x -CN	3 M ZnSO₄	0.1 A g ⁻¹ 0.2 A g ⁻¹	425 mAh g ⁻¹ 369 mAh g ⁻¹	This work

Table S4 Cycling performance comparison of the MnO_2/CoO_x -CN cathode in the Mn^{2+} free electrolyte of 3 M ZnSO₄ with previously reported manganese oxide cathodes using electrolytes containing pre-added Mn^{2+} salts in aqueous zinc batteries.

Cathode material	Electrolyte	Current	Cualing norfermones	Ref.	
		density/rate	Cycling performance		
Od-Mn ₃ O ₄	2 M ZnSO ₄ +	FOA =-1	05 70/ often 12000 avalage	1	
	0.2 M MnSO ₄	5.0 A g -	95.7% after 12000 cycles		
Mg _{0.9} Mn ₃ O ₇ ·2.7H ₂ O	3 M ZnSO ₄ +	0.2 A g ⁻¹	95% after 100 cycles	2	
	0.1 M MnSO₄	5.0 A g ⁻¹	92% after 5000 cycles	3	
BMO-6	2 M ZnSO ₄ +	101-1	0.20/ - [1	4	
	0.25 M MnSO₄	1.0 A g -	93% after 10000 cycles	4	
PANI-MnO ₂	2 M ZnSO ₄ +	0.2 A g ⁻¹	89% after 200 cycles	7	
	0.1 M MnSO ₄	2.0 A g ⁻¹	83% after 5000 cycles		
α-MnO ₂	2 M ZnSO ₄ +	5.0	020/ often 5000 avalas	8	
	0.1 M MnSO ₄	50	92% after 5000 cycles		
Ca _{0.28} MnO ₂	1 M ZnSO ₄ +	<u>ЭГА ~-1</u>	0.2% ofter E000 evelos	9	
	0.1 M MnSO ₄	5.5 A g -	92% after 5000 cycles		
CNT@KMO@GC	2 M ZnSO ₄ +	10 0 A c -1	20% ofter 10000 evelop	10	
	0.2 M MnSO₄	10.0 A g -	80% after 10000 cycles	10	
MnO ₂	2 M ZnSO ₄ +				
	0.005 M	10 mA cm ⁻²	100% after 16000 cycles	11	
	MnSO₄				
K-V ₂ C@MnO ₂	2 M ZnSO ₄ +	0.3 A g ⁻¹	87% after 180 cycles	10	
	0.25 M MnSO ₄	2.0 A g ⁻¹	82% after 5000 cycles		
MnO ₂ /CoO _x -CN	3 M ZnSO4	0.2 A g ⁻¹	81.6% after 300 cycles	This	
		2.0 A g ⁻¹	83.1% after 25000 cycles	work	

References

- Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian, H. Wan, L. Zhang, L. Miao, C. Wang, Y. Gan, J. Jiang, Y. Wang, H. Wang, *Adv. Energy Mater.* 2020, **10**, 2001050. **DOI:** <u>10.1002/aenm.202001050.</u>
- Y. Zeng, Y. Wang, Q. Jin, Z. Pei, D. Luan, X. Zhang, X. W. Lou, *Angew. Chem. Int. Ed.* 2021, 60, 25793-25798. DOI: <u>10.1002/anie.202113487.</u>
- 3 J. Li, N. Luo, L. Kang, F. Zhao, Y. Jiao, T. J. Macdonald, M. Wang, I. P. Parkin, P. R. Shearing, D. J. L. Brett, G. Chai, G. He, *Adv. Energy Mater.* 2022, **12**, 2201840. **DOI:** <u>10.1002/aenm.202201840.</u>
- 4 Y. Ma, M. Xu, R. Liu, H. Xiao, Y. Liu, X. Wang, Y. Huang, G. Yuan, *Energy Stor. Mater.* 2022, **48**, 212-222. **DOI:** <u>10.1016/j.ensm.2022.03.024.</u>
- 5 J. Zhang, W. Li, J. Wang, X. Pu, G. Zhang, S. Wang, N. Wang, X. Li, *Angew. Chem. Int. Ed.* 2023, **62**, e202215654. **DOI:** <u>10.1002/anie.202215654.</u>
- 6 Y. Zhao, R. Zhou, Z. Song, X. Zhang, T. Zhang, A. Zhou, F. Wu, R. Chen, L. Li, Angew. Chem. Int. Ed. 2022, 61, e202212231. DOI: <u>10.1002/anie.202212231</u>.
- 7 J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, *Nat. Commun.* 2018, **9**, 2906. **DOI:** <u>10.1038/s41467-018-04949-4.</u>
- 8 H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, J. Liu, *Nat. Energy* 2016, 5, 16039. DOI: <u>10.1038/NENERGY.2016.39.</u>
- 9 T. Sun, Q. Nian, S. Zheng, J. Shi, Z. Tao, Small 2020, 16, 200597. DOI: 10.1002/smll.202000597.
- 10G. Wang, Y. Wang, B. Guan, J. Liu, Y. Zhang, X. Shi, C. Tang, G. Li, Y. Li, X. Wang, L. Li, *Small* 2021, 17, 2104557. DOI: <u>10.1002/smll.202104557</u>.
- 11X. Shen, X. Wang, Y. Zhou, Y. Shi, L. Zhao, H. Jin, J. Di, Q. Li, *Adv. Funct. Mater.* 2021, **31**, 2101579. **DOI:** <u>10.1002/adfm.202101579</u>.
- 12 X. Zhu, Z. Cao, W. Wang, H. Li, J. Dong, S. Gao, D. Xu, L. Li, J. Shen, M. Ye, *ACS Nano* 2021, **15**, 2971-2983. **DOI:** <u>10.1021/acsnano.0c09205.</u>