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Section S1. Finite element simulations for the TE module

The geometry-dependent analysis of power output and energy conversion efficiency for 

BiSbTe2Se-based TEG was performed by the finite element method using COMSOL 

Multiphysics coupled with Heat Transfer (Thermoelectric Effect) and Electrical Circuits 

modules. The measured thermoelectric properties of BiSb0.95Ag0.05Te2Se (p-type) and our 

previously reported Cl, W co-doped Bi2Te2.7Se0.3 (n-type) legs, as well as other parameters 

selected from the COMSOL materials library, were utilized in the simulation. For the numerical 

analysis, 18 pairs were series-connected in the air with a heat convection efficiency of 5 W m-2 

K-1. The hot- and cold-side temperatures were fixed separately at 525 K and 300 K (ambient 

air). The height of p- and n-type Bi2Te3 legs and cross-sectional area ratios between p- and n-

legs (Ap/An) were varied simultaneously to capture the optimum dimension of p- and n-type 

legs correspondingly to the maximum power output and energy conversion efficiency.

Section S2. DFT calculation methods

First-principles calculations were performed with a cutoff energy of 500 eV for the plane-wave 

basis set and based on density functional theory1, 2 using the projector-augmented wave 

method3, as implemented in the Vienna Ab initio Simulation Package4. The exchange-

correlation interaction was treated with generalized gradient approximation in the form of the 

revised Perdew-Burke-Ernzerh5 and the van der Waals (vdW) interaction was treated with the 

DFT-D3 method of Grimme et al.6. The k-point sampling of 0.05 Å−1 was adopted with a 

Monkhoust-Pack scheme including Γ point. The atomic positions were fully relaxed with the 

maximum residual ionic force and total energy difference converged within 0.005 eV Å−1 and 

10−6 eV, respectively. The experimental lattice constants are adopted. A 320-atom supercell 

(i.e., 4 × 4 × 4 primitive cell) is applied during calculating second-order interatomic force 

constant, and a 3 × 3 × 3 supercell with 9th nearest neighbors is considered for the calculation 

of third-order interatomic force constant for the calculations in Fig. 3(b) and (c) of the main 
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text. The thermal properties are obtained by solving the phonon Boltzmann transport equation 

implemented in ShengBTE 7 . To mimic the random distribution of Bi and Sb atoms, special 

quasirandom structures (SQS) were generated with the help of the Alloy-Theoretic Automated 

Toolkit (ATAT) 8, 9 and a 60-atom hexagonal structure was identified as the best one and used 

in our calculations that has the correct pair correlation functions identical to those of the perfect 

random structures up to the next nearest atomic shell with a distance of 8 Å

Section S3. Sound velocity calculation 

Average sound velocity (a) is calculated from the sound velocity as follows10.

             (S1)
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 where l is the longitudinal sound velocity and t is the transverse sound velocity. 

Young’s modulus (E) is calculated by  11
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where  is the sample density.

 Poisson ratio (r) is calculated by (11)

                        (S3)
 𝑟 =

1 ‒ 2(𝜈𝑡/𝜈𝑙)
2 

2 ‒ 2(𝜈𝑡/𝜈𝑙)
2

  ,

Shear modulus (G) is calculated by (11)

                                 (S4) 
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The Gruneisen parameter () is calculated by (11) 
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 Section S4. The calculations of Lattice Thermal Conductivity 
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According to the Debye–Callaway model 12, kl can be calculated by

                    (S6)
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 The integrand item in conjunction with the coefficient of Equation (S3) is the spectral 

lattice thermal conductivity
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In the above equation, x=ћω/kBT is the reduced phonon frequency,  is the Boltzmann 𝑘𝐵

constant,  is the average sound velocity, which could be calculated by  (with 𝜐
𝜐 = [

1
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 and  respectively denoting the longitudinal and transverse sound velocities),  is reduced 𝜐𝐿 𝜐𝑇 ℏ

Plank’s constant,  is the Debye temperature, and  is the frequency of phonons.  is the 𝜃𝐷 𝜔 𝜏𝑡𝑜𝑡

total relaxation time and calculated according to the Matthiessen’s rule 13:

                  (S8)𝜏 ‒ 1
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Where τU, τPD, τGB, τDS, τDC, τP and τSF is the relaxation time for Umklapp-process scattering, 

point defect scattering, grain boundaries scattering, dislocation strain scattering, dislocation 

core scattering, precipitate scattering and stacking faults, respectively. The relevant phonon 

relaxation times are given by

Umklapp phonon-phonon scattering

                                (S9)
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Point defect phonon scattering
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where γ is the Grüneisen parameter,  is the average mass, m* is the effective mass of charger �̅�

carrier, ρ is the sample density,  is the average atomic volume, Γ is the point defect scattering �̅�

parameter and determined by considering mass difference and d is the grain size, respectively. 

The Umklapp phonon–phonon scattering strength coefficient A was fit to the experimental data 

of the in-plane kl of fully dense, large grained BiSb0.95Ag0.05Te2Se.

For a material with dislocations, the scattering caused by the dislocations (D) should be 

considered. Relaxation time of dislocation scattering can be considered 14  

  (S12)
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ND, BD, γ, γ, r, νL, νT are dislocation density, effective Burger’s vector, Grüneisen Δ

parameter, change in Grüneisen parameter due to the dislocation strain , Poisson’s ratio, 

longitudinal phonon velocity and transverse phonon velocity, respectively. γ can be expressed  Δ

as

                         (S13)
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                                           (S15)
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where C0 is the concentration of Bi2Te3 in (Bi,Sb)2Te3 alloys, K is the bulk modulus of Bi2Te3, 

Ta is the sample smelting temperature, VBT and VST are the atomic volume of Bi2Te3 and 

Sb2Te3, and MBT and MST are the atomic mass of Bi2Te3 and Sb2Te3. 

For nanoscale precipitate, the relaxation time of nano precipitate can be expressed as15:

                           (S16)𝜏 ‒ 1
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Where v, Vp, R, Dmatrix and Dprecipitate are average sound speed, number density of nano 

precipitates, average radius of the precipitates, mass density of matrix and precipitates 

respectively.

Considering only the specular reflection of phonons at stacking faults Klemens found that16

                                  (S20)
𝜏 ‒ 1

𝑆𝐹 = 0.7
𝑎2

𝑣
𝛾2𝜔2𝑁𝑠

Where a, ,  and  are lattice parameter, average sound speed, Grüneisen parameter and 𝑣 𝛾 𝑁𝑠

Number of stacking faults crossing a line of unit length. The detailed parameters can be found 

in the Table S2.

 The calculations of kb and minor electrical conductivity for P-type BST 

In n-type Bi2Te3–based materials, acoustic phonon scattering is also the dominant carrier 

scattering mechanism around 300 K. Thus, the hole mobility (μe) also obey the relationship of 

μe ~ T-3/2. Thus, a qualitative expression between μe and ne is derived as μe ≈ Bn-1/5, where B is 

a temperature independent constant for a fixed composition (Table S2). Then the electron 

partial electrical conductivity σe and bipolar can be calculated by the following equation:

                 (S21)
𝑘𝑏 = (𝑘𝐵

𝑒 )2𝑇(5 + 2𝜆 +
𝐸𝑔

𝑘𝐵𝑇
)2

𝜎𝑒

1 + 𝜎𝑒 𝜎ℎ

Where,  is the carrier scattering parameter, by subtracting the κb value from the κl+κb (shown 𝜆

in Fig 4(E)), the experiment κl value can be attained (shown in Fig 4(F).

The calculations of effective mass m*    

For a degenerate semiconductor with simple parabolic band dispersion and relaxation time 

approximation, m* could be calculated by Equation (S12-14)

         (S22)
|𝑆| =

𝑘𝐵

𝑒 [(2.5 + 𝜆)𝐹1.5 + 𝜆(𝜂)

(1.5 + 𝜆)𝐹0.5 + 𝜆(𝜂)
‒ 𝜂]

            (S23)
𝑛 =

4𝜋(2𝑘𝐵𝑇𝑚 ∗ )
3
2

ℎ3
𝐹1 2(𝜂)

             (S24)
𝐹𝑛(𝜂) =

∞

∫
0

𝑥𝑛

1 + 𝑒(𝑥 ‒ 𝜂)
𝑑𝑥

where e and h are electron charge and Planck’s constant, respectively. For acoustic scattering, 

 is -0.5. The parameter  is called the reduced Fermi level, , where  is the Fermi 𝜆 𝜂 𝜂 = 𝐸𝐹/𝑘𝐵𝑇 𝐸𝐹

level. By utilizing the S and n values at room temperature, the m* is determined and plotted in 

fig. S8.
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Fig S1. Thermoelectric properties of of Bi2-xSbxTe2Se (x=0.2 to 1.8). (A) Electrical 

conductivity. (B) Seebeck coefficient (S). (C) Power Factor (D) Thermal conductivity (κ) and 

(E) Lattice Thermal conducttivity (F) thermoelectric Fig of merit (zT) values of Bi2-xSbxTe2Se.
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A

B

Fig S2. (A) Atomic Resolutiuon and STEM EDS mappinfg and (B) Compare Atomic model 
of BiSbTe2Se  based on database and TEM Imaging.
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Fig S3.   Crystal structures (with hexagonal lattice) for the ordered structure of BiSbTe2Se with 
different Se positions.

                  

Fig S4.  Phonon anharmonic scattering rate of BiSbTe2Se and Bi2Te3.
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Fig S5. High-resolution STEM images along [100] orientation of (A) Bi2Te3 and (B) 
BiSbTe2Se samples used for lattice strain analysis based on the geometric phase analysis, 
showing in Fig. 3C and 3D.

Se

Bi

Te

Sb

A B

Fig S6. (A) Disordered Crystal structure of BiSbTe2Se (B) Phonon dispersion and density of 
states of disordered BiSbTe2Se.
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Fig S7. (A) XRD patterns of Ag-doped samples (B) Rietveld refinement plot of 
BiSb0.95Ag0.05Te2Se.
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Fig S8. Diffraction peaks for BiSb1-xAgxTe2Se (x=0.01 to 0.06).
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Fig S9. DSC curve of Ag doped BiSb1-xAgxTe2Se (x=0.01 to 0.05).

Fig S10. Low magnitude TEM image for BiSbTe2Se.



14

Ag2Te

 Fig S11: Low-magnitude TEM image of the 0.05Ag-doped BiSbTe2Se sample, showing the 
corresponding elemental distributions of Se, Ag, Te, and Bi.

Fig S12. XPS survey spectrum of BiSbTe2Se and Ag doped BiSbTe2Se with their elemental 
states and corresponding binding energy.
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A B

3m

Fig S13. SEM images for (A) 0.05Ag-doped BiSbTe2Se (B) EDS results for 0.05Ag doped 
BiSbTe2Se sample data (Table S1) at different spots.

Fig 14. (A) XRD patterns parallel and perpendicular to pressing direction of BiSbTe2Se and 
BiSb0.95Ag0.05Te2Se samples. (B) Grain orientation distribution of the 5% Ag-doped 
BiSbTe2Se sample.
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Fig S15.  Pisarenko plots for Ag doped samples.

A

B

Fig S16. Electronic structure (A) BiSbTe2Se with the ordered and (B) BiSbTe2Se with the 
disordered structure.
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Fig S17.  Fermi surface at -0.3 eV from VBM for BiSbTe2Se with the disordered structure.

Fig S18. Density of states of Ag doped BiSbTe2Se in disordered structure with enlarged view 
shown in the inset for atom-resolved density of states.
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     Fig S19. Power factor of the Ag doped BiSbTe2Se.

Fig S20. The Lorentz number, for all the samples derived from the equation L = 1.5 + exp [-

|S| /116].
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Fig S21. Repeat data for 5Ag BiSbTe2Se sample (A) Electrical conductivity. (B) Seebeck 

coefficient (S). (C) Thermal conductivity (κ) and (D) thermoelectric Fig of merit (zT). 

Fig S22. Schematic TE device of dimension of 30 × 30 × 4 mm3 with Ap/An=0.5. 
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Fig S23. Performance of TE module. (A) Current dependence of efficiency for TE device 
with Ap/An=1

  

Fig S24.  3D plot relates the calculated maximum (A) conversion efficiency and (B) output 
power.
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Fig S25. Out of-plane thermoelectric properties of BiSb1-xAgxTe2Se (x = 0.01 - 0.06) (A-D). 
Temperature variation of (A) electrical conductivity (σ). (B) Seebeck coefficient (S). (C) Total 
thermal conductivity (κ) (D) thermoelectric Fig of merit (zT).
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Table S1. Elemental composition for BiSb0.95Ag0.05Te2Se through EDS.

EDS
 Spots

Bismuth

     wt%     at%

      Antimony

  wt%    at%

   Silver

wt%   at%

  Tellurium

wt%    at%

   Selenium

 wt%    at%
Spot 1    24.77      15.03 19.24      20.04 0.03      0.05 40.79     40.54        15.15      24.34         
Spot 2 24.87      15.00 18.59      19.24 0.03      0.04   40.16    39.66      15.15      24.34
Spot 3
spot 4
spot 5

23.99     14.31
28.28      17.19
25.77      15.54

15.4l       15.77
14.49      15.12
38.85      38.36

3.22      3.71
3.66      14.31                    
3.71      4.33 

  40.48     39.53
  37.19     37.02
  38.85     38.36

     16.90      26.67
     16.39      26.37
     16.05      25.60

Table S2. Physical properties used to calculate kl based on various phonon scattering processes. 

Parameters Values

Debye temperature θD (K) 16417

Longitudinal sound velocity υL(ms-1) 280017

Transverse sound velocity υT (ms-1) 160017

Sound velocity υ(ms-1) 1778

Average atomic mass of Bi2Te3 MBT (kg) 2.66×10-25

Average atomic mass of Sb2Te3 MST (kg) 2.07×10-25

Average atomic volume of Bi2Te3 VBT (m3) 3.48×10-29

Average atomic volume of Sb2Te3 VST (m3) 3.13×10-29

Sample density ρ(g cm-3) 6.94

Grain size d (um) 30

Magnititude of Burger’s vector BD (Å) 12

average radius of the precipitates (nm) 15

Number of stacking faults crossing a line of unit length 

(m-1)
2×1020

Poisson’s ratio r 0.1418

Grüneisen parameter γ 1.519

Bulk modulus K (GPa) 37.417
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