Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2024

Photoelectrochemistry and Critical Raw Materials

¹ Supply risk considerations for

² photoelectrochemical water splitting materials

- 3 Energy & Environmental Science
- 4 https://doi.org/10.1039/D3EE04369J
- 5 Appendix A: Supplementary Material

6 Authors

- 7 Martin Hillenbrand, 1
- 8 Christoph Helbig, 1, *
- 9 Roland Marschall, 2
- 10 1: Ecological Resource Technology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth,
- 11 Germany
- 12 2: Physical Chemistry III, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
- 13 *: <u>christoph.helbig@uni-bayreuth.de</u>

14

Section Topic	Tables	Page
1. Short explanation of	S1-S5	S2-S6
the eleven indicators		
2. Interpretation and	S6	S7
calculation of		
aggregation methods		
References		S7

15

16 Summary

- 17 This supplementary Material A includes an explanation of the eleven indicators (S1-S5) and the
- 18 interpretation and calculation of the aggregation methods (S6). The complete input data,
- 19 instructions, Python scripts, and model results are publicly available via an OSF registration:
- 20 <u>https://doi.org/10.17605/OSF.IO/D9E8X</u>. The data plotted in the figures in the paper are available in
- 21 spreadsheet form (Supplementary data), as well as the article itself, via:
- 22 <u>https://doi.org/10.1039/D3EE04369J</u>.

24 1. Short explanation of the eleven indicators

25 Table S1: Explanation of supply risk indicators for the criteria "risk of supply reduction".

ID	Indicator	Indicator Description	Dimension	Calculation	Data & Calculation Description	Sources	Perspective
S1	Scarcity, based on reserves	The Scarcity, based on reserves, is an indication of the market pressure for further exploration and for the development of new extraction capabilities, possibly leading to higher price levels. The scarcity, based on reserves, is sometimes also called static reach reserves or depletion time of reserves.	years	$S1 = 100 - a_1T - b_1T^2$ $S1 = 100 - 0.2T - 0.008T^2$ $T = \frac{Reserves}{Annual Production}$	The scarcity, based on reserves, of a raw material is given by the ratio of annual primary production to the estimated global reserves. Reserves are the ores currently technically and economically extractable from known deposits. The parameters a_1 and b_1 are defined as normalization factors to get a common scale from 0 (lowest supply risk) to 100 (highest supply risk). A risk value of 100 is obtained by a T of 0 years, a value of 70 by a T of 50 years and 0 by a T of 100 years.	1,2	Present
52	Scarcity, based on resources	The Scarcity, based on resources. is an indication of the long-term market pressure for further exploration and for the development of new extraction capabilities, possibly leading to higher price levels. The scarcity, based on resources, is sometimes also called static reach resources or depletion time of resources.	years	$S2 = 100 - a_2T - b_2T^2$ $S2 = 100 - 0.1T - 0.002T^2$ $T = \frac{Resources}{Annual Production}$	The scarcity, based on resources, of a raw material is given by the ratio of annual primary production to the estimated global resources. Resources are the ores contained in deposits that are economically and technically extractable now or in the future. The parameters a_2 and b_2 are defined as normalization factors to get a common scale from 0 (lowest supply risk) to 100 (highest supply risk). A risk value of 100 is obtained by a T of 0 years, a value of 70 by a T of 100 years and 0 by a T of 200 years.). In contrast to the S1 indicator, the reserves are used for the calculation and not production, as the reserves serve as approximate values for potential future production.	1,2	Future
53	Dependence on primary production	The dependence on the primary production is an estimate of the amount of available secondary material that is independent of mining and primary refining activities and can thus smooth out supply disruptions or price peaks.	%	$S3 = 100 \cdot (1 - EoLRIR)$	The dependence on the primary production of a raw material is given by the ratio of the current annual recycled material flow to the annual discard rate of the raw material, also named End-of-Life Recycling Input Rate (EoLRIR). The EoLRIR is calculated by multiplying the old scrape ratio (OSR) with the recycled content ratio (RCR). A EoLRIR of 100% results on a supply risk value of 0 while a EoLRIR of 0% results in a score of 100.	1,3,4	Present, Future

Photoelectrochemistry and Critical Raw Materials
Table S2: Explanation of supply risk indicators for the criteria "risk of demand increase".

ID	Indicator	Indicator Description	Dimension	Calculation	Data & Calculation Description	Sources	Perspective
D1	Demand growth	Demand growth gives an indication of the market pressure for an increase in global extraction due to future technologies. The demand growth is sometimes also called future technology demand.	%	$D1 = 1,000 \cdot DG$ $DG = \left(1 + \frac{FTD_{2040} - FTD_{2018}}{Production_{2018}}\right)^{\frac{1}{years}} - 1$ years = 22	Demand growth (DG) is given by the ratio of expected additional demand in a future year from new, future technologies ($FTD_{2040} - FTD_{2018}$) to global production in a past year ($Production_{2018}$).	1,5	Present, Future
D2	By-product dependence	The by-product dependence is the amount of an element mined as a by-product given as a percentage of the global production of the host element(s). Extraction as a by-product occurs when mining solely for the raw material itself is not economically feasible. The figure is a measure of the possible inability to increase primary production in response to an increase in demand. The by-product dependence is sometimes also called companion metal fraction.	%	D2 = Percentage of global production obtained as companion	The percentage of global production obtained as companion is collected from ⁶ .	1,6	Present, Future
D3	Sector Competition	The Sector Competition Index (SCI) measures the risk of competing demands for raw materials among industries, particularly those willing to pay premium prices.	qualitative	D3 = SCI	The Sector Competition Index (<i>SCI</i>) calculates the average added value per unit of material consumed, weighted using these materials across major industry sectors, highlighting the economic impact of material inputs.	1,7	Present
D4	Lack of substitution options	Lack of substitution options is an estimate of the extent to which a raw material can be replaced by another raw material without there being too great a loss of essential properties. The value gives an estimate of the extent to which demand can be shifted to other materials in the case of supply shortage and, thus, of the potential to smooth out supply disruptions or price peaks.	qualitative	D4 = Substitute Performance	The substitute performance is assessed by experts and collected from ⁸ .	1,8	Present, Future

Photoelectrochemistry and Critical Raw Materials
29 Table S3: Explanation of supply risk indicators for the criteria "concentration risk".

ID	Indicator	Indicator Description	Dimension	Calculation	Data & Calculation Description	Sources	Perspective		
C1	Country	The concentration of the annual production of	ННІ	$C1 = c_1 \ln (HHI) - d_1$	The Herfindahl-Hirschman Index (HHI) is the	1,2	Present		
	Concentration,	a raw material in one, or in only a few,		$C1 = 21.64 \ln (HHI) - 99.31$	sum over the squares of the production shares				
	based on	countries is measured by the Herfindahl-		$HHI = 10,000 \sum rraduction^2$	of the countries in percent. The parameters $^{\mathcal{C}_1}$				
	production	Hirschman Index. The value directly indicates			and d_1 are defined as normalization factors to				
		of stratogic exploitation of a monopolictic		i. Countries	get a common scale from 0 (lowest supply risk)				
		nosition at times of international crisis or		4: Countries	to 100 (highest supply risk). A supply risk value				
		dispute			of 100 is obtained by a HHI of 10,000, a value				
					of 70 by a HHI of 2,500 and 0 by a HHI of 100.				
C2	Country	The concentration of the estimated global	ННІ	$C2 = c_1 \ln (HHI) - d_1$	The Herfindahl-Hirschman Index (HHI) is the	1,2,9	Future		
	Concentration,	reserves of a raw material in one, or in only a		$CZ = 21.64 \ln (HHI) - 99.31$	sum over the squares of the reserve shares of				
	based on	few, countries is measured by the Herfindahl- Hirschman Index. The value directly indicates	few, countries is measured by the Herfindahl- Hirschman Index. The value directly indicates	sed on few, countries is measured by the Herfindahl-		$HHI = 10,000 \sum reserves_i^2$	the countries in percent. The parameters c_1		
	reserve			and d_1 are defined as normalization factors to					
long-	nossibility of strategic long-term exploitation	i: Countries	i: Countries	get a common scale from 0 (lowest supply risk)					
	possibility of a	of a monopolistic position at times of	in l		- countries	to 100 (highest supply risk). A supply risk value			
		international crisis or dispute			of 100 is obtained by a HHI of 10,000, a value				
					of 70 by a HHI of 2,500 and 0 by a HHI of 100.).				
					In contrast to the C1 indicator, the reserves are				
					used to calculate the HHI and not production,				
					as the reserves serve as approximate values for				
					potential future production.				

Photoelectrochemistry and Critical Raw Materials

31 Table S4: Explanation of supply risk indicators for the criteria "political risk" in the present scenario.

ID	Indicator	Indicator Description	Dimension	Calculation	Data & Calculation Description	Sources	Perspective
P1	Political instability (WGI-PV)	The risk of Political Instability (WGI-PV) is an indication of the likelihood of disruption in production and export in the countries concerned due to unrest, coups d'état, terrorism or other situations involving violence.	qualitative	$P1 = 20 \cdot (2.5 - WGI)$ $WGI = \sum_{i} wgi_{i} \cdot production_{i}$ $i: Countries$	The risk of political instability in producing countries is measured by the Worldwide Governance Indicator for Political Stability and Absence of Violence/Terrorism (WGI-PV), published by the World Bank. It is weighted by the production share in each producing country.	1,2,10	Present
P2	Regulation (PPI)	The Regulation (PPI) is a measure of the ability of the market to continue to function and/or of primary production to continue to increase based on the functioning of the rule of law and governance procedures in producing countries.	qualitative	$P2 = (100 - PPI)$ $PPI = \sum_{i} ppi_{i} \cdot production_{i}$ <i>i</i> : Countries	The policy perception indicator (PPI) is an assessment of the ability of producing countries to implement new mining projects, weighted by the production share in each producing country. It is evaluated by mining industry experts and summarized by the Fraser Institute as the policy perception index (PPI).	1,2,11	Present
P3	Regulation (HDI)	The Regulation (HDI) attempts to measure the likelihood of producing countries to implement restrictions on mining, refining and trade, as indicated by their level of societal development. The value assesses the likelihood that further mineral extraction and refining activities are prevented due to regulations, taxes, tariffs, or taxes in producing countries.	qualitative	$P3 = 100 \cdot \frac{HDI - e_1}{f_1 - e_1}$ $P3 = 100 \cdot \frac{HDI - 0.352}{0.949 - 0.352}$ $HDI = \sum_i hdi_i \cdot production_i$ <i>i</i> : Countries	The HDI value is calculated by the Human Development Index for each producing country, as presented by the United Nations Development Programme, and weighted by the production share in each producing country. HDI scores are rescaled according to the minimum (e_1) and maximum (f_1) value of all countries.	1,2,12	Present

Photoelectrochemistry and Critical Raw Materials
33 Table S5: Explanation of supply risk indicators for the criteria "political risk" in the future scenario.

ID	Indicator	Indicator Description	Dimension	Calculation	Data & Calculation Description	Sources	Perspective
P4	Political	The risk of Political Instability (WGI-PV) is an	qualitative	$P4 = 20 \cdot (2.5 - WGI)$	The risk of political instability in potential future	1,2,9,10	Future
	instability	indication of the likelihood of disruption in			producing countries is measured by the Worldwide		
	(WGI-PV),	potential future production and export in the		$WGI = \sum Wgl_i \cdot reserves_i$	Governance Indicator for Political Stability and		
	based on	countries concerned due to unrest, coups d'état,		i	Absence of Violence/Terrorism (WGI PV), published		
	reserves	terrorism or other situations involving violence.		i. Countries	by the World Bank. It is weighted by the reserve		
				Countries	share in each potential future producing country. In		
					contrast to the P1 indicator, the reserves are used for		
					weighting and not production, as the reserves serve		
					as approximate values for potential future		
					production.		
P5	Regulation	The Regulation (PPI) is a measure of the ability of	qualitative	P5 = (100 - PPI)	The policy perception indicator (PPI) is an assessment	1,2,9,11	Future
	(PPI), based	the market to continue to function and/or of		$PDI - \nabla mi$, reserves	of the ability of producing countries to implement		
	on reserves	primary production to continue to increase based		$PPI = \sum_{i} ppl_i \cdot reserves_i$	new mining projects, weighted by the reserve share		
		on the functioning of the rule of law and		L L	in each potential future producing country. It is		
		governance procedures in potential future		i: Countries	evaluated by mining industry experts and		
		producing countries.		. countries	summarized by the Fraser Institute as the policy		
					perception index (PPI). In contrast to the P2 indicator,		
					the reserves are used for weighting and not		
					production, as the reserves serve as approximate		
	Desulation			HDI – e	values for potential future production.	12012	Future
P6	Regulation	The Regulation (HDI) attempts to measure the	qualitative	$P6 = 100 \cdot \frac{mD1 - e_1}{m}$	The HDI value is calculated by the Human	1,2,3,12	Future
	(HDI), based	likelihood of potential future producing countries		$f_1 - g_1$	Development index for each potential future		
	on reserves	to implement restrictions on mining, refining and		HDI - 0.352	Notions Development Programme, and weighted by		
		development. The value assesses the likelihood		$F0 = 100 \cdot \frac{100}{0.949 - 0.352}$	the recerve share in each potential future producing		
		that further notantial future minoral extraction		∇	country. In contrast to the P2 indicator, the recorded		
		and refining activities are prevented due to		$HDI = \sum hdi_i \cdot reserves_i$	are used for weighting and not production as the		
		regulations taxes tariffs or taxes in producing		i	reserves serve as approximate values for potential		
		countries		i.e	future production HDI scores are rescaled according		
				4: Countries	to the minimum (e_1) and maximum (f_1) with $e_1 = f_1$		
					to the minimum $(^{-1})$ and maximum $(^{7-1})$ value of all		
					countries.		

34

36 2. Calculation of aggregation methods

37 Table S6: Explanation of supply risk indicator aggregation for PEC absorber materials.

Aggregation	Description	Calculation	Source
Equal weighting	The equal weighting approach calculates the supply risk values of the materials (SR_{mean}) as arithmetic mean of the supply risk values of the individual elements (SR_i) of all elements contained within the material.	$SR_{mean} = \frac{\sum_{i \in Material} SR_i}{\sum_{i \in Material} 1}$	1
Mass-based weighting	The mass-based weighting approach calculates the supply risk values of the materials (${}^{SR}_{mass}$) as weighted average of the supply risk value of the elements (${}^{SR}_i$), where the weighting score is the share of each element's mass (${}^{m}_i$) relative to the total mass of all elements.	$SR_{mass} = \frac{\sum_{i} m_i SR_i}{\sum_{i} m_i}$	1
Cost-based weighting	The cost-based weighting method calculates the supply risk values of the materials (${}^{SR}_{cost}$) as weighted average of the supply risk value of the elements (${}^{SR}_i$), where the weighting score is the share of each element's mass (${}^{m}_i$) multiplied by its price (${}^{p}_i$) relative to the total costs of all elements.	$SR_{cost} = \frac{\sum_{i} p_{i} m_{i} SR_{i}}{\sum_{i} p_{i} m_{i}}$	1
Maximum approach	The maximum aggregation approach considers only the element with the highest supply risk score within each material.	$SR_{max} = \max_{i \in Material} SR_i$	1

38 References

- 1 C. Helbig, A. M. Bradshaw, A. Thorenz and A. Tuma, *Resources*, 2020, **9**, 106.
- 40 2 USGS, Mineral commodity summaries 2023, U.S. Geological Survey, 2023.
- 41 3 T. E. Graedel, J. Allwood, J.-P. Birat, M. Buchert, C. Hagelüken, B. K. Reck, S. F. Sibley and G.
- 42 Sonnemann, *Journal of Industrial Ecology*, 2011, **15**, 355–366.
- 43 4 T. E. Graedel, J. Allwood, J.-P. Birat, M. Buchert, C. Hagelüken, B. K. Reck, S. F. Sibley and G.
- 44 Sonnemann, *Recycling rates of metals: a status report*, United Nations Environment Programme, 45 Nairobi, Kenya, 2011.
- 46 5 F. Marscheider-Weidemann, S. Langkau, E. Eberling, L. Erdmann, M. Haendel, M. Krail, A. Loibl, C.
- 47 Neef, M. Neuwirth, L. Rostek, S. Shirinzadeh, D. Stijepic, L. A. Tercero Espinoza, S.-J. Baur, M.
- 48 Billaud, O. Deubzer, F. Maisel, M. Marwede, J. Rückschloss and M. Tippner, *Rohstoffe für*
- 49 Zukunftstechnologien 2021: "Auftragsstudie," Deutsche Rohstoffagentur (DERA) in der
- 50 Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Berlin, Datenstand: Mai 2021,
- 51 Aktualisierung im August 2021., 2021.
- 52 6 N. T. Nassar, T. E. Graedel and E. M. Harper, *Sci. Adv.*, 2015, **1**, e1400180.
- 7 C. Helbig, C. Kolotzek, A. Thorenz, A. Reller, A. Tuma, M. Schafnitzel and S. Krohns, *Sustainable Materials and Technologies*, 2017, **12**, 1–8.
- 55 8 T. E. Graedel, E. M. Harper, N. T. Nassar and B. K. Reck, *Proc. Natl. Acad. Sci. U.S.A.*, 2015, **112**,
 6295–6300.
- 57 9 USGS, *Mineral commodity summaries 2017*, U.S. Geological Survey, 2017.
- 58 10 The World Bank, Worldwide Governance Indicators | DataBank,
- https://databank.worldbank.org/source/worldwide-governance-indicators, (accessed December11, 2023).
- 61 11 J. Yunis and E. Aliakbari, Fraser Institute Annual Survey of Mining Companies 2021, Fraser
- 62 Institute, 2022.
- 63 12 UNDP, Human Development Index, United Nations Development Programme, Human
- 64 Development Index, United Nations Development Programme.
- 65