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Materials

All the chemical reagents were used as received from Sigma-Aldrich unless specified. 

These include platinum-(II) acetylacetonate (Pt(acac)2, 97%), cobalt(II) acetylacetonate 

(Co(acac)2, ≥99.0%), phytic acid (PA, 70%), benzyl alcohol (BA, ≥99.5%), N, N-

dimethylformamide (DMF, ≥99.9%), Pt/C (20 wt%, supported on Vulcan XC-72 

black, Johnson Matthey) and Ketjen black carbon (KB, ECP-600JD, Japan LION). All 

the chemicals were used as received without further purification. The water (18.2 

MΩ/cm) used in all experiments was prepared by passing through an ultra-pure 

purification system (Aqua Solutions).

Catalysts preparation

Synthesis of PyOx-KB supports

In a standard synthesis, phytic acid (PA) (5/10/20/50 μL) and KB (100 mg) were mixed 

in DMF (30 mL) and ultrasound for around 1h. The resulting homogeneous mixture 

was then put into a 50 mL Teflon-lined stainless steel autoclave and heated at 180 ℃ 

for 12 h, before it was cooled to room temperature. The resulting PyOx-KB products 

were collected by centrifugation and washed three times with an ethanol/acetone 

mixture. 

To prepare the control sample of acid-treated KB (AT-KB), 1 g of KB was mixed 

with 100 mL 70% HNO3 in a 250 mL round glass bottom flask. The suspension was 

immersed in a 70 °C preheated oil bath and continuously stirred under reflux for 5 h. 

After that, the AT-KB products were collected by centrifugation after washing with 

water until neutral.

Synthesis of PtCo/PyOx-KB catalysts
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The PtCo/PyOx-KB catalysts were obtained by the further growth on the preformed 

PyOx-KB supports. In a typical preparation of PtCo/PyOx-KB catalysts, Pt(acac)2 (2.0 

mg), Co(acac)2 (1.0 mg) and PyOx-KB (20 mg) prepared above were added in DMF (20 

mL). The mixture was further added benzyl alcohol (1.0 mg) after magnetic stirring for 

around 30 minutes. After continued to be sonicated for around 2 h, the resulting mixture 

was put into a 50 mL Teflon-lined stainless steel autoclave and heated at 160 ℃ for 12 

h before the mixture was naturally cooled to room temperature. The resulting 

PtCo/PyOx-KB catalysts were collected by centrifugation and washed three times with 

an ethanol/acetone mixture and annealed under Ar at 260 °C at a ramping rate of 10 °C 

min−1 for 1 h. PtCo/AT-KB was synthesized in the same as PtCo/PyOx-KB, except that 

PyOx-KB was replaced by AT-KB.

Characterization 

Powder X-ray diffraction (XRD) patterns were collected on a Rigaku Ultima IV XRD 

with Cu-Kα radiation. X-ray photoelectron spectrum (XPS) was carried out on an 

Omicron SpheraII hemispherical electron energy analyzer with monochromatized Al 

Kα radiation (1486.6 eV). Themorphologies of the synthesized products were 

characterized through the scanning electron microscopy (SEM) collected by a Hitachi 

s-4800 instrument. The morphology and structure of the catalysts were characterized 

by transmission electron microscope (TEM) on JEM 1400, Tecnao F30, and condenser 

& aberration-corrected HAADF-STEM on JEM-ARM 300F at 200 kV. EELS mapping 

Gatan GIF Quantum 1077, 1.5 eV per channel on TEM FEI Talos F200X at 200 kV. In 

situ Raman spectra were obtained from an IDSPEC Confocal Raman Microscope with 

a 633 nm laser source. The Fourier transform infrared (FTIR) spectra were recorded by 

a Thermo Nicolet Nexus spectrometer. In situ FTIR spectroscopy experiments were 



s-4

carried out on a Nicolet 8700 FTIR spectrometer (Thermo Scientific) equipped with a 

nitrogen cooled MCT-A defector using p-polarized light.

Electrochemical measurements

An open homemade electrochemical cell at 30 ℃ and a CHI 760E electrochemical 

workstation (Chenhua, Shanghai) with a RDE system (Pine Instruments) equipped with 

CHI-760E bipotentiostat was used for ORR electrolysis. The reference electrode was a 

saturated calomel electrode (SCE) and the counter electrode was a Pt foil. The working 

electrode was Pt/C or PtCo/PyOx-KB on glassy carbon rotating disk electrode (RDE,  

= 5 mm). To prepare the working electrode, 1 mg Pt/C or PtCo/PyOx-KB was dispersed 

in a mixture of water (0.45 mL), isopropanol (0.55 mL), and Nafion dispersion (5 wt%, 

10 μL). The suspension was ultrasonicated for 2 h in an ice bath. To obtain a uniform 

thin catalyst film on the electrode, a 15 μL aliquot was dropped onto a glassy carbon 

rotating disk electrode (RDE,  = 5 mm) and dried in the air, resulting in a Pt loading 

of 15.3 μg cm−2. All of the measured potentials were converted to reversible hydrogen 

electrode (RHE) according to the Nernst equation (ERHE = ESCE + 0.242 + 0.059 pH). 

Before the ORR test, the electrode was electrochemically cleaned in N2-saturated 0.1 

M HClO4 solution until a stable cyclic voltammogram was obtained. ORR was then 

tested by polarization curves between 0 and 1.1 V at 10 mV s−1 with a rotating rate of 

1600 rpm in O2-saturated 0.1 M HClO4 solution. Accelerated durability tests (ADT) 

were performed at 30 ℃ by potential scanning between 0.6 and 1.0 V vs. RHE at a scan 

rate of 100 mV s−1 in O2-saturated 0.1 M HClO4. Up to 50,000 potential cycles were 

performed on the PtCo/P2.73Ox-KB catalyst. Current densities were normalized by the 

geometric surface area and potentials were iR corrected.
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The electrochemically active surface areas (ECSA) of catalysts were determined by 

calculating the charges associated with hydrogen underpotential deposition (Hupd) and 

then normalizing the results to the total mass of platinum loaded onto the catalyst.1,2 

The Hupd method measures the charge associated with the voltametric peaks for 

hydrogen adsorption, which is due to the attachment of one hydrogen atom on each 

metal atom on the surface.3,4

ECSA = 

𝑄𝑟 

𝐶 ∗  𝑚𝑃𝑡

where mPt is the Pt mass loading, C is the charge of full monolayer coverage of H atoms 

onto clean polycrystalline Pt (210 μC cm−2 ) and Qr is the hydrogen adsorption charge 

in the negative-going scan during CV measurement.

According to the Koutechy–Levich equation, the kinectic current (Jk) could be obtained 

at 0.9V vs. RHE. The mass activity (MA) and specific activity (SA) were obtained by 

normalizing Jk at 0.9 V, regarding the loading of Pt and ECSA. The Koutecky-Levich 

equation was applied to derive Jk:

Jk

 =
𝐽 ∗  𝐽𝑑

𝐽𝑑 ‒ 𝐽

where J and Jd are the measured current and the diffusion limiting current, respectively.

XRD calculation method

The FWHM and crystallite sizes with the Gaussian fitting of the (111) diffraction peak 

were calculated using Debye–Scherrer and Bragg's Law expression shown in Eqs. 1 

and 2:



s-6

                     d =               (1)

𝑘 ∗  𝜆
𝑊 ∗ 𝑐𝑜𝑠𝜃

                   D(111) =            (2)

𝜆
2 ∗  𝑠𝑖𝑛𝜃(111)

where d is the crystallite size (nm), D(111) is lattice spacing of (111) crystal faces, k is a 

constant (0.9 for spherical particles), λ is the wavelength of the X-ray radiation (CuKα 

= 0.1541 nm), W is the full width at half maximum (FWHM) of the intense and broad 

peaks, while θ is the diffraction angle (radian).

MEA preparation and fuel cell test

To prepare the MEA, 30 mg of Pt-based catalyst and 37.5 mg of 20 wt% Nafion solution 

were dispersed in a 10 mL mixture of isopropanol-water (4 : 1) using an ultrasonic 

process for 2 hours. The catalyst ink was then evenly coated on one side of a GORE-

SELECT® membrane (12 μm) using ultrasonic spraying, with a cathode Pt loading of 

0.10 mgPt cm-2. The other side of the membrane was coated with a 20 wt% commercial 

Pt/C catalyst at a loading of 0.05 mgPt cm−2 as the anode. The electrode active area of 

MEA was 12.96 cm2. Fuel cell data were collected using a Scribner 850e fuel cell test 

system under the following conditions: a cell temperature of 80 ℃, a pressure of 50 

KPa, and a gas flow of 2600 sccm and 600 sccm for air and H2, respectively, at 100% 

relative humidity. Prior to conducting the polarization performance test, the MEA was 

activated using a constant-voltage step process. The fuel cell polarization test protocol 

involved multiple current steps, with each point being held for 2 min. For ADT in 

PEMFC, gas flow rates are 200 and 75 sccm for H2 and N2, respectively; potential steps 

are between 0.60 and 0.95 V with 3 s of holding time at each potential. After 30,000 
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cycles, the polarization curve of H2-air PEMFC and mass activity of H2-O2 PEMFC 

were measured.

Density functional theory (DFT) calculations

First-principles calculations were carried out using density functional theory (DFT) 

with generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) 

implemented in the Vienna Ab-Initio Simulation Package (VASP).5,6 The valence 

electronic states were expanded on the basis of plane waves with the core-valence 

interaction represented using the projector augmented plane wave (PAW) approach and 

a cutoff of 520 eV.7 A Γ-centered k-mesh of 2 × 2 × 1 was used for the surface 

calculations. Convergence is achieved when the forces acting on ions become smaller 

than 0.03 eV/Å. To calculate the formation energy ( ), the following equation was 𝐸𝑓

used:

𝐸𝑓 = 𝐸𝑃𝑡𝐶𝑜/𝑃2.73𝑂𝑥 ‒ 𝐾𝐵 ‒ 𝐸𝐾𝐵 ‒ 𝑛𝛼𝜇𝑃 ‒ 𝑛𝛽𝜇𝑂 + (𝑛𝛼 + 𝑛𝛽)𝜇𝐶 ‒ 𝑛𝜂𝜇𝑃𝑡 ‒ 𝑛𝜃𝜇𝐶𝑜

𝜇𝑃 =  
1

𝑛𝑃
𝐸𝑃

𝜇𝑂 =  
1
2

𝐸𝑂2

𝜇𝐶 =  
1

𝑛𝐶
𝐸𝐶

where , , , and  are the total energy of PtCo/P2.73Ox-KB, 
𝐸𝑃𝑡𝐶𝑜/𝑃2.73𝑂𝑥 ‒ 𝐾𝐵 𝐸𝐶 𝐸𝑃

𝐸𝑂2

carbon support, bulk P, and gas-phase O2, respectively. , , ,  and  are the 𝜇𝑃 𝜇𝑂 𝜇𝐶 𝜇𝑃𝑡 𝜇𝐶𝑜

related chemical potential of P, O, C, Pt (space group FM-3M), and Co (space group 

FM-3M), respectively. , , , and  are the number of P, O, Pt, and Co atoms in 𝑛𝛼 𝑛𝛽 𝑛𝜂 𝑛𝜃
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PtCo/P2.73Ox-KB, respectively.  is the number of P atoms in the most stable bulk 𝑛𝑃

structure of phosphorus.  is the number of C atoms in the carbon support.8-10𝑛𝐶

The adsorption sites for surface species have been pinpointed as the top Pt sites, given 

our model features PtCo (1:1) clusters with a Pt coating on the surface. We initially 

evaluated various high-symmetry sites by placing the cluster at an optimal distance 

from the surface. Subsequently optimizing it to its lowest energy configuration and the 

two configurations with similar energy are obtained.
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Fig. S1 (A) TEM images of commercial Pt/C and (B) the corresponding particle size 

histogram.
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synthesized with PA but without carbon support.
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Fig. S3 SEM images of (A) commercial Pt/C and (B) PtCo/P2.73Ox-KB. HRTEM 

images of (C) commercial Pt/C and (D) PtCo/P2.73Ox-KB.
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Fig. S4 In situ FTIR spectra of CO adsorbed on (A) Pt/C, (B) PtCo/KB, (C) 

PtCo/P0.47Ox-KB, (D) PtCo/P1.19Ox-KB, (E) PtCo/P2.73Ox-KB, and (F) PtCo/P5.71Ox-
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Fig. S7 Wavelet transform spectrum of Pt in (A) PtCo/P2.73Ox-KB, (B) Pt foil and (C) 

PtO2 as reference (FT range: 0.05-14 Å−1); Wavelet transform spectra of Co in (D) 

PtCo/P2.73Ox-KB, (E) Co foil and (F) CoO as reference (FT range: 0.05-11 Å−1).
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Table S1. EXAFS fitting parameters at the Pt L3-edge for various samples (Ѕ0
2=0.84).

shell CN R(Å) σ2 ΔE0 R factor

Pt foil Pt-Pt 12 2.760.01 0.0047 7.40.3 0.0009

Pt-O 6.00.3 2.010.01 0.0028

Pt-Pt 7.60.7 3.110.01 0.0044PtO2

Pt-O 8.11.9 3.650.02 0.0040

13.00.7 0.0124

Pt-O 0.20.1 1.960.01 0.0044

Pt-Co 2.10.1 2.660.01 0.0106
PtCo/P2.73Ox-

KB
Pt-Pt 6.10.2 2.720.01 0.0071

6.40.4 0.0015

aN: coordination numbers; bR: bond distance; cσ2: Debye-Waller factors; d ΔE0: the 
inner potential correction. R factor: goodness of fit. 
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Table S2 EXAFS fitting parameters at the Co K-edge for various samples (Ѕ0
2=0.76).

shell CN R(Å) σ2 ΔE0 R factor

Co foil Co-Co 12 2.490.01 0.0065 7.40.3 0.0009

Co-O 6.30.8 2.100.01 0.0096

Co-Co 12.40.7 3.010.01 0.0079CoO

Co-O 4.30.3 2.090.02 0.0103

13.00.7 0.0124

Co-O 4.30.3 2.090.02 0.0103

Co-Pt 1.00.3 2.720.02 0.0041
PtCo/P2.73Ox-

KB
Co-Co 2.40.4 2.650.03 0.0119

2.62.8 0.0071

aN: coordination numbers; bR: bond distance; cσ2: Debye-Waller factors; d ΔE0: the 
inner potential correction. R factor: goodness of fit. 
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Fig. S8 SEM-EDS mapping of the P2.73Ox-KB.
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Fig. S9 XRD pattern of PyOx-KB.
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Fig. S10 (A) Raman spectra, (B) N2 adsorption-desorption isotherms, (C) Barret-

Joyner-Halenda (BJH) and (D) Mercury-Intrusion-Porosimetry (MIP) pore size 

distribution of KB and PyOx-KB.
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Table S3. ID/IG from Raman spectra, BET surface area, BJH and MIP average pore size 

distribution of KB and PyOx-KB.

ID/IG

BET surface 

area (cm2 g−1)

BJH average 

pore size (nm)

MIP average 

pore size (nm)

KB 1.51 1593 11.6 13.2

P0.47Ox-KB 1.48 1529 10.3 12.2

P1.19Ox-KB 1.45 1463 9.8 11.6

P2.73Ox-KB 1.41 1292 8.9 9.8

P5.71Ox-KB 1.38 1034 8.3 9.2
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Fig. S11 EELS mapping images of the PtCo/P2.73Ox-KB (A) before and (B) after 

annealing at 1000 ℃ for 1 hour.
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Table S4 Element content of the as-prepared catalysts measured by ICP-MS.

Pt (wt%) Co (wt%) P (wt%)
Atomic ratio 

of Pt/Co 

Pt/C 19.82 / / /

PtCo/KB 16.71 5.05 / 0.98

PtCo/P0.47Ox-KB 17.24 4.61 0.34 1.13

PtCo/P1.19Ox-KB 18.85 5.56 0.71 1.02

PtCo/P2.73Ox-KB 18.21 5.66 1.77 0.96

PtCo/P5.71Ox-KB 19.13 5.83 3.36 0.99
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Table S5 Element content of the as-prepared catalysts measured by XPS.

Pt (at%) Co (at%) P (at%) Pt/Co

Pt/C 2.36 / / /

PtCo/KB 0.68 0.33 / 2.06

PtCo/P0.47Ox-KB 0.91 0.35 0.41 2.58

PtCo/P1.19Ox-KB 1.14 0.42 0.46 2.73

PtCo/P2.73Ox-KB 1.5 0.56 0.53 2.68

PtCo/P5.71Ox-KB 2.03 0.85 0.78 2.39
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Fig. S14 CV curves of (A) Pt/C, (B) PtCo/KB, (C) PtCo/P0.47Ox-KB, (D) PtCo/P1.19Ox-

KB, and (E) PtCo/P5.71Ox-KB before and after ADT.
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Fig. S15 Polarization curves of (A) Pt/C, (B) PtCo/KB, (C) PtCo/P0.47Ox-KB, (D) 
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Table S6 Comparison of the ORR performance at 0.9 V in 0.1 M HClO4 on recent 

reported PtCo-based catalysts.

Catalysts Pt loading 
(μgPt cm−2)

SA
(mA cm−2)

MA
 (A mgPt−

1) 

MA loss 
after 30k 
ADT (%)

Refs.

PtCo/P2.73Ox-KB 13.93 1.68 1.11 24.3 This work

L10-PtCo/NC 17.6 1.11 1.27 37

A1- PtCo/NC 15.4 1.07 1.42 62.7
11

PtCoNMC 18.75 0.84 0.956 19 12

PtCo/Co-N-C 12.14 -- 0.7 44.43 13

Pt-Co ND-NF 23 2.624 0.939 44.8 14

Pt-Co-Mo-I 5.44 -- 0.71 32 15

PtCo/CNT 16 -- 0.469 29.18 16

Pt-rich
PtCo NFs 35.71 11.23 2.63 55.89

PtCo NFs 35.71 1.16 0.59 66.1
17

STG-assisted 
PtCo 11-13 -- 1.08 25

Umic-30 wt% 
PtCo 11-13 -- 0.86 33

18
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Fig. S17 CV curves of (A) PtCo/P2.73Ox-KB and (B) Pt/C. ORR polarization curves of 

(C) PtCo/P2.73Ox-KB and (D) Pt/C; (E) ECSA and (F) Mass activity of PtCo/P2.73Ox-

KB and Pt/C before and after 20,000 potential cycles between 0.6 and 1.1 V at 100 mV 

s-1.
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Fig. S18 CV curves of (A) PtCo/P2.73Ox-KB and (B) Pt/C in 0.1 M HClO4. ORR 

polarization curves of (C) PtCo/P2.73Ox-KB and (D) Pt/C; (E) ECSA and (F) Mass 

activity of PtCo/P2.73Ox-KB and Pt/C before and after 5,000 potential cycles between 
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Table S7 Element content of PtCo/P2.73Ox-KB after 50000 cycles measured by ICP-

MS.

ICP-MS 

Pt 8.79 wt%

Co 0.96 wt%

P 1.09 wt%

Atomic ratio of 

Pt/Co
2.77
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Fig. S20 CV curves of (A) PtFe/KB, (B) PtNi/KB, (C) PtCu/KB, (D) PtZn/KB, (I) 

PtFe/P2.73Ox-KB, (J) PtNi/P2.73Ox-KB, (K) PtCu/P2.73Ox-KB, and (L) PtZn/P2.73Ox-KB 

after 10000 potential cycles. Polarization curves of (E) PtFe/KB, (F) PtNi/KB, (G) 
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Table S8 Element content of PtCo/P2.73Ox-KB after 30,000 cycles of ADT in PEMFC 

measured by ICP-MS.

ICP-MS 

Pt 7.12 wt%

Co 0.71 wt%

P 1.12 wt%

Atomic ratio of 

Pt/Co
3.03
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Table S9 Element content of the as-prepared catalysts measured by ICP-MS.

Pt (wt%) M (wt%)

PtFe/KB 18.11 Fe (4.93)

PtNi/KB 17.74 Ni (5.62)

PtCu/KB 15.88 Cu (4.02)

PtZn/KB 17.95 Zn (5.28)

PtFe/P2.73Ox-KB 16.87 Fe (4.72)

PtNi/P2.73Ox-KB 19.59 Ni (6.04)

PtCu/P2.73Ox-KB 15.56 Cu (4.16)

PtZn/P2.73Ox-KB 18.33 Zn (5.94)
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Table S10 Comparison of the H2-air PEMFC performance on recent reported PtCo-

based catalysts.

Catalysts
Pt loading 

(mgPt cm−2)

Outlet 

pressure 

(kPa)

Active 

area 

(cm2) 

Peak power 

density (W 

cm−2)

Cell voltage 

loss after 30k 

ADT (mV)

Refs.

PtCo/P2.73Ox-KB 0.05/0.1 50 12.96 1.21 0 This work

Ga0.1-PtCo 0.025/0.075 50 5 1.2 27 19

PtCo@Gnp 0.01/0.09 50 5 1.01 23.5 20

L10-W-PtCo/C -- 50 -- -- 30 21

PtCoNWs 0.025/0.05 50 5 1.016 59 22

Sub-Pt3Co-MC 0.2/0.2 150 1.44 0.8 45 23

PtCo/C3 0.05/0.1 50 -- 1.16 16.9 24

i-CoPt@Pt/KB 0.1/0.1 50 5.06 1.18 29 25

Pt−Co/C(com) -- 150 5 1.818 35 26

mailto:density@0.0.0.6
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Table S11 The 2 theta and full width at half maximum (FWHM) of in-situ XRD on 

Pt/C, PtCo/KB and PtCo/P2.73Ox-KB.

Pt/C PtCo/KB PtCo/P2.73Ox-KB

Initial (2 theta) 39.660° 40.421° 40.427°

Initial (FWHM) 3.120 1.981° 2.097°

After 1,000 cycles 

(2 theta)
39.660° 40.334° 40.365°

After 1,000 cycles 

(FWHM)
2.238° 1.786° 2.073°

After 2,000 cycles 

(2 theta)
39.660° 40.202° 40.211°

After 2,000 cycles 

(FWHM)
2.038° 1.716° 2.057°

After 3,000 cycles 

(2 theta)
39.660° 40.161° 40.167°

After 3,000 cycles 

(FWHM)
1.961° 1.705° 2.021°

After 4,000 cycles 

(2 theta)
39.660° 40.073° 40.132°

After 4,000 cycles 

(FWHM)
1.933° 1.691° 1.997°

After 5,000 cycles 

(2 theta)
39.660° 40.035° 40.040°

After 5,000 cycles 

(FWHM)
1.848° 1.669° 1.972°
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Fig. S23 In-situ Raman spectroscopy of Pt/C (A) saturated with Ar, (B) saturated with 

O2 and (C) the corresponding 2D spectra. In-situ Raman spectroscopy of PtCo/P2.73Ox-

KB (D) saturated with Ar, (E) saturated with O2 and (F) the corresponding 2D spectra 

in 0.1 M HClO4 solution. (G) Schematic diagram of the ORR reaction pathway of 

PtCo/P2.73Ox-KB; the gray, yellow, red, and white balls represent Pt, Co, O, and H 

atoms, respectively. 
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